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m idney Winter, an economist now at the Wharton School at the Uni-
versity of Pennsylvania after a four-year stint as chief economist at
the General Accounting Office, spoke at a recent Santa Fe Institute
meeting on “Organizational Evolution” and immediately captured our
attention. After all, most of us were academic scientists. Sid spoke from
experience near the center of the United States government about
global changes in our economic life. “There are four horsemen of the
workplace,” he said. .
Technology, Global Competition, Restructuring, Defense Conversion.
These are dominating the post—-Cold War period. We need jobs, good
jobs, but we don’t know how to be certain that the economy will generate
those jobs. Health reform, welfare reform, and trade policy are around the
corner. We neither know how to achieve these nor understand their im-
pact. The de facto tenure of jobs in US. firms is decreasing. Companies
are out-sourcing. Rather thar performing all parts of the total job inside
the firm, many subtasks are being purchased from other firms, often in
other countries. This is leading to disintegration of the vertical organiza-
tion of fitms. Mergers and acquisitions zre pulling old companies into new
forms, then spinning out components into new structures. Trade liberal-
ization is upon us. We are downsizing. It is all captured by a common
theme: repackaging, We are shifting packages of economic activity into
new smaller units. The folk model of organization as top—down and cen-

tralized is out of date. Organizations are becoming flatter, more decentral-
ized.

T listened with surprise. Organizations around the globe were becom-
ing less hierarchical, flatter, more decentralized, and were doing so in
the hopes of increased flexibility and overall competitive advantage.
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Woas there much coherent theory about how to decentralize, I won-
dered. For I wes just in the process of finding surprising new phenom-
ena, a new edge-of-chaos story, that hinted at the possibility of a deeper
understanding of how and why flatter, more decenrralized organiza-
tions—business, political, and otherwise—might actually be more flexi-
ble and carry an overall competitive advantage.

A few weeks later, just as I was absorbing this message, the Santa Fe
Institute held sn “outpost” meeting at the University of Michigan. The
aim was to cormect the work on the “sciences of complexity” going on
in Santa Fe with that of colleagues at the University of Michigan. Com-
puter scientist John Holland, who has had a major impact with his de-
velopment of “the genetic algorithm,” which uses landscape ideas, mu-
tation, recombination, and selection to solve hard mathematical
problems, is the glue between the institute and his home institution in
Ann Arbor. The dean of the Department of Engineering, Peter Banks,
was charismatic. “Total Quality Management is taking over, integrating
new modular teams in our firms,” he said. “But we have no real theoret-
 ical base to understand how to do this well. Perhaps the kind of work
going on in Senta Fe can help.” I nodded my head vigorously, hopeful,
but not necessarily convinced.

Why would I, the other scientists at Santa Fe, or our colleagues
around the globe studying complexity be interested in potential con-
nections to the practical problems of business, management, govern-
ment, and organizations? What are biclogists and physicists doing pok-
ing into this new arena? The themes of self-organization and selection,
of the blind watchmaker and the invisible hand all collaborating in the
historical unfolding of life from its molecular inception to cells to or-
ganisms to ecosystems and finally to the emergent social structures we
humans have evolved—all these might be the locus of law embedded in
history. No molecule in the bacterium E. coli “knows” the world E. cols
lives in, yet E. coli makes its way. No single person at IBM, now down-
sizing and becoming a flatter organization, knows the world of IBM, yet
collectively, TBM acts. Organisms, artifacts, and organizations are all
cvolved structures. Even when human agents plan and construct with
intention, there is more of the blind watcamaker at work than we usu-
ally recognize. What are the laws governing the emetgence and coevolu-
tion of such structures?

Organisms, artifacts, and organizations all evolve and coevolve on
rugged, deforming, fitness landscapes. Organisms, artifacts, and organi-
zations, when complez, all face conflicting constraints. So it can be no
sutprise if attempts to evelve toward good compromise solutions and
designs must seek peeks on rugged landscapes. Nor, since the space of
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possibilitizs is typically vast, can it be a surprise that even human agents
must search more or less blindly. Chess, after all, is a finite game, yet no
grand master can sit at the board after two moves and concede defeat
because the ultimate checkmate by the opponent 130 moves later can
now be seen as inevitable. Aad chess s simple compared with most of
real life. We may have our intentions, but we remain blind watchmak-
ers. We are all, cells and CEOs, rathe: blindly dimbing deforming fit-
ness landscapes. If so, then the problems confronted by an organiza-
tion—cellular, organismic, business, governmental, or otherwise—living
in niches created by other organizations, is preeminently how to evolve
on its deforming landscape, to track the moving peaks.

Tracking peaks on deforming landscapes is central to survival. Land-
scapes, in short, are part of the search Zor excellence—the best compro-
mises we can attain.

The Logic of Patches

I intend, in this chepter, to describe some recent work I am carrying out
with Bill Macready and Emily Dickinson. The results hint at sometaing
deep and simple about why flatter, decentralzed organizations may
function well: contrary to intuition, breaking an organization into
“patches” where each patch attempts to optimize for its own selfish
benefit, even if that is harmful to the whole, can lead, as f by an invisi-
ble hand. to the welfare of the whole crganization. The trick, as we shall
see, lies in how the patches are chosen. We will find an ordered regime
where poor compromises for the entire organization are found, a
chaotic regime where no solution is ever agreed on, and a phase transi-
tion between order and chaos where excellent solutions are found
rapidly. We will be exploring the logic of patches. Given the results I
will describe, I find myself wondering whether these new insights wilt
help us understand how complex organizations evolve, and petbaps
even why democracy is such a good political mechanism to reach com-
promises between the conflicting aspirations of its citizens.

The work is all based on our now familiar friend, the NK model of
rugged fitness landscapes. Since this is so, caveats are again in order.
The NK model is but one family of rugged, conflict-laden, fitness land-
scapes. Any efforts here require careful extension. For example, we will
need to be far surer than I now am that the results I will discuss extend
to other conflict-Jaden problems, ranging from the desizn of complex
artifacts such as aircraft, to manufacturing facilities, organizational
structures, and political systems.
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NK fitness landscapes zre examples of what mathematicians call hard
combinatorial optimization problems. In the framework of NK land-
scapes, the optimization problem is to find either the global optimum,
the highest peak, or ar least excellent peaks. In NK landscapes, geno-
types are combinatorial objects, composed of N genes with either 1 or 0
allele states. Thus as N increases, one finds what is called a combinator-
ial explosion of possible genotypes, for the number of genotypes is 2V,
One cf these genotypes is the global peak we scek. So as N goes up,
finding the peak can become very much harder. Recall that for K= N —
1, the maximum density of interconnectedness, landscapes are fully ran-
dom and the number of local peaksis 2¥/(N + 1), In Chapter 8, we dis-
cussed finding maximally compressed algorithms to perform a compu-
tation, and noted that such algorithms “live” on random landscapes.
Therefore, finding a2 maximally compressed program for an algorithm
amounted to finding one or, at most, a very few of the highest peaks on
such a random landscape. Recall that on random landscapes, local hill-
climbing soon becomes trapped on local peaks far from the global opti-
mum. Therefore, finding the global peak or one of a few excellent peaks
is a completely ntractable problem. One would have to search the en-
tire space to be sure of success. Such problems are known as NP-hard.
This means roughly that the search time to solve the problem increases
In proportion to the size cf the problem space, which itself increases ex-
ponentially because of the combinatorial explosion.

Evolution is ¢ search procedure on rugged fixed or deforming land-

- scapes. No search procedure can guarantee locating the global peak in
an NP-hard problem in less time than that required to search the entire
space of possibilities. And that, as we have r=peatedly seen, can be hy-
perastronomical Real cells, organisms, ecosystems, and, I suspect, real
complex artifacts and real organizations never find the global optima of
their fixed or deforming landscapes. The real task is to search out the
excellent peaks and track them as the landscape deforms. Our
“patches” logic appears to be one way complex systems and organiza-
tions can accomnlish this.

Before discussing patch logic, I am going to tell you about a well known
procedure to find good fitness peaks, It is called simulated annealing, and
was invented by Scott Kirkpatrick at TBM and his colleagues some years
ago. The test example of a hard combinatorial optimization problem they
chose is the famous Traveling Salesman problem. If one could solve this,
one would break the back of many hard optimization prablems. Here it is:
you, a salesperson, live in Lincoln, Nebraska. You must visit 27 towns in
Nebraska, one after the other, and then return home. The catch is, you are
supposed to travel your circuit by the shortest route possible.
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That's all thereis to it. Just get in your flivver, pack 27 lunches in your
carry-along ice chest, and get on with the tour. Simple as pie. Or so it
sounds.

If the number of cities, N, which is 27 here, increases to 100 or 1,000,
the complexity of the pie becomes one of those hyperastronomical
kinds of messes. You see, if you start in Lincoln, you have to chocse the
first city you will go to, and you have 26 choices. After picking the first
city on your tour, you must pick the second, so 25 choices remair. And
so on. The numkber of possible tours starting irom Lincoln is (27 X 26
X 25 X ...3 X2 X 1)/2. (Divide by 2 becausz you could choose either
of two routes atround any circuit, and dividing by 2 keeps us from
counting the same tour twice.)

One would think there was some zasy way to find the very best tour;
however, this appears to bz a dashed hope. It appears that in order to
find the shortest tour, you have to consider them all. As the number of
cities, N, grows large, you get one of the combinatorial explosions of
possibilities that make genotype spaces and other combinatorial spaces
so huge. Even with the fastest computer, it can be impossible to guaran-
tee finding the shortest tour in, say, the life of the human species or the
universe.

The best thing to do—indeed, the only practical thing 1o do—is to
choose a route that is excellent, but not necessarily the very best. As in
all of life, the salesperson in search of excellence will have to sette for
less than perfection.

How can one find at least an excelent tour? Kirkpatrick and his col-
leagues offered a powerful approach in their concept cf simulated an-
nealing. First we need a fitness, or cost, landscape. Then we will search
across that landscape to find good short tours. The landscape in ques-
tion is simple. Consider our 27 cities and all possible tours through
them. As we have seen, there is a very large number of such tours. Now
we need the idea of which tours are “near” each other, just as, for geno-
types, we needed the idea of near mutant neighbors. One way of doing
this is to think of a “swap” that exchanges the positions of two ciies in
a tour. Thus we might have gone ABC D E F A, If we exchange C and
F, we would go ABF D E C A (Figure 11.1).

Once we have defined this notion of a “neighboring tour,” we can
arrange all the possible tours in a high-dimensional space, rather like a
genotype space, iz which each tour is next to all its neighbors. It’s hard
to show the proper high-dimensional tour space. Recall that in the NK
model, each genotype, such as (1111), is a vertex in a Boolean hyper-
cube and is next to N other genotypes: (0111), (1011), (1101), and
(1110). Adaptive walks occur from genotype to neighboring genotype
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Figure 11.1 The Traveling Selesman problem. One tries to find the q\u.o.l&.n
route through several cities. (2} Traveling Salesman tour through six cities, A—F.
(b) Exchanging two cities from (a) alters the tour to a “neighboring” tour

until alocal peak is reached. In tour space, each tour is a “vertex” and is
connected by a line to each of its neighboring tours. Since we are seek-
ing the shortest tour from Lincoln through the 27 cities and back to
Lincoln, it makes sense to think of the length of the tour as its “cost.”
Since each tour has a cost, we get a cost landscape over our tour space.
Since we are trying to minimize cost rather than maximize fitness, on a
cost lendscape we seek the deepest valleys rather than the highest
peaks. The idea, however, is obviously the same. : .
Like any other rugged landscape, the tour space may be correlated in
a variety of ways; that is, neighboring tours will tend to have &m same
length, and hence cost. If 5o, it would be smart to use the correlations to
help find excellent tours, even if we cannot find the best. Recall from
Chapter 8 that we found a rather general feature of many rugged land-
scapes: the deepest valleys “drain” the largest region of the space of

possibilities. If we think of the vallzys as real valleys in a mountainous -

terrain, water can flow downhill to the deepest valleys from the greatest
number of initial positions on the landscape. This feature is essential to
simulated annealing, as we are about to see.

Picture a water droplet or a ball. Once it reaches one local minimum,
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it is stuck there forever unless disturbed by some outside process, That
is, whether hiking uphill toward fitness peaks or dowrhill toward cost
minima, if one can take oaly steps that improve the situation, one will
soon become trapped. Bur the minimum or maximum by which one is
trapped may be very poor compared with the excellent minima or max-
ima. Thus the next question is how 1o escape.

Real physical systems have an utterly natural way to escape from bad
Jocal minima. Sometimes they randomly move in the wrong direction,
taking a step uphill when it would seem natural to go down. This ran-
dom motion is caused by thermal vibration and can be measured by
temperature.

Think of a system of interacting molecules colliding with one arother.
The rate of collisions depends on the velocitics of the molecules. Tem-
perature is a measure of the average motion of the molecules, the aver-
age kinetic energy. High temperature means that the molecules are in vi-
olent rzndom motions. Zero temperature means the molecules are not
moving at all.

At a high temperature, a physical system jos:les around in its space of
possible configurations, molecules colliding with one another and ex-
changing kinetic energy. This jostling means -hat the system does not
just flow downhill into local energy minima, but can, with a probability
that increases with the temperature, jump uphill in energy over “energy
barriers” into the drainage basins of neighboring energy minima. If the
temperzture were lower, the system would be less likely to jump uphill
in energy over any given barrier, and hence would be more likely to re-
main in any given energy “well.”

Annealing is just gradual cooling. Real physical annealing corre-
sponds to taking a system and gradually lowering its temperature, A
smithy hammering red-hot ‘ron, repeatedly plunging the forming object
into cold water and then reheating it and hammering it again, is practic-
ing real annealing. As the smithy anneals and hammers, the microscopic
arrangements of the atoms of iron are reatranged, giving up poor, rela-
tively unstable, local minima and settling into lower-energy minima cor-
responding to harder, stronger metal. As the repeated heating and ham-
mmering occurs, the microscopic arrangements in the worked iron can at
first warder all over the space of configurations, jumping over energy
bartiers between all local energy minima. As the temperature is low-
ered, it becomes harder and harder o jump over these barriers. Now
comes the crux assumption: if the deepest energy minima drain the
biggest basins, then as temperature is lowered, the microscopic arrange-
ments will tend to become trapped in the biggest drainage basins, pre-
cisely because they are the biggest, and drift down to the deepest, sta-
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blest energy minima. Working iron by real annealing will achieve hard,
strong metal because annealing drives the microscopic atomic arrange-
ments to deep energy minima.

Simmulated annealing uses the same principle. In the case of the Trav-
eling Salesman problem, one moves from a tour to a neighboring tour if
the second tour is shorter. But, with some probability, one also accepts a
move in the wrong direction—to a neighboring tour that is longer and
“costs” more. The “temperature” of the system specifizs the probability
of accepting a move that increases cost by any given amount. In the sim-
ulation, the algorithm wanders all over the space of possible tours. Low-
ering temperature amounts to decreasing the probability of accepting
moves that go the wrong way. Gradually, the algorithm settles into the
drainage basins of deep, excellent minima.

Simulated annealing is a very interesting procedure to find solutions
to conflict-laden problems. In fact, currently it is one of the best proce-
dures known. But there are some important limitations. First, finding
good solutions requires “cooling” very slowly. It takes a long time to
find very good minima. There is 2 second obvious problem with any-
thing like simulated annealing if one also has in mind how human
agents or organizations might find good solutions to problems in real

life. Consider a fighter pilot streaking toward battle. The situation is

fast-paced, intense, life-threatening. The pilot must decide on tactics
that optimize chances for success in the conflict-laden situation. Our
fighter pilot is unlikely to be persuaded to caoose his tactics in the heat
of ba:tle by making what he knows are very many mistakes with ever-

decreasing frequency unil he settles into a good strategy. Nor, it would

appear, do human organizations iry to optimize in anything like this
fashion. Simuleted annealing may be a superb procedure to find excel-
lent solutions to hard problems, but in real I'fe, we never use it. We sim-
ply do not spend our time making mistakes on purpose and lowering
the frequency of mistakes. We all tty our best, but fail a lot of the time.
Have we evalved some other procedure that works well? I suspect we
have, and call it by a variety of names, from federalism to profit centers

to restructuring to checks and balances to oolitical action committees.
Here I'll call it patches.

The Patch Procedure

The basic idea of the patch procedure is simple: take a hard, conflict-

laden task in which many parts interact, and divide it into a quilt of

nonoverlapping patches. Try to optimize within each patch. As this cc-
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curs, the couplings between parts in -wo patches across patch bound-
aries will mean that finding a “good” solution in one patch will change
the problem to be solved by the patts in the adjacent patches. Since
changes in each patch will alter the problems confronted by the neigh-
boring patches, and the adaptive moves by those patches in turn will
alter the problem faced by yet other patches, the system s just like our
model coevalving ecosystems. Each patch is the analogue of what we
called a species in Chapter 10. Each patch climbs toward fitness peaks
on its own landscape, but in doing so deforms the fitness landscapes of
its partners. As we saw, this process may spin out of control in Red

. Queen chaotic behavior and never converge on any good overall solu-

tion. Here, in this chaotic regime, our system is a crazy quilt of ceaseless
changes. Alternatively, in the analogue of the evolutionary stable strat-
egy (ESS) ordered regime, our system might freeze up, getting stuck on
poor local peaks. Ecosystemns, we saw, attained the highest average fit-
ness if poised between Red Queen chaos and ESS order. We are about
to see that if the entire confict-laden task is broken into the properly
chosen patches, the coevolving system lies at a phase transition between
order and chaos and rapidly finds very good solutions. Patches, in
short, may be a fundamental process we have evolved in our social sys-

- tems, and perhaps elsewhere, to solve very hard problems.

By now you know the NK model. All it consists of is a system of N

" parts, each of which makes a “fithess contribution” that depends on its

own state and the states of X other parts. Let’s put the NK model onto a

~ square lattice (Figure 11.2). Here each part is ocated at a vertex con-

necting i to its four immediate neighbors: norta, south, east, and west.
As before, we let each part have two states: 1 and 0. Each part makes a
fitness contribution depending on its own state and that of its north,

_“south, east, and west neighbors. This fitness conttibution is assigned at

random between 0.0 and 1.0.As beforé, we can define the fitness of the

" entire lattice as the average of the fitness coniribution of each of the

parts. Say all are in the 1 state. Just add up the contributions of each
part and divide by the numkber of parts. Do this for all possible configu-
rations and we get a fitness landscape.

Macready, Dickinson, and I have been looking at fairly large lattices,
120 X 120, so our model hard problems have 14,400 parts. That should

‘be enough to be hard. Since NK rugged landscapes are very similar to

the landscapes of many hard conflict-laden optimization problems, in-
cduding the Traveling Salesman, finding means to achieve good optima
here is likely to be generally useful. Notice, as usual, the vast space of
possibilities. Since each part can be in two states, 1 and 0, the total
number of combinations of states of the parts, or configurations of the
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Figure 11.2 Az NK model in the form of a 120 X 120 square lattice. Each site,
which can be in one of two states, 1or 0, is connected to s four neighbors:
north, south, east, and west. (The lattice is bent into the surface of torus; that is,
the top edge is “glued” to the bottom edge, and the left edge is glued to the right
edge so that each site has four neighbors.)

lattice, is 24, Forget it, there is not encugh time since the 3ig Bang to
fird the global optimum. We seek excellence, not perfection.

Because Bill Macready is a physicist and physicists like to minimize
an “energy” rather than maximize a “fitness,” and becanse we are also
used to minimizing cn cost surfaces, let us think of the NX model as
yielding an “energy” landscape and mirimize energy. Each configura-
tion of the 14,400 parts on the 120 X 120 lattice is a vertex on the
14,400-dimensional Boolean hypercube. Each vertex is an immediate
neighbor of 14,400 other vertices, each corresponding to flipping one of
the 14,400 parts to the other state, 1 or 0. Each vertex has an energy, so
the NK model generazes an energy landscape over this huge Boolean hy-

percube of configurations. We seek the deep, excellent minima. The NK -

landscape remains unchanged here, we just go “downhill” rather then

“uphill” on it. The statistical-landscape features are the same in either

direction.
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Now I will introduce patches. Suppose we use the same NK land-
scape, leave the parts coupled in the same ways, but divide the system
into nonoverlapping quilt patches of different sizes. The rule is always
going to be the same: try flipping a pa-t to the apposite value, 1 10 0 or
0 to 1. If this move lowers the energy of the paich in which the part is
located, accept the move; otherwise, do not accept the move.

Figure 11.3 shows a smaller version of our 120 X 120 lattice, here re-
duced to a 10 X 10 square. In Figure 11.34, we consider the entire lat-
tice as a single “whole” patch. I'll call this the “Stalinist” limit. Here a
part can flip from 1 to 0 or 0 to 1 only if the move is “good” for the en-
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Figure 11.3 The patches procedure. (a) A 10 X 10 NK lattice; the entire system
is one patch. (b) The seme lattice divided into four 5 X 3 patches, (c) 252 X2
patches, and (d) 100 1 X 1 patches.
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tire lattice, lowering its energy. We all must act for the benefit of the en-
tire “state,”

Since in the Stalinist limit any move must lower the energy of the en-
tire lattice, then as successive parts are tried and some are flipped, the
entirz system will carry out an adaptive walk to somelocal energy mini-
mum and then stay there forever, Once at such a local minimum, no
part can be flipped and find a lower energy for the total lattice, so no
flips will be accepted. All parts “freeze” into an unchanging state, 1 or
0. In short, in the Stalinist regime, the system locks into some solution
and is frozen there forever. The Stalinist regime, where the game is one
for al, one for the state, ends up in frozen rigidity.

Now look zt Figure 11.35. Here the same square lattice, with the
same couplings among the parts, is broken into four patches, each a
5 X5 sublattice of the entire 10 X 10 lattice. Each part belongs to only
a single patch. But the parts near :he boundaties of a patch are coupled
to parts in the adjacent patches, So adaptive moves, parts flipping be-
tween 1 and O states, in one patch will affect the neighboring patches. I
emphasize that the couolings among the parts ate the same as in the
Stalinist regime. But now, by our rule that a part can flip if it is good for
the patch in which it is located, 2 part might help its own patch, but
hurt an adjacent patch.

In the Stalinist limit, the entire lattice can flow only downhill toward
energy minimz. Thus the system is said to flow on a potential surface.
The system is like the ball on a real surface in a valley. The ball will roll
to the bottom of the valley and remain there. Once the lattice is broken
into patches, however, the total system no longer flows on a potential
surface. A flip of a part in one patch may lower the energy of that patch,
but raise the energies of adjacent. patches because of the couplings
across boundaries. Because adjacent patches can go up in encrgy, the
total energy of the lattice itself can go up, not down, when a single
patch makes a move to lower its own energy. And since the entire lattice
can go up in energy, the total system is not evolving on a potential sur-
face. Breaking the system into patches is a little like introducing a tem-
perature in simulated annealing. Once the system is broken into quilt
patches so an adaptive move by one patch can “harm” the whole sys-
tem, that move causes the whole system to “go the wrong way.”

We reach a simple, but essential conclusion: once the total problem is
broken into patches, the patches are coevalving with one ancther. An
adaptive move by one patch changes the “fitness” and deforms the fit-
ness landscape, or, alternatively, the “energy” and the “energy land-
scape,” of adjacent patches.

It is the very fact that patches coevolve with one another that begins
to hint at powerful advantages of patches compared with the Stalinist
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Position on Landscape

Figure 11.4 An energy landscape showing a system trapped on a poot; bigh-
energy local minimurns.

limit of a single large patch. What if, in the Stalinist limit, the entire lat-
tice settles into a “bad” local minimum, one with high energy H.m%mn
than an excellent low-energy minimum, as in Figure 11.4? The mE%m-
patch Stalinist system is stuck forever in the bad minimum. Zoé let’s
think a bit. If we break the lattice up into four 5 X 5 patches just m?w.H
the Stalinist system hits this bad minimum, what is the chence that this
bad minimum is not only a local minimum for the lattice as a whole, but
also a loczl minimum for each of the four 5 X 5 patches individually?
You see, in order for the system broken into four patches to amﬁmwg.mﬁ
the same bad minimum, it would have to be the case that the same min-
‘mum of the entire lattice happens also to be a minimum for all momb. of
he 5 X 5 patches individually. If not, one or more of the patches 4.:.: be
able to flip a part, and hence begin to move. Once one vﬁn@ _.unm:; to
move, the entire lattice is no longer frozen in the bad local minimum.

Well, the intuitive answer is pretty obvious. If the entire lattice, in the
Stalinist limit, flows to a bad local minimum, the chance is small that the
same configuration of the parts is also a Jocal minimum for mb mnw.:u. ovm
the 5 X 5 patches, so the system will not remain frozen. It will me
away and be able to explore further across the total space of possibili-
ties.

The Edge of Chaos

"'We have now encountered a phase transition between order and chaos

in model genomic networks and in coevolutionary processes. In Chap-
ter 10, we saw that the highest average fitness in coevolving systems ap-
“peared to arise just at the phase transition between Red Queen chaos
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and ESS order, Breaking large systems into patches allows the patches
literally to coevolve wih one another. Each climbs toward its fitness
peaks, or enetgy minima, but its moves deform the fitness landscape or
energy landscape of neighboring patches. Is there an analogue of the
chactic Red Queen regime and the ordered ESS regime in patched sys-

tems? Does a phase transition between these regimes occur? And are

the best solutions found at or near the phase transition? We are about
to see that the answer to all these questions is yes.

The Stalinist limit is in the ordered regime. The total system settles to

a local minimum. Thereafter, no part can be flipped from 1 to 0 or 0 to
1. All the parts, therefore, are frozen. But what happens at the other
limit? In the extreme situation shown in Figure 1134, each part consti-
tutes its own patch. In this limit, on our 10 X 10 lattice, we have created
a kind of “game” with 100 players. At each moment, each player con-
siders the states, 1 or 0, of its north, south, east, and west neighbors and
takes the action, 1 or 0, that minimizes its own energy. It is easy to guess
that in this lirit, call it the “Leftist Italian” limit, the total system never
settles down. Parts keep flipping from 1 to 0 and 0 to 1. The system is in
a powerfully disordered, or chaotic, regime.

Since the parts never converge onto a solution where they stop flip- -

ping, the total system burbles along with quite high energy. In the NK
model, the expected energy of a randomly chosen configuration of the
N parts without trying to minimize anything is 0.5. {The 0.5 value fol-
lows because we assigned fitness or energy as random decimals between
0.0 and 1.0, and the average value is halfway betwesn these limits, or
0.5.) In the chaotic Leftist Italian limit, the average energy achieved by
the lattice is only a slighr bit less, about 0.47, In short, if the pa:ches are
too rumerous and too small, the total system is in a disordered, chaotic

regime. Parts keep flipping between their states, and the average energy
of the lattice is high.

We come to the fundamental question: At what patch size does the .

overal! lattice actually minimize its energy?

The answer depends on how -ugged the landscape is. Our results
suggest that if K is low so the landscape is highly correlated and quite
smooth, the best results are found in the Stalinist limit. For simple
problems with few conflicting constraints, there are few local minima in
which to get trapped. But as the landscape becomes more rugged, re-
flecting the fact that the underlying number of conflicting constraints is
becoming mote severe, it appears best to break the total system into a
number of patches such that the system is rear the phase transition be-
tween order and chaos.

In the current context, we can look at increasing the number of con-
flicting constraints by retaining our squate-lattice configuration, but
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considering cases in which each part is affected not only by itself m.__wm ifs
four immediate neighbors—north, south, east, and west—but by its
eight nearest neighbors—the first four, plus the northwest, moﬁrnmmr
southeast, and southwest neighbors. ﬁmﬁn.ﬁ.m mvoama that increasing
the range across the squate latiice over %Enw.wmnm H.nmcn:nm onn.mw-
other allows us to think of the four-neighbor, eight-neighbor, 12-neigh-

ber, and 24-neighbor cases. Hence in terms of the NK model, K is it-

creasing from four to 24. . .
mwm:.mo 11.6 shows the results obtained, allowing the vm.ﬁ&& Hmﬁﬂnm

to evolve forward in time, flipping randomly m_.:.umms parts if and os.:w !

the move lowers the energy of the patch containing the part. We carrie
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energy minimums can be more easily found by di-

Figure 11.6 Divide and conguer. As landscapes become more rugged,
The average low energy reached at ibe end of the

viding the problem into patches. Patch sizes are plotted on the x-axis.
simulation runs is plotted on the y-axis. (Bars above and below the curve at each patch size correspond to plus and minus

1 standard deviation.) (a) For a smooth, K = 4, landscape, the optimum patch size, minimizing energy, is a 120 x 120
single patch—the "Stalinist” limil. (b) For a mure rugged, K = 8, landscape, the optimum patch size is 4 X 4. (c) For
K = 12, the optimum paich size is 6 X 6. (d) For K. =24, the optimum patch size is 15 X 15.
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out these simulations as the total energy of the lattice decreased until
the energy artained was either fixed or onl
range. Figures 11.64-d plot energy on the y-axis against the size of each
of the patches on the x-axis. Here all patches are themselves square, and
our results are from the 120 X 120 lattice. All our simulations were car-
ried out on exactly the same set of NK lattices, Only the sizes of the
patches were changed. Thus the results tell us the effect of patch size
and number on how well the lattice as a whole lowered its overall en-
ergy,.

The results are clear When K = 4, It is best to have a single large

patch. In worlds that ar= not too complex, when landscapes are smooth
Stalinism works. But as landscapes become more rugged, K =8to K =
24, it is obvious that the lowest energy occurs if the total lattice is bro-
ken into some number of patches.

Here, then, is the firs: main and new result, I is by no means obvicus
that the lowest total enetgy of the lattice will be achieved if the lattice is
broken into quilt patches, each of which tries to lower its own energy
regardless of the effects on surrounding patches. Yet this is true. It can
be avery good idea, if a problem is complex and full of conflicting con-
straints, to break it into patches, and let each patch try to optimize, such
that all patches coevolve with one another.

Here we have another invisible hand in operation, When the system
is broken into well-chosen patches, each adapts for its own selfish bene-
fit, yet the joint effect is to achieve very goed, low-energy minima for
the whole lattice of patches. No central acministrator coordinates be-
havicr. Properly chosen patches, each acting selfishly, achieve the coor-
dination.

But what, if anything, characterizes the optimum patch-size distribu-

tion? The edge of chacs. Small Datches lead to chaos; large patches
freeze into poor compromises. When an Intermediate optimum patch
size exists, it is

aﬁmombwﬁgﬁomnﬁomﬁmnmﬁcbvngﬂg_&n ordered
and tae chaotic regime.

In Figure 11.7, I show something of this “phase transition.” These
two figures concern the same NK landscape on the same lattice, begun
from the same initial state. The only difference is that in Figure 11.72
the 120 X 120 lattice was broken into 5 X5 patches, while in Figure
11.75 the lattice was broken into 6 X 6 patches. The figures show how

often each site on the lattice flips. Sites that fiip often are dark; ones that
do not flip at all are white, In Figute 11.74, most sites are dark—indeed,
darkest along the boundaries between patches. Sites keep flipping in a
chaotic, disordered regime. But just increase patch size to 6 X 6 and the
results are startling. As shown in Figure 11.75, almost all sites stop flip-
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ping. A few quarrelsome sites across a few boundaries keep flipping,
but almost all sites have settled down and stopped changing.

The system, if broken into 5 X 5 patches, never converges onto a so-
lution and the energy of the whole lattice is high. The same system, if
broken into 6 X 6 patches, converges onto a solution in which almost
all patches and almost all their parts are no longer changing. And the
energy of the entire lattice is very low. A kind of phase transition has oc-
curred as the same lattice is broken into 5 X 5 and then into 6 X 6
patches, passing from a chaotic to an ordered regime.

In terms of a coevolutionary system, it appears that if the lattice is
broken into 6 X 6 patches, each patch reaches a local minimum that is
consistent with the minima of the patches adjacent to it. This global be-
W.mSoH is now like a Nash equilibrium among the patches, or an evolu-
tiopary stable strategy. The optimum found by each patch is consistent
with the optima found by its neighbors, No patch has an incentive to
change further. The patches therefore stop coevolving across their land-
scapes. The system converges on a total solution.

Across lots of simulations, it appears to be the case that the lowest
energy is found for a given lattice in the crdered, ESS regime, some-
where near the phase transition. In some cases, the lowest energy is
found at the smellest patch size that remains in the ordered regime, thus
just before the phase transition to chaos. Ir. other cases, the Hoimmﬂ en-
ergy is found when patch size is still a bit larger so the system is a bit
deeper into the ordered regime and farther from the phase transition to
chaos. Therefore, as a general summary, it appears that the invisible
hand finds the best solution if the coevolving system of patches is in the
ordered regime rather near the transition to chaos.

Patch Possibilities

I find it fascinat'ng that kard problems with many linked variables and
loads of conflicting constraints can be well solved by breaking the entire
problem into nonovetlapping domains. Further, it is fascinating that as
the conflicting constraints become worse, patches become ever more
helpful

While these results arz new and require extension, I suspect that
patchirg will, in fact, prove to be a powerful means to solve hard prob-
lems. In fact, I suspect that analogues of patches, systems having vatious
kinds of local autonomy, may be a fundamental mechanism underlying
adaptive evolution in ecosystems, economic systems, and cultural sys-
tems. If so, the logic of patches may suggest new tools in design prob-
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Jems. Moreover, it may suggest new tools in the management of com-
plex organizations and in the evolution of complex institutions world-
wide.

Homo sapiens sapiens, wise man, has come a long way since bifacial
stone axes. We are constructing global communication networks, and
whipping off into space in fancy tin cans powered by Newton’s third
law. The Challenger disaster, brownouts, the Hubble trouble, the haz-
ards of failure in vast linked computer networks—our design marvels
press against complexity boundaries we do not understand. I wonder
how general it has become as we approach the year 2000 that the design
of complex artifacts is plagued with nearly unsolvable conflicting con-
straints. One hears tales, for example, of attempts to optimize the de-
sign of complex manufactured artifacts such as supersonic transports.
One team optimizes airfoil characteristics, another team optimizes seat-
ing, another works on hydraulics, but the multiple solutions do not con-
verge to a single compromise thet adequately solves all the design re-
quirements, Proposals keep evolving chactically. Eventually, one team
makes a choice—say, how the hydraulic system or the airfoil structure
will be constructed—ard the rest of the design becomes frozen into
place because of this choice.

Does this general problem of nonconvergence reflect “patching” the
design problem into toc many tiny patches such that the overall design
process is in a nonconverging chaotic regime, just as would be our 120
% 120 lattice broken into 5 X 3 rather than 6 X 6 patches? If one did
not know that increasing patch size would lead frem chaos to ordered
convergence on excellent solutions, one would not znow to try “chunk-
ing” bigger. It seems worth trying on a variety of real-world problems.

Understanding optiral patching may be useful in other areas in the
management of complex organizations. For example, manufacturing
has long used fixed facilities of interlinked production processes leading
to a single end product. Assembly-line production of manufactursd
products such as automobiles is an example. Such fixed facilities are
used for long production runs. It is now becoming importart to shift to
flexible manufacturing. Here the idea is to be able to specify a diversity
of end products, reconfigure the production facilities rapidly and
cheaply, and thus be able to carry out short production runs to yield
smal. quantities of specialized products for a variety of niche markets.
But one must test the output for quality and reliability. How should tais
be done? At the level of each individual production step? At the level of
output of the entire system? Or at some intermediate level of chunking?
I find myself thinking that there may be an optimal way to break the
total production process in each case into local patches, each with a




