© R.E.Marks 1997

Concepts Covered

maximisation (& minimisation) prices, CPI, inflation, purchasing power demand & supply market equilibrium, gluts, excess demand elasticity (elastic v. inelastic, perfectly or not)

normal v. inferior goods substitutes v. complements (gross v. true) (perfect or not) own-price elasticity of demand cross-price elasticity of demand income elasticity of demand income-expansion curve price effect & income effect of a price change gains to trade and efficient allocations & the contract curve positive marginal utility v. negative (goods v. "bads") bliss point & satiation

optimum level of output (profit-maximising) Profit = Total Revenue – Total Cost (including opp. cost of capital necessary condit. for profit-maximising output: $MR(y^*) = MC(y^*)$ sufficient condition: falling marginal profit plus: no negative profit costs: total, fixed, variable, average, marginal, opportunity at minimum AC, MC = AC revenue: market power, MR < AR = P price-taking firm (no market power) for a price-taking firm: AR = D = P = MRand π max: $P = MC(y^*)$ break-even output y' and price P' supply curve: y = 0 until P > P', then up the MC(y) curve long-run condition: $\pi \ge 0$ short-run condition: $AR \ge AVC$ the production function and factor inputs: capital, labour, land efficient operation π max: value of the marg prod of input i = its price w_i isoquants and substitution of input factors returns to scale and ACcost min: marg cost of producing addit unit is equal across inputs cost min: output from \$1 spent on an input is equal across inputs

Recap 2

© R.E.Marks 1997

Recap 3

Recap 4

1c. The Chosen Set

To maximise utility: slope of the indifference curve = slope of the budget line (willingness to substitute = ability to substitute)

i.e., MRSC, marginal rate of substitution of consumption = MRSE, marginal rate of substitution in exchange = MRST, marginal rate of substitution in trade

 $\therefore -MRS = -\frac{P_1}{P_2} \text{ the slope of the budget line}$ $\therefore MRS = \frac{MU_1}{MU_2} = \frac{P_1}{P_2}$ $\therefore \frac{MU_1}{P_1} = \frac{MU_2}{P_2} = \cdots$

(The marginal utility per dollar spent on each good is equal across all goods in the bundle.)

max.
$$U(X_1, X_2)$$

s.t. $P_1 X_1 + P_2 X_2 = I$
 $\rightarrow X_1 = X_1^* \ (P_1, P_2, \dots, I)$

 \rightarrow the demand function for good 1.

Comparative Statics:

 η_1^P

own-price

elasticity

of demand

inferior goods.

 η_2^P

cross-price

elasticity

of demand

Law of demand, substitutes, complements, "normal",

ε

income

elasticity

of demand

Recap 6

1d. Comparative Statics

How does demand X_1^* alter with a price change?

$$\frac{\partial X_1^*}{\partial P_1} \quad ?$$

Two effects of a price change:substitution effect<</td>income effect< 0 "no> 0"inf

<0 always "normal" goods (defn) "inferior" goods (defn)

demand function for goods

© R.E.Marks 1997

1e. The Slutsky equation

Price effect = Substitution effect + Income effect — looks at the substitution and the income effects of a price change

Own-Price:

$$\frac{\partial X_1^*}{\partial P_1} = \frac{\partial X_1}{\partial P_1} \Big|_{\overline{U}} - X_1^* \frac{\partial X_1^*}{\partial I}$$

or $\eta_P = \eta_P^{\overline{U}} - f_1 \times \varepsilon$
 $< 0 \qquad \frac{X_1 P_1}{I}$

The Law of Demand

normal good	\rightarrow	ε	>0
inferior good	\rightarrow		< 0

Cross-Price:

gross substitutes \rightarrow > 0gross complements \rightarrow $\frac{\partial X_i}{\partial P_j}$ < 0unrelated goods \rightarrow = 0 $\eta_{P_j}^{x_i}$

Gross measures (LHS) include a measured income effect, as well as a pure price (substitution) effect.

Slutsky equation with elasticities: $\eta_P = \eta_P^{\overline{U}} - f \times \varepsilon$ own-price $\eta_{P_y}^x = \eta_{P_y}^{\overline{U}} - \frac{P_y \times y}{I} \varepsilon^x$ cross-price $\eta_{P_y}^{\overline{U}}$ x, y substitutes > 0x, y complements < 0x inferior good < 0 ε^{x} x normal good > 0

 $\pi > 0$

Recap 10

2. THE FIRM Aim: maximize the profit π subject to the cost function TC(y). 2*a*. max $\pi = TR - TC$ $= P \times y - TC(y)$ $\frac{d \pi}{dv} = 0 \Rightarrow MR(y^*) = MC(y^*) \quad (1^{\text{st}} \text{ Order})$ Necessary Condition) Sufficient: $M\pi$ falling and Three conditions: (i) marginal revenue = marginal cost (ii) average revenue > average cost $(\pi > 0)$ (iii) falling marginal profit Market power: downwards sloping demand curve Marginal revenue $MR = P(1 + \frac{1}{n^P}) \le AR = P$ since η^P is negative form the Law of Demand *No market power*: horizontal demand curve, $|\eta^P| = \infty$ and Marginal Revenue = Price, MR = P, so

the three conditions become:

$MC(y^*) = P$
$P > AC$, or $\pi > 0$
rising $MC(y)$

2b. max $\pi = P \times y - \sum w_i \times z_i$ subject to $y \leq F(z_1, \ldots, z_n)$ production function $\rightarrow P = \frac{w_i}{MP_i}$ for all *i* (1st Order Cond.) or Value of the marginal product of an input equals the marginal cost (w_i) of that input. $P \times MP_i = w_i$ We can break this into two problems: (*i*) min $TC = \sum w_i \times z_i$ s.t. $\overline{y} = F(z_1 \dots z_n)$ $\rightarrow TC(\overline{y}) \& z_1^* \dots z_n^*(\overline{y})$ (*ii*) max $\pi = TR - TC(\overline{y})$ \overline{y} $\rightarrow \overline{v}^*$ x_2 x_1

