Concepts Covered

maximisation (\& minimisation)
prices, CPI, inflation, purchasing power
demand \& supply
market equilibrium, gluts, excess demand
elasticity (elastic v. inelastic, perfectly or not)
normal v. inferior goods
substitutes v. complements (gross v. true) (perfect or not)
own-price elasticity of demand
cross-price elasticity of demand
income elasticity of demand
income-expansion curve
price effect \& income effect of a price change
gains to trade and efficient allocations \& the contract curve
positive marginal utility v. negative (goods v. "bads")
bliss point \& satiation
optimum level of output (profit-maximising)
Profit $=$ Total Revenue - Total Cost (including opp. cost of capital necessary condit. for profit-maximising output: $M R\left(y^{*}\right)=M C\left(y^{*}\right.$
sufficient condition: falling marginal profit
plus: no negative profit
costs: total, fixed, variable, average, marginal, opportunity
at minimum $\mathrm{AC}, \mathrm{MC}=\mathrm{AC}$
revenue: market power, $\mathrm{MR}<\mathrm{AR}=\mathrm{P}$
price-taking firm (no market power)
for a price-taking firm: $A R=D=P=M R$
and π max: $P=M C\left(y^{*}\right)$
break-even output y^{\prime} and price P^{\prime}
supply curve: $y=0$ until $P>P^{\prime}$, then up the $M C(y)$ curve
long-run condition: $\pi \geq 0$
short-run condition: $A R \geq A V C$
the production function and factor inputs: capital, labour, land efficient operation
π max: value of the marg prod of input $i=$ its price w_{i} isoquants and substitution of input factors
returns to scale and $A C$
cost min: marg cost of producing addit unit is equal across inputs cost min: output from $\$ 1$ spent on an input is equal across inputs

1. THE CONSUMER

1a. The Feasible Set (FS)

$$
\sum P_{i} X_{i} \quad \leq I
$$

total expenditure \leq income

1b. Preferences, Utility Function

$U(\mathbf{X}) \equiv U\left(x_{1}, x_{2}, x_{3}, \cdots\right)$
maximize utility s.t. budget
convex-to-origin indifference curves
along an indifference curve: U constant
decreasing MRS $\left.=-\frac{d X_{2}}{d X_{1}} \right\rvert\, \bar{U}=-$ slope of indifference
Axioms

1c. The Chosen Set

To maximise utility: slope of the indifference curve $=$ slope of the budget line
(willingness to substitute $=$ ability to substitute)
i.e., MRSC, marginal rate of substitution of consumption $=$ MRSE, marginal rate of substitution in exchange $=$ MRST, marginal rate of substitution in trade

$$
\begin{gathered}
\therefore-\mathrm{MRS}=-\frac{P_{1}}{P_{2}} \text { the slope of the budget line } \\
\therefore \mathrm{MRS}=\frac{M U_{1}}{M U_{2}}=\frac{P_{1}}{P_{2}} \\
\therefore \frac{M U_{1}}{P_{1}}=\frac{M U_{2}}{P_{2}}=\cdots
\end{gathered}
$$

(The marginal utility per dollar spent on each good is equal across all goods in the bundle.)

$$
\begin{gathered}
\max . U\left(X_{1}, X_{2}\right) \\
\text { s.t. } P_{1} X_{1}+P_{2} X_{2}=I \\
\rightarrow X_{1}=X_{1}^{*}\left(P_{1}, P_{2}, \ldots, I\right)
\end{gathered}
$$

\rightarrow the demand function for good 1 .

Comparative Statics:

η_{1}^{P}	η_{2}^{P}	ε
own-price elasticity of demand	cross-price elasticity of demand	income elasticity of demand

Law of demand, substitutes, complements, "normal", inferior goods

1d. Comparative Statics

How does demand X_{1}^{*} alter with a price change?

$$
\frac{\partial X_{1}^{*}}{\partial P_{1}} ?
$$

Two effects of a price change:

substitution effect		<0 always
income effect	<0	"normal", goods (defn)
	>0	"inferior" goods (defn)

demand function for goods
Q_{2}

Q_{1}

1e. The Slutsky equation

Price effect $=$ Substitution effect + Income effect - looks at the substitution and the income effects of a price change
Own-Price:

$$
\begin{array}{r}
\left.\frac{\partial X_{1}^{*}}{\partial P_{1}}=\frac{\partial X_{1}}{\partial P_{1}} \right\rvert\, \bar{U}-X_{1}^{*} \frac{\partial X_{1}^{*}}{\partial I} \\
\text { or } \eta_{P}=\begin{array}{r}
\bar{U} \\
\eta_{P}^{U}
\end{array} \begin{array}{r}
f_{1} \times \varepsilon \\
<0
\end{array} \frac{X_{1} P_{1}}{I}
\end{array}
$$

The Law of Demand

$$
\begin{array}{llll}
\text { normal good } & \rightarrow & \varepsilon & >0 \\
\text { inferior good } & \rightarrow & & <0
\end{array}
$$

Cross-Price:

$$
\begin{array}{lll}
\text { gross substitutes } & \rightarrow & >0 \\
\text { gross complements } & \rightarrow & \frac{\partial X_{i}}{\partial P_{j}}
\end{array}
$$

$$
\eta_{P_{j}}^{x_{i}}
$$

Gross measures (LHS) include a measured income effect, as well as a pure price (substitution) effect.

Slutsky equation with elasticities:

$$
\begin{array}{rlr}
\eta_{P}= & \eta_{P}^{\bar{U}}-f \times \varepsilon & \text { own-price } \\
\eta_{P_{y}}^{x}= & \eta_{P_{y}}^{\bar{U}}-\frac{P_{y} \times y}{I} \varepsilon^{x} \quad \text { cross-price } \\
\bar{U}_{P_{y}}^{\bar{U}} \quad \begin{array}{l}
x, y \text { substitutes }>0 \\
\\
x, y \text { complements }<0 \\
\varepsilon^{x} \quad \begin{array}{l}
x \text { inferior good }<0 \\
x \text { normal good }>0
\end{array}
\end{array} \text { }
\end{array}
$$

2. THE FIRM

Aim: maximize the profit π subject to the cost function $T C(y)$.

2a. $\max \pi=T R-T C$

$$
\begin{aligned}
&=P \times y-T C(y) \\
& \frac{d \pi}{d y}=0 \Rightarrow M R\left(y^{*}\right)=M C\left(y^{*}\right) \quad\left(1^{\text {st }}\right. \text { Order } \\
&\quad \text { Necessary Condition }) \\
& \text { Sufficient: } M \pi \text { falling and } \quad \pi>0
\end{aligned}
$$

Three conditions: (i) marginal revenue $=$ marginal cost
(ii) average revenue > average cost ($\pi>0$)
(iii) falling marginal profit

Market power: downwards sloping demand curve
Marginal revenue $M R=P\left(1+\frac{1}{\eta^{P}}\right) \leq \mathrm{AR}=\mathrm{P}$ since η^{P} is negative form the Law of Demand

No market power: horizontal demand curve, $\left|\eta^{P}\right|=\infty$ and Marginal Revenue $=$ Price, $M R=P$, so
the three conditions become:

$$
\begin{gathered}
M C\left(y^{*}\right)=P \\
P>A C, \text { or } \pi>0 \\
\text { rising } M C(y)
\end{gathered}
$$

2b. $\max \pi=P \times y-\sum w_{i} \times z_{i}$
z_{i}
subject to $y \leq F\left(z_{1}, \ldots, z_{n}\right)$ production function $\rightarrow P=\frac{w_{i}}{M P_{i}}$ for all $i \quad\left(1^{\text {st }}\right.$ Order Cond.)
or Value of the marginal product of an input equals the marginal cost $\left(w_{i}\right)$ of that input.

$$
P \times M P_{i}=w_{i}
$$

We can break this into two problems:
(i) $\min T C=\sum w_{i} \times z_{i}$

$$
\text { s.t. } \bar{y}=\bar{F}\left(z_{1} \ldots z_{n}\right)
$$

$\rightarrow T C(\bar{y}) \& z_{1}^{*} \ldots z_{n}^{*}(\bar{y})$
(ii) $\max _{\bar{y}} \pi=T R-T C(\bar{y})$
$\bar{y} \quad \rightarrow \bar{y}^{*}$

budget line
 slope $=-\frac{P_{1}}{P_{2}}$

