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Abstract

In this paper, we present a general framework for understanding the role of arti®cial neural networks (ANNs) in

bankruptcy prediction. We give a comprehensive review of neural network applications in this area and illustrate the

link between neural networks and traditional Bayesian classi®cation theory. The method of cross-validation is used to

examine the between-sample variation of neural networks for bankruptcy prediction. Based on a matched sample of 220

®rms, our ®ndings indicate that neural networks are signi®cantly better than logistic regression models in prediction as

well as classi®cation rate estimation. In addition, neural networks are robust to sampling variations in overall classi-

®cation performance. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Prediction of bankruptcy has long been an
important topic and has been studied extensively
in the accounting and ®nance literature [2,3,
6,16,29,30]. Since the criterion variable is cate-
gorical, bankrupt or nonbankrupt, the problem is
one of classi®cation. Thus, discriminant analysis,
logit and probit models have been typically used
for this purpose. However, the validity and e�ec-
tiveness of these conventional statistical methods

depend largely on some restrictive assumptions
such as the linearity, normality, independence
among predictor variables and a pre-existing
functional form relating the criterion variable and
predictor variables. These traditional methods
work best only when all or most statistical as-
sumptions are apt. Recent studies in arti®cial
neural networks (ANNs) show that ANNs are
powerful tools for pattern recognition and pattern
classi®cation due to their nonlinear nonparametric
adaptive-learning properties. ANN models have
already been used successfully for many ®nancial
problems including bankruptcy prediction [62,67].

Many researchers in bankruptcy forecasting
including Lacher et al. [33], Sharda and Wilson
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[57], Tam and Kiang [61], and Wilson and Sharda
[66] report that neural networks produce signi®-
cantly better prediction accuracy than classical
statistical techniques. However, why neural net-
works give superior classi®cation is not clearly
explained in the literature. Particularly, the rela-
tionship between neural networks and traditional
classi®cation theory is not fully recognized [51]. In
this paper, we provide explanation that neural
network outputs are estimates of Bayesian poste-
rior probabilities which play a very important role
in the traditional statistical classi®cation and pat-
tern recognition problems.

In using neural networks, the entire available
data set is usually randomly divided into a training
(in-sample) set and a test (out-of-sample) set. The
training set is used for neural network model
building and the test set is used to evaluate the
predictive capability of the model. While this
practice is adopted in many studies, the random
division of a sample into training and test sets may
introduce bias in model selection and evaluation in
that the characteristics of the test may be very
di�erent from those of the training. The estimated
classi®cation rate can be very di�erent from the
true classi®cation rate particularly when small-size
samples are involved. For this reason, it is one of
the major purposes of this paper to use a cross-
validation scheme to accurately describe predictive
performance of neural networks. Cross-validation
is a resampling technique which uses multiple
random training and test subsamples. The advan-
tage of cross-validation is that all observations or
patterns in the available sample are used for test-
ing and most of them are also used for training the
model. The cross-validation analysis will yield
valuable insights on the reliability of the neural
networks with respect to sampling variation.

The remainder of the paper will be organized as
follows. In Section 2, we give a brief description of
neural networks and a general discussion of the
Bayesian classi®cation theory. The link between
neural networks and the traditional classi®cation
theory is also presented. Following that is a survey
of the literature in predicting bankruptcy using
neural networks. The methodology section con-
tains the variable description, the data used and
the design of this study. We then discuss the cross-

validation results which will be followed by the
®nal section containing concluding remarks.

2. Neural networks for pattern classi®cation

2.1. Neural networks

ANNs are ¯exible, nonparametric modeling
tools. They can perform any complex function
mapping with arbitrarily desired accuracy [14,23±
25]. An ANN is typically composed of several
layers of many computing elements called nodes.
Each node receives an input signal from other
nodes or external inputs and then after processing
the signals locally through a transfer function, it
outputs a transformed signal to other nodes or
®nal result. ANNs are characterized by the net-
work architecture, that is, the number of layers,
the number of nodes in each layer and how the
nodes are connected. In a popular form of ANN
called the multi-layer perceptron (MLP), all nodes
and layers are arranged in a feedforward manner.
The ®rst or the lowest layer is called the input layer
where external information is received. The last or
the highest layer is called the output layer where
the network produces the model solution. In be-
tween, there are one or more hidden layers which
are critical for ANNs to identify the complex
patterns in the data. All nodes in adjacent layers
are connected by acyclic arcs from a lower layer to
a higher layer. A multi-layer perceptron with one
hidden layer and one output node is shown in
Fig. 1. This three-layer MLP is a commonly used
ANN structure for two-group classi®cation prob-
lems like the bankruptcy prediction. We will focus
on this particular type of neural networks
throughout the paper.

Like in any statistical model, the parameters
(arc weights) of a neural network model need to be
estimated before the network can be used for
prediction purposes. The process of determining
these weights is called training. The training phase
is a critical part in the use of neural networks. For
classi®cation problems, the network training is a
supervised one in that the desired or target re-
sponse of the network for each input pattern is
always known a priori.
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During the training process, patterns or exam-
ples are presented to the input layer of a network.
The activation values of the input nodes are
weighted and accumulated at each node in the
hidden layer. The weighted sum is transferred by
an appropriate transfer function into the node's
activation value. It then becomes an input into the
nodes in the output layer. Finally an output value
is obtained to match the desired value. The aim of
training is to minimize the di�erences between the
ANN output values and the known target values
for all training patterns.

Let x � �x1; x2; . . . ; xn� be an n-vector of pre-
dictive or attribute variables, y be the output from
the network, w1 and w2 be the matrices of linking
weights from input to hidden layer and from hid-
den to output layer, respectively. Then a three-
layer MLP is in fact a nonlinear model of the form

y � f2�w2f1�w1x��; �1�
where f1 and f2 are the transfer functions for hidden
node and output node, respectively. The most
popular choice for f1 and f2 is the sigmoid function:

f1�x� � f2�x� � �1� eÿx�ÿ1
: �2�

The purpose of network training is to estimate
the weight matrices in Eq. (1) such that an overall
error measure such as the mean squared errors
(MSE) or sum of squared errors (SSE) is mini-
mized. MSE can be de®ned as

MSE � 1

N

XN

j�1

�aj ÿ yj�2; �3�

where aj and yj represent the target value and
network output for the jth training pattern re-
spectively, and N is the number of training pat-
terns.

From this perspective, network training is an
unconstrained nonlinear minimization problem.
The most popular algorithm for training is the
well-known backpropagation [54] which is basi-
cally a gradient steepest descent method with a
constant step size. Due to problems of slow con-
vergence and ine�ciency with the steepest descent
method, many variations of backpropagation have
been introduced for training neural networks

Fig. 1. A typical fully connected feedforward neural network (MLP) used for two-group classi®cation problems.
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[5,13,41]. Recently, Hung and Denton [27] and
Subramanian and Hung [59] have proposed to use
a general-purpose nonlinear optimizer, GRG2, in
training neural networks. The bene®ts of GRG2
have been reported in the literature for many
classi®cation problems [35,42,59]. This study uses
a GRG2 based system to train neural networks.

For a two-group classi®cation problem, only
one output node is needed. The output values from
the neural network (the predicted outputs) are
used for classi®cation. For example, a pattern is
classi®ed into group 1 if the output value is greater
than 0.5, and into group 2 otherwise. It has been
shown that the least squares estimate as in the
neural networks used in this study yields the pos-
terior probability of the optimal Bayesian classi®er
[51]. In other words, outputs of neural networks
are estimates of the Bayesian posterior probabili-
ties [28]. As will be discussed in the following
section, most classi®cation procedures rely on
posterior probabilities to classify observations into
groups.

2.2. Neural networks and Bayesian classi®ers

While neural networks have been successfully
applied to many classi®cation problems, the rela-
tionship between neural networks and the con-
ventional classi®cation methods is not fully
understood in most applications. In this section,
we ®rst give a brief overview of the Bayesian
classi®ers. Then the link between neural networks
and Bayesian classi®ers is discussed.

Statistical pattern recognition (classi®cation)
can be established through Bayesian decision the-
ory [15]. In classi®cation problems, a random
pattern or observation x 2 Rn is given and then a
decision about its membership is made. Let x be
the state of nature with x�x1 for group 1 and
x�x2 for group 2. De®ne

P �xj� � prior probability for an observation
x belonging to group j;

f �xjxj� � conditional probability density function

for x given that the pattern belongs to group j;

where j � 1, 2. Using Bayes rule, the posterior
probability is

P�xjjx� � f �xjxj�P �xj�
f �xjx1�P �x1� � f �xjx2�P�x2� ;

j � 1; 2: �4�

The Bayes decision rule in classi®cation is a
criterion such that the overall misclassi®cation
error rate is minimized. The misclassi®cation rate
for a given x is

P�xijx� � 1ÿ P �xjjx�
if x belongs to xj; i; j;� 1; 2:

Thus, the Bayesian classi®cation rule can be stated
as

Assign x to group k if

1ÿ P �xkjx� � min
j
�1ÿ P�xjjx��

or equivalently

Assign x to group k if

P�xkjx� � max
j

P �xjjx�: �5�

It is now clear that the Bayesian classi®cation rule
is based on the posterior probabilities. In the case
that f �xjxj� (j� 1, 2) are all normal distributions,
the above Bayesian classi®cation rule leads to
the well-known linear or quadratic discriminant
function. See [15] for a detailed discussion.

To see the relationship between neural net-
works and Bayesian classi®ers, we need the fol-
lowing theorem [40].

Theorem 1. Consider the problem of predicting y
from x, where x is an n-vector random variable and
y is a random variable. The function mapping
F : x! y which minimizes the squared expected
error

E�y ÿ F �x��2 �6�

is the conditional expectation of y given x,

F �x� � E�yjx�: �7�
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The result stated in the above theorem is the
well-known least-squares estimation theory in
statistics.

In classi®cation context, if x is the observed
attribute vector and y is the true membership
value, that is, y� 1 if x 2 group 1; y � 0 if x 2
group 2, then F(x) becomes

F �x� � E�yjx� � 1P �y � 1jx� � 0P �y � 0jx�
� P �y � 1jx� � P �x1jx�: �8�

Eq. (8) shows that the least-squares estimate for
the mapping function in classi®cation problem is
exactly the Bayesian posterior probability.

As mentioned earlier, neural networks are uni-
versal function approximators. A neural network
in a classi®cation problem can be viewed as a
mapping function, F : Rn ® R (see Eq. (2)), where
an n-dimensional input x is submitted to the net-
work and a network output y is obtained to make
the classi®cation decision. If all the data in the
entire population are available for training, then
Eqs. (3) and (6) are equivalent and the neural
networks produce the exact posterior probabilities
in theory. In practice, however, training data are
almost always a sample from an unknown popu-
lation. Thus it is clear that the network output is
actually the estimate of posterior probability, i.e. y
estimates P �x1jx�.

3. Bankruptcy prediction with neural networks

ANNs have been studied extensively as a useful
tool in many business applications including
bankruptcy prediction. In this section, we present
a rather comprehensive review of the literature on
the use of ANNs in bankruptcy prediction.

The ®rst attempt to use ANNs to predict
bankruptcy is made by Odom and Sharda [38]. In
their study, three-layer feedforward networks are
used and the results are compared to those of
multi-variate discriminant analysis. Using di�erent
ratios of bankrupt ®rms to nonbankrupt ®rms in
training samples, they test the e�ects of di�erent
mixture level on the predictive capability of neural
networks and discriminant analysis. Neural net-
works are found to be more accurate and robust in
both training and test results.

Following [38], a number of studies further in-
vestigate the use of ANNs in bankruptcy or busi-
ness failure prediction. For example, Rahimian et
al. [49] test the same data set used by Odom and
Sharda [38] using three neural network paradigms:
backpropagation network, Athena and Percep-
tron. A number of network training parameters
are varied to identify the most e�cient training
paradigm. The focus of this study is mainly on the
improvement in e�ciency of the backpropagation
algorithm. Coleman et al. [12] also report im-
proved accuracy over that of Odom and Sharda
[38] by using their NeuralWare ADSS system.

Salchenberger et al. [55] present an ANN ap-
proach to predicting bankruptcy of savings and
loan institutions. Neural networks are found to
perform as well as or better than logit models
across three di�erent lead times of 6, 12 and 18
months. To test the sensitivity of the network to
di�erent cuto� values in classi®cation decision,
they compare the results for the threshold of 0.5
and 0.2. The information is useful when one ex-
pects di�erent costs related to Type I and Type II
errors.

Tam and Kiang's paper [61] has had a greater
impact on the use of ANNs in general business
classi®cation problems as well as in the applica-
tion of bankruptcy predictions. Based on [60], they
provide a detailed analysis of the potentials and
limitations of neural network classi®ers for busi-
ness research. Using bank bankruptcy data, they
compare neural network models to statistical
methods such as linear discriminant analysis,
logistic regression, k nearest neighbor and ma-
chine learning method of decision tree. Their re-
sults show that neural networks are generally
more accurate and robust for evaluating bank
status.

Wilson and Sharda [66] and Sharda and Wilson
[57] propose to use a rigorous experimental design
methodology to test ANNs' e�ectiveness. Three
mixture levels of bankrupt and nonbankrupt ®rms
for training set composition with three mixture
levels for test set composition yield nine di�erent
experimental cells. Within each cell, resampling
scheme is employed to generate 20 di�erent pairs
of training and test samples. The results more
convincingly show the advantages of ANNs rela-
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tive to discriminant analysis and other statistical
methods.

With a very small sample size (18 bankrupt and
18 nonbankrupt ®rms), Fletcher and Goss [19]
employ an 18-fold cross-validation method for
model selection. Although the training e�ort for
building ANNs is much higher, ANNs yield much
better model ®tting and prediction results than the
logistic regression.

In a large scale study, Altman et al. [4] use over
1000 Italian industrial ®rms to compare the pre-
dictive ability of neural network models with that
of linear discriminant analysis. Both discriminant
analysis and neural networks produce comparable
accuracy on holdout samples with discriminant
analysis producing slightly better predictions. As
discussed in the paper, neural networks have po-
tential capabilities for recognizing the health of
companies, but the black-box approach of neural
networks needs further studies.

Poddig [44] reports the results from an ongoing
study of bankruptcy prediction using two types of
neural networks. The MLP networks with three
di�erent data preprocessing methods give overall
better and more consistent results than those of
discriminant analysis. The use of an extension of
Kohonen's learning vector quantizer, however,
does not show the same promising results as the
MLP. Kerling [31], in a related study, compares
bankruptcy prediction between France and USA.
He reports that there is no signi®cant di�erence in
the correct classi®cation rates for both American
and French companies although di�erent ac-
counting rules and ®nancial ratios are employed.

Brockett et al. [10] introduce a neural network
model as an early warning system for predicting
insurer insolvency. Compared to discriminant
analysis and other insurance ratings, neural net-
works have better predictability and generaliz-
ability, which suggests that neural networks can be
a useful early warning system for solvency moni-
toring and prediction.

Boritz et al. [9] use the algorithms of back-
propagation and optimal estimation theory in
training neural networks. The benchmark models
by Altman [2] and Ohlson [39] are employed. Re-
sults show that the performance of di�erent clas-
si®ers depends on the proportions of bankrupt

®rms in the training and testing data sets, the
variables used in the models, and the relative cost
of Type I and Type II errors. Boritz and Kennedy
[8,9] also investigate the e�ectiveness of several
types of neural networks for bankruptcy predic-
tion problems. Di�erent types of ANNs do have
varying e�ects on the levels of Type I and Type II
errors. For example, the optimal estimation theory
based network has the lowest Type I error level
and the highest Type II error level and back-
propagation networks have intermediate levels of
Type I and II errors while traditional statistical
approaches generally have high Type I error and
low Type II error levels. They also ®nd that the
performance of ANNs is sensitive to the choice of
variables and sampling errors.

Kryzanouski and Galler [32] employ the
Boltzman machine to evaluate the ®nancial state-
ments of 66 Canadian ®rms over seven years.
Fourteen ®nancial ratios are used in the analysis.
The results indicate that the Boltzman machine is
an e�ective tool for neural networks model build-
ing. Increasing the training sample size has positive
impact on the accuracy of neural networks.

Leshno and Spector [36] evaluate the prediction
capability of various ANN models with di�erent
data span, neural network architecture and the
number of iterations. Their main conclusions are
(1) the prediction capability of the model depends
on the sample size used for training; (2) di�erent
learning techniques have signi®cant e�ects on both
model ®tting and test performance; and (3) over-
®tting problems are associated with large number
of iterations.

Lee et al. [34] propose and compare three
hybrid neural network models for bankruptcy
prediction. These hybrid models combine statisti-
cal techniques such as multi-variate discrimi-
nant analysis (MDA) and ID3 method with neural
networks or combine two di�erent neural net-
works. Using Korean bankruptcy data, they show
that the hybrid systems provide signi®cant better
predictions than benchmark models of MDA and
ID3 and the hybrid model of unsupervised net-
work and supervised network has the best per-
formance.

Most studies use the backpropagation algo-
rithm [11,38,55,61,64,66] or its variations [43,49] in
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training neural networks. It is well known that
training algorithms such as the backpropagation
have many undesirable features. Piramuthu et al.
[43] address the e�ciency of network training al-
gorithms. They ®nd that di�erent algorithms do
have e�ects on the performance of ANNs in sev-
eral risk classi®cation applications. Coats and
Fant [11] and Lacher et al. [33] use a training
method called ``Cascade-Correlation'' in a bank-
ruptcy prediction analysis. Compared to MDA or
Altman's Z score model, ANNs provide signi®-
cantly better discriminant ability. Fanning and
Cogger [18] compare the performance of a gener-
alized adaptive neural network algorithm (GAN-
NA) and a backpropagation network. They ®nd
that GANNA and backpropagation algorithm are
comparable in terms of the predictive capability
but GANNA saves them time and e�ort in build-
ing an appropriate network structure. Raghupathi
[47] conducts an exploratory study to compare
eight alternative neural network training algo-
rithms in the domains of bankruptcy prediction.
He ®nds that the Madaline algorithm is the best in
terms of correct classi®cations. However, com-
paring the Madaline with the discriminant analysis
model shows no signi®cant advantage of one over
the other. Lenard et al. [35] ®rst apply the gener-
alized reduced gradient (GRG2) optimizer for
neural network training in an auditor's going
concern assessment decision model. Using GRG2
trained neural networks results in better perfor-
mance in terms of classi®cation rates than using
backpropagation-based networks.

Based on the pioneering work by Altman [2],
most researchers simply use the same set of ®ve
predictor variables as in Altman's original model
[11,33,38,49,57,66]. These ®nancial ratios are (1)
working capital/total assets; (2) retained earnings/
total assets; (3) earnings before interest and taxes/
total assets; (4) market value equity/book value of
total debt; (5) sales/total assets. Other predictor
variables are also employed. For example, Rag-
hupathi et al. [48] use 13 ®nancial ratios previously
used successfully in other bankruptcy prediction
studies. Salchengerger et al. [55] initially select 29
variables and perform stepwise regression to de-
termine the ®nal ®ve predictors used in neural
networks. Tam and Kiang [61] choose 19 ®nancial

variables in their study. Piramuthu et al. [43] use
12 continuous variables and three nominal vari-
ables. Alici [1] employs two sets of ®nancial ratios.
The ®rst set of 28 ratios is suggested by pro®le
analysis while the second set of nine variables is
obtained by using principal component analysis.
Boritz and Kennedy [9] test the neural networks
with Ohlson's nine and 11 variables as well as
Altman's ®ve variables. Rudorfer [53] selects ®ve
®nancial ratios from a company's balance sheet. It
is interesting to note that in the literature one
study uses as many as 41 independent variables
[36] while Fletcher and Goss [19] and Fanning and
Cogger [18] use only three variables.

In order to detect maximal di�erence between
bankrupt and nonbankrupt ®rms, many studies
employ matched samples based on some common
characteristics in their data collection process.
Characteristics used for this purpose include asset
or capital size and sales [19,36,63], industry cate-
gory or economic sector [48], geographic location
[55], number of branches, age, and charter status
[61]. This sample selection procedure implies that
sample mixture ratio of bankrupt to nonbankrupt
®rms is 50% to 50%.

Most researchers in bankruptcy prediction
using neural networks focus on the relative per-
formance of neural networks over other classical
statistical techniques. While empirical studies
show that ANNs produce better results for many
classi®cation or prediction problems, they are not
always uniformly superior [46]. Bell et al. [7] report
disappointing ®ndings in applying neural networks
for predicting commercial bank failures. Boritz
and Kennedy [9] have found in their study that
ANNs perform reasonably well in predicting
business failure but their performance is not in any
systematic way superior to conventional statistical
techniques such as logit and discriminant analysis.
As the authors discussed that there are many fac-
tors which can a�ect the performance of ANNs.
Factors in the ANN model building process such
as network topology, training method and data
transformation are well known. On top of these
ANN related factors, other data related factors
include the choice of predictor variables, sample
size and mixture proportion. It should be pointed
out that in most studies, commercial neural net-
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work packages are used, which do restrict the users
from obtaining a clear understanding of the sen-
sitivity of solutions with respect to initial starting
conditions.

4. Design of the study

ANNs are used to study the relationship be-
tween the likelihood of bankruptcy and the rele-
vant ®nancial ratios. Two important questions
need to be addressed:
· What is the appropriate neural network archi-

tecture for a particular data set?
· How robust the neural network performance is

in predicting bankruptcy in terms of sampling
variability?

For the ®rst question, there are no de®nite rules to
follow since the choice of architecture also depends
on the classi®cation objective. For example, if the
objective is to classify a given set of objects as well
as possible, then a larger network may be desir-
able. On the other hand, if the network is to be
used to predict the classi®cation of unseen objects,
then a larger network is not necessarily better. For
the second question, we employ a ®vefold cross-
validation approach to investigate the robustness
of the neural networks in bankruptcy prediction.
This section will ®rst de®ne variables and the data
used in this study. Then a detailed description of
the issues in our neural network model building is
given. Finally, we illustrate cross-validation
methodology used in the study.

4.1. Measures and sample

As described in the previous section, most
neural network applications to bankruptcy prob-
lems employ the ®ve variables used by Altman [2]
and often a few other variables are also injected
into the model. This study utilizes a total of six
variables. The ®rst ®ve are the same as those in
Altman's study ± working capital/total assets, re-
tained earnings/total assets, earnings before inte-
rest and tax/total assets, market value of equity/
total debt, and sales/total assets. The sixth vari-
able, current assets/current liabilities, measures the

ability of a ®rm in using liquid assets to cover short
term obligations. This ratio is believed to have a
signi®cant in¯uence on the likelihood of a ®rm's
®ling for bankruptcy.

A sample of manufacturing ®rms that have
®led for bankruptcy from 1980 through 1991 is
selected from the pool of publicly traded ®rms in
the United States on New York, American and
NASDAQ exchanges. These cuto� dates for the 12
year sample period ensure that the provisions of
the 1978 Bankruptcy Reform Act have been fully
implemented and that the disposition of all bank-
rupt ®rms in the sample can be established by the
1994 year end. An extensive search of bankrupt
®rms is made of the list provided by the O�ce of
the General Counsel of the Security Exchange
Commission (SEC) and non-SEC sources such as
the Wall Street Journal Index and the Commerce
House's Capital Changes Reporter as well as the
COMPUSTAT research tapes. Company descrip-
tions and characteristics required for the identi®-
cation of ®ling dates are obtained from LEXIS/
NEXIS news reports as well as other SEC ®lings.

The initial search has netted a sample of 396
manufacturing ®rms that have ®led for bankrupt-
cy. The following editing procedures are further
implemented to remove sources of confounding in
the sample. Firms that (1) have operated in a
regulated industry; (2) are foreign based and
traded publicly in the US; and (3) have ®led
bankruptcy previously are excluded from the
sample. These sample screenings result in a total of
110 bankrupt manufacturing ®rms.

In order to highlight the e�ects of key ®nancial
characteristics on the likelihood that a ®rm may go
bankrupt, a matched sample of non-bankrupt
®rms is selected. Financial information for the
three years immediately preceding bankruptcy is
obtained from the COMPUSTAT database. Non-
bankrupt ®rms are selected to match with the 110
bankrupt ®rms in our sample on two key charac-
teristics: two-digit Standard Industrial Classi®ca-
tion code and size. Size corresponds to the total
assets of a bankrupt ®rm in the ®rst of the three
years before bankruptcy ®ling. The six ®nancial
ratios for the year immediately before the ®ling of
bankruptcy are constructed as independent vari-
ables in this study. In summary, we obtained a
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matched sample of 220 ®rms with 110 observations
each in the bankrupt and nonbankrupt group.

4.2. Design of neural network model

Currently there are no systematic principles to
guide the design of a neural network model for a
particular classi®cation problem although heuris-
tic methods such as the pruning algorithm [50], the
polynomial time algorithm [52], and the network
information technique [65] have been proposed.
Since many factors such as hidden layers, hidden
nodes, data normalization and training method-
ology can a�ect the performance of neural net-
works, the best network architecture is typically
chosen through experiments. In this sense, neural
network design is more an art than a science.

ANNs are characterized by their architectures.
Network architecture refers to the number of lay-
ers, nodes in each layer and the number of arcs.
Based on the results from [14,23,37,42], networks
with one hidden layer is generally su�cient for

most problems including classi®cation. All net-
works used in this study will have one hidden
layer. For classi®cation problems, the number of
input nodes is the number of predictor variables
which can be speci®ed by the particular applica-
tion. For example, in our bankruptcy prediction
model, the networks will have six input nodes in
the ®rst layer corresponding to six predictor vari-
ables. Node biases will be used in the output nodes
and logistic activation function will be speci®ed in
the networks. In order to attain greater ¯exibility
in modeling a variety of functional forms, direct
connections from the input layer to the output
layer will be added (see Fig. 2).

The number of hidden nodes is not easy to
determine a priori. Although there are several rules
of thumb suggested for determining the number of
hidden nodes, such as using n/2, n, n + 1 and
2n + 1 where n is the number of input nodes, none
of them works well for all situations. Determining
the appropriate number of hidden nodes usually
involves lengthy experimentation since this pa-
rameter is problem and/or data dependent. Huang

Fig. 2. A complete connected neural network used in this study (direct link from input nodes to the output node).
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and Lippmann [26] point out that the number of
hidden nodes to use depends on the complexity of
the problem at hand. More hidden nodes are
called for in complex problems. The issue of the
number of hidden nodes also depends on the ob-
jective of classi®cation. If the objective is to clas-
sify a given set of observations in the training
sample as well as possible, a larger network may be
desirable. On the other hand, if the network is used
to predict classi®cation of unseen objects in the
test sample, then a larger network is not neces-
sarily appropriate [42]. To see the e�ect of hidden
nodes on the performance of neural network
classi®ers, we use 15 di�erent levels of hidden
nodes ranging from 1 to 15 in this study.

Another issue in neural networks is the scaling
of the variables before training. This so-called data
preprocessing is claimed by some authors to be
bene®cial for the training of the network. Based on
our experience (Shanker et al. [56] and also a
preliminary study for this project), data transfor-
mation is not very helpful for the classi®cation
task. Raw data are hence used without any data
manipulation.

As discussed earlier, neural network training is
essentially a nonlinear nonconvex minimization
problem and mathematically speaking, global
solutions cannot be guaranteed. Although our
GRG2 based training system is more e�cient than
the backpropagation algorithm [27], it cannot
completely eliminate the possibility of encounter-
ing local minima. To decrease the likelihood of
being trapped in bad local minima, we train each
neural network 50 times by using 50 sets of ran-
domly selected initial weights and the best solution
of weights among the 50 runs is retained for a
particular network architecture.

4.3. Cross-validation

The cross-validation methodology is employed
to examine the neural network performance in
bankruptcy prediction in terms of sampling vari-
ation. Cross-validation is a useful statistical tech-
nique to determine the robustness of a model. One
simple use of the cross-validation idea is consisted
of randomly splitting a sample into two subsam-

ples of training and test sets. The training sample is
used for model ®tting and/or parameter estimation
and the predictive e�ectiveness of the ®tted model
is evaluated using the test sample. Because the best
model is tailored to ®t one subsample, it often es-
timates the true error rate overly optimistically
[17]. This problem can be eased by using the so-
called ®vefold cross-validation, that is, carrying
out the simple cross-validation ®ve times. A good
introduction to ideas and methods of cross-vali-
dation can be found in [20,58].

Two cross-validation schemes will be imple-
mented. First, as in most neural networks classi-
®cation problems, arc weights from the training
sample will be applied to patterns in the test
sample. In this study, a ®vefold cross-validation is
used. We split the total sample into ®ve equal and
mutually exclusive portions. Training will be con-
ducted on any four of the ®ve portions. Testing
will then be performed on the remaining part. As a
result, ®ve overlapping training samples are con-
structed and testing is also performed ®ve times.
The average test classi®cation rate over all ®ve
partitions is a good indicator for the out-of-sample
performance of a classi®er. Second, to have a
better picture of the predictive capability of the
classi®er for the unknown population, we also test
each case using the whole data set. The idea behind
this scheme is that the total sample should be more
representative of the population than a small test
set which is only one ®fth of the whole data set. In
addition, when the whole data set is employed as
the test sample, sampling variation in the testing
environment is completely eliminated since the
same sample is tested ®ve di�erent times. The
variability across ®ve test results re¯ects only the
e�ect of training samples.

The results from neural networks will be com-
pared to those of logistic regression. We choose
this technique because it has been shown that the
logistic regression is often preferred over discrim-
inant analysis in practice [22,45]. Furthermore, the
statistical property of logistic regression is well
understood. We would like to know which method
gives better estimates of the posterior probabili-
ties and hence leads to better classi®cation results.
Since logistic regression is a special case of
the neural network without hidden nodes, it is
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expected in theory that ANNs will produce more
accurate estimates than logistic regression partic-
ularly in the training sample. Logistic regression is
implemented using SAS procedure LOGISTIC.

5. Results

Table 1 gives the results for the e�ect of hidden
nodes on overall classi®cation performance for
both training and small test sets across ®ve sub-
samples. In general, as expected, one can see when
the number of hidden nodes increases, the overall
classi®cation rate in the training sets increases.
This shows the neural network powerful capability
of approximating any function as more hidden
nodes are used. However, as more hidden nodes
are added, the neural network becomes more
complex which may cause the network to learn
noises or idiosyncrasies in addition to the under-
lying rules or patterns. This is recognized as the
notorious model over®tting or overspeci®cation
problem [21]. For neural networks, obtaining a
model that ®ts the training sample very well is
relatively easy if we increase the complexity of a
network by, for example, increasing the number of
hidden nodes. However, such a large network may
have poor generalization capability, that is, it re-
sponds incorrectly to other patterns not used in the
training process. It is not easy to know a priori
when over®tting occurs. One practical way to see
this is through the test samples. From Table 1, the
best predictive results in test samples are not nec-
essarily those with the larger number of hidden
nodes. In fact, neural classi®ers with nine or 10
hidden nodes produce the highest classi®cation
rates in test samples except for subsample 4 where
the best test performance is achieved at four hid-
den nodes.

For small test sets, cross-validation results on
the predictive performance for both neural net-
work models and logistic regression are given
in Table 2. This table shows that the overall
classi®cation rates of neural networks are con-
sistently higher than those of logistic regression. In
addition, neural networks seem to be as robust as
logistic regression in predicting the overall classi-
®cation rate. Across the ®ve small test subsamples,

overall classi®cation rate of neural networks
ranges from 77.27% to 84.09% while logistic re-
gression yields classi®cation rates ranging from
75% to 81.82%. However, for each category of
bankruptcy and nonbankruptcy, the results indi-
cate no clear patterns. For some subsamples,
neural networks predict much better than logistic
regression. For others, logistic regression is better.
Table 3 gives the pairwise comparison for these
two methods in prediction performance. Overall,
neural networks are better than logistic regres-
sion and the di�erence of 2.28% is statistically
signi®cant at 5% level (p-value is 0.0342). For
bankruptcy prediction, neural networks give an
average of 81.82% over the ®ve subsamples, higher
than 78.18% achieved by logistic regression. For
nonbankruptcy prediction, average neural net-
work classi®cation rate is 76.09%, lower than av-
erage logistic regression classi®cation rate of
78.18%. Paired t-test results show that the di�er-
ence between ANNs and logistic regression is not
signi®cant in the prediction of bankrupt and
nonbankrupt ®rms.

Tables 4 and 5 show the superiority of ANNs
over logistic regression in estimating the true
classi®cation rate for the large test set. As we have
indicated previously, the large test set is basically
the available whole sample data which is consisted
of a small test sample and a training sample.
Hence, the correct classi®cation rates in Table 4
for the large test set are derived directly from the
results for both small test sample and training
sample. For example, for training sample 1, the
total number of correctly classi®ed ®rms in the
large test set is 191 which is equal to the best small
test result (35) plus the corresponding training
result (156).

For large test set, ANNs provide consistently
not only higher overall classi®cation rates but also
higher classi®cation rates for each category of
bankrupt and nonbankrupt ®rms across ®ve
training samples. Furthermore, ANNs are more
robust than logistic regression in estimating the
overall classi®cation rate across ®ve training
samples. This is evidenced from the overall clas-
si®cation rate of 86.82% for each of the subsam-
ples 1, 2 and 5, 87.73% for subsample 3, and 85%
for subsample 4. Results of paired t-test in Table 5
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clearly show that the di�erences between ANNs
and logistic regression in the overall and individual
class classi®cation rates are statistically signi®cant
at the 0.05 level. The di�erences in overall, bank-
ruptcy and nonbankruptcy classi®cation rate are
8.36%, 11.27% and 4.91%, respectively.

Comparing the results for small test sets in
Table 2 and those for large test sets in Table 4, we
make the following two observations. First, the
variability in results across the ®ve large test
samples is much smaller than that of the small test
set. This is to be expected as we pointed out earlier
that the large test set is the same for each of the
®ve di�erent training sets and the variability in the
test results re¯ects only the di�erence in the
training set. Second, the performance of logistic
regression models is stable, while the neural net-
work performance improves signi®cantly, from
small test sets to large test sets. The explanation
lies in the fact that neural networks have much
better classi®cation rates in the training samples.
Tables 6 and 7 list the training results of neural
networks and logistic regression. The training re-
sults for neural networks are selected according to
the best overall classi®cation rate in the small test
set. Neural networks perform consistently and
signi®cantly better for all cases. The di�erences
between ANNs and logistic regression in overall,
bankruptcy and nonbankruptcy classi®cation are
9.54%, 13.18% and 5.90%, respectively.

6. Summary and conclusions

Bankruptcy prediction is a class of interesting
and important problems. A better understanding
of the causes will have tremendous ®nancial and
managerial consequences. We have presented a

general framework for understanding the role of
neural networks for this problem. While tradi-
tional statistical methods work well for some
situations, they may fail miserably when the sta-
tistical assumptions are not met. ANNs are a
promising alternative tool that should be given
much consideration when solving real problems
like bankruptcy prediction.

The application of neural networks has been
reported in many recent studies of bankruptcy
prediction. However, the mechanism of neural
networks in predicting bankruptcy or in general
classi®cation is not well understood. Without a
clear understanding of how neural networks op-
erate, it will be di�cult to reap full potentials of
this technique. This paper attempts to bridge the
gap between the theoretical development and the
real world applications of ANNs.

It has already been theoretically established
that outputs from neural networks are estimates of
posterior probabilities. Posterior probabilities are
important not only for traditional statistical deci-
sion theory but also for many managerial decision
problems. Although there are many estimation
procedures for posterior probabilities, ANNs is
the only known method which estimates posterior
probabilities directly when the underlying group
population distributions are unknown. Based on
the results in this study and [28], neural networks
with their ¯exible nonlinear modeling capability
do provide more accurate estimates, leading to
higher classi®cation rates than other traditional
statistical methods. The impact of the number of
hidden nodes and other factors in neural network
design on the estimation of posterior probabilities
is a fruitful area for further research.

This study used a cross-validation technique to
evaluate the robustness of neural classi®ers with
respect to sampling variation. Model robustness
has important managerial implications particularly
when the model is used for prediction purposes. A
useful model is the one which is robust across dif-
ferent samples or time periods. The cross-valida-
tion technique provides decision makers with a
simple method for examining predictive validity.
Two schemes of ®vefold cross-validation method-
ology are employed. Results show that neural
networks are in general quite robust. It is encour-

Table 3

Pairwise comparison between ANNs and logistic regression for

small test set

Statistics Overall Bankrupt Nonbankrupt

ANN Logistic ANN Logistic ANN Logistic

Mean 80.46 78.18 81.82 78.18 76.09 78.18

t-statistic 3.1609 0.7182 0.1963

p-value 0.0342 0.5124 0.8539
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aging to note that the variation across samples in
training and test classi®cation rates are reasonably
small. Much of the variation in results is associated
with the number of hidden nodes and initial start-
ing seeds. Users of ANNs will be well advised to
use a large number of sets of random starting seeds
and experiment on the hidden nodes. After the
``optimal'' solution is identi®ed and the appropri-
ate number of hidden nodes is selected, the neural
classi®ers tend to provide consistent estimates.

We also compared neural networks with logis-
tic regression, a well-known statistical method for
classi®cation. Neural networks provide signi®-
cantly better estimate of the classi®cation rate for
the unknown population as well as for the unseen
part of the population. It can be easily argued that
the cost of not being able to predict a bankruptcy
is much higher than that for a nonbankrupt ®rm.
Neural networks in our study clearly show their
superiority over logistic regression in the predic-
tion of bankrupt ®rms.

References

[1] Y. Alici, Neural networks in corporate failure prediction:

The UK experience, in: A.P.N. Refenes, Y. Abu-Mostafa,

J. Moody, A. Weigend (Eds.), Neural Networks in

Financial Engineering, World Scienti®c, Singapore, 1996,

pp. 393±406.

[2] E.L. Altman, Financial ratios, discriminate analysis and

the prediction of corporate bankruptcy, Journal of

Finance 23 (3) (1968) 589±609.

[3] E.L. Altman, Accounting implications of failure predic-

tion models, Journal of Accounting Auditing and Finance

(1982) 4±19.

[4] E.I. Altman, G. Marco, F. Varetto, Corporate distress

diagnosis: Comparisons using linear discriminant analysis

and neural networks (the Italian experience), Journal of

Banking and Finance 18 (1994) 505±529.

[5] R. Battiti, First- and second-order methods for learning:

Between steepest descent and Newton's method, Neural

Computation 4 (2) (1992) 141±166.

[6] W. Beaver, Financial ratios and predictors of failure,

Empirical Research in Accounting: Selected Studies (1966)

71±111.

[7] T.B. Bell, G.S. Ribar, J. Verchio, Neural nets vs. Logistic

regression: A comparison of each model's ability to predict

commercial bank failures, in: Proceedings of the 1990

Deloitte Touche/University of Kansas Symposium on

Auditing Problems, 1990, pp. 29±53.

[8] J.E. Boritz, D.B. Kennedy, E�ectiveness of neural network

types for prediction of business failure, Expert Systems

with Applications 9 (4) (1995) 503±512.

[9] J.E. Boritz, D.B. Kennedy, A. de Miranda e Albuquerque,

Predicting corporate failure using a neural network

approach, Intelligent Systems in Accounting, Finance

and Management 4 (1995) 95±111.

[10] P.L. Brockett, W.W. Cooper, L.L. Golden, U. Pitaktong,

A neural network method for obtaining an early warning

of insurer insolvency, The Journal of Risk and Insurance

61 (3) (1994) 402±424.

[11] P.K. Coats, L.F. Fant, Recognizing ®nancial distress

patterns using a neural network tool, Financial Manage-

ment (1993) 142±155.

[12] K.G. Coleman, T.J. Graettinger, W.F. Lawrence, Neural

networks for bankruptcy prediction: The power to solve

®nancial problems, AI Review (1991) 48±50.

[13] M.B. Cottrell, Y. Girard, M. Mangeas, C. Muller, Neural

modeling for time series: A statistical stepwise method for

weight elimination, IEEE Transactions on Neural Net-

works 6 (6) (1995) 1355±1364.

[14] G. Cybenko, Approximation by superpositions of a

sigmoidal function, Mathematical Control Signals Systems

2 (1989) 303±314.

[15] R.O. Duda, P. Hart, Pattern Classi®cation and Scene

Analysis, Wiley, New York, 1973.

[16] R. Edmister, An empirical test of ®nancial ratio

analysis for small business failure prediction, Journal

of Finance and Quantitative Analysis 7 (1972) 1477±

1493.

[17] B. Efron, G. Gong, A leisurely look at the bootstrap, the

jackknife and crossvalidation, American Statistician 37

(1983) 36±48.

[18] K.M. Fanning, K.O. Cogger, A comparative analysis of

arti®cial neural networks using ®nancial distress predic-

tion, Intelligent Systems in Accounting, Finance and

Management 3 (1994) 241±252.

[19] D. Fletcher, E. Goss, Forecasting with neural networks:

An application using bankruptcy data, Information and

Management 24 (1993) 159±167.

[20] S. Geisser, The predictive reuse method with applications,

Journal of the American Statistical Association 70 (1975)

320±328.

[21] S. Geman, E. Bienenstock, R. Dousat, Neural networks

and the bias/variance dilemma, Neural Computation 5

(1992) 1±58.

Table 7

Pairwise comparison between ANNs and logistic regression for

training sample

Statistics Overall Bankrupt Nonbankrupt

ANN Logistic ANN Logistic ANN Logistic

Mean 88.18 78.64 90.00 76.82 86.36 80.46

t-statistic 9.9623 6.8578 13.8807

p-value 0.0006 0.0024 0.0002

30 G. Zhang et al. / European Journal of Operational Research 116 (1999) 16±32



[22] F.E. Harreli, K.L. Lee, A comparison of the discriminant

analysis and logistic regression under multivariate nor-

mality, in: P.K. Sen (Ed.), Biostatistics: Statistics in

Bionmedical, Public Health, and Environmental Sciences,

North-Holland, Amsterdam, 1985.

[23] K. Hornik, Approximation capabilities of multilayer

feedforward networks, Neural Networks 4 (1991) 251±257.

[24] K. Hornik, Some new results on neural network approx-

imation, Neural Networks 6 (1993) 1069±1072.

[25] K. Hornik, M. Stinchcombe, H. White, Multilayer feed-

forward networks are universal approximators, Neural

Networks 2 (1989) 359±366.

[26] W.Y. Huang, R.P. Lippmann, Comparisons between

neural net and conventional classi®ers, in: IEEE First

International Conference on Neural Networks, vol. IV,

San Diego, CA, 1987, pp. 485±493.

[27] M.S. Hung, J.W. Denton, Training neural networks with

the GRG2 nonlinear optimizer, European Journal of

Operations Research 69 (1993) 83±91.

[28] M.S. Hung, M.Y. Hu, M. Shanker, B.E. Patuwo, Esti-

mating posterior probabilities in classi®cation problems

with neural networks, International Journal of Computa-

tional Intelligence and Organizations 1 (1996) 49±60.

[29] C. Johnson, Ratio analysis and the prediction of ®rm

failure, Journal of Finance 25 (1970) 1166±1168.

[30] F.L. Jones, Current techniques in bankruptcy prediction,

Journal of Accounting Literature 6 (1987) 131±164.

[31] M. Kerling, Corporate distress diagnosis ± An interna-

tional comparison, in: A.P.N. Refenes, Y. Abu-Mostafa,

J. Moody, A. Weigend (Eds.), Neural Networks in

Financial Engineering, World Scienti®c, Singapore, 1996,

pp. 407±422.

[32] L. Kryzanowski, M. Galler, Analysis of small-business

®nancial statements using neural nets, Journal of Ac-

counting, Auditing and Finance 10 (1995) 147±172.

[33] R.C. Lacher, P.K. Coats, S.C. Sharma, L.F. Fant, A neural

network for classifying the ®nancial health of a ®rm,

European Journal of Operations Research 85 (1995) 53±65.

[34] K.C. Lee, I. Han, Y. Kwon, Hybrid neural network

models for bankruptcy predictions, Decision Support

Systems 18 (1996) 63±72.

[35] M.J. Lenard, P. Alam, G.R. Madey, The application of

neural networks and a qualitative response model to the

auditor's going concern uncertainty decision, Decision

Science 26 (2) (1995) 209±226.

[36] M. Leshno, Y. Spector, Neural network prediction anal-

ysis: The bankruptcy case, Neurocomputing 10 (1996)

125±147.

[37] R. Lippmann, An introduction to computing with neural

nets, IEEE ASSP Magazine 4 (1987) 2±22.

[38] M. Odom, R. Sharda, A neural network model for

bankruptcy prediction, in: Proceedings of the IEEE

International Conference on Neural Networks, II, 1990,

pp. 163±168.

[39] J. Ohlson, Financial ratios and the probabilistic prediction

of bankruptcy, Journal of Accounting Research 18 (1)

(1980) 109±131.

[40] A. Papoulis, Probability, Random Variables, and Sto-

chastic Processes, McGraw-Hill, New York, 1965.

[41] D.B. Parker, Optimal algorithm for adaptive networks:

Second order back propagation, second order direct

propagation, and second order Hebbian learning, in:

Proceedings of IEEE International Conference on Neural

Networks, 1987, pp. 593±600.

[42] E. Patuwo, M.Y. Hu, M.S. Hung, Two-group classi®ca-

tion using neural networks, Decision Science 24 (4) (1993)

825±845.

[43] S. Piramuthu, M.J. Shaw, J.A. Gentry, A classi®cation

approach using multi-layered neural networks, Decision

Support Systems 11 (1994) 509±525.

[44] T. Poddig, Bankruptcy prediction: A comparison with

discriminant analysis, in: A.P.N. Refenes (Ed.), Neural

Networks in the Capital Markets, Wiley, Chichester, 1995,

pp. 311±324.

[45] S.J. Press, S. Wilson, Choosing between logistic regression

and discriminant analysis, Journal of American Statistical

Association 73 (1978) 699±705.

[46] J.R. Quinlan, Comparing connectionist and symbolic

learning methods, in: G. Hanson, G. Drastal, R. Rivest

(Eds.), Computational Learning Theory and Natural

Learning Systems: Constraints and Prospects, MIT Press,

Cambridge, MA, 1993.

[47] W. Raghupathi, Comparing neural network learning

algorithms in bankruptcy prediction, International Jour-

nal of Computational Intelligence and Organizations 1 (3)

(1996) 179±187.

[48] W. Raghupathi, L.L. Schkade, B.S. Raju, A neural

network approach to bankruptcy prediction, in: Proceed-

ings of the IEEE 24th Annual Hawaii International

Conference on Systems Sciences, vol. 4, 1991, pp. 147±155.

[49] E. Rahimian, S. Singh, T. Thammachote, R. Virmani,

Bankruptcy prediction by neural network, in: R. Trippi, E.

Turban (Eds.), Neural Networks in Finance and Investing:

Using Arti®cial Intelligence to Improve Real-World Per-

formance, Probus, Chicago, IL, 1993, pp. 159±176.

[50] R. Reed, Pruning algorithm ± A survey, IEEE Transac-

tions on Neural Networks 4 (5) (1993) 740±747.

[51] M.D. Richard, R.P. Lippmann, Neural network classi®ers

estimate Bayesian a posterior probabilities, Neural Com-

putation 3 (1991) 461±483.

[52] A. Roy, L.S. Kim, S. Mukhopadhyay, A polynomial time

algorithm for the construction and training of a class of

multilayer perceptrons, Neural Networks 6 (1993) 535±

545.

[53] G. Rudorfer, Early bankruptcy detection using neural

networks, APL Quote Quad 25 (4) (1995) 171±176.

[54] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning

internal representations by error propagation, in: D.E.

Rumelhart, J.L. Williams (Eds.), Parallel Distributed

Processing: Explorations in the Microstructure of Cogni-

tion, MIT Press, Cambridge, MA, 1986.

[55] L.M. Salchengerger, E.M. Cinar, N.A. Lash, Neural

networks: A new tool for predicting thrift failures,

Decision Sciences 23 (4) (1992) 899±916.

G. Zhang et al. / European Journal of Operational Research 116 (1999) 16±32 31



[56] M. Shanker, M.Y. Hu, M.S. Hung, E�ect of data

standardization on neural network training, Omega 24

(4) (1996) 385±397.

[57] R. Sharda, R.L. Wilson, Neural network experiments

in business-failure forecasting: Predictive performance

measurement issues, International Journal of Compu-

tational Intelligence and Organizations 1 (2) (1996)

107±117.

[58] M. Stone, Cross-validatory choice and assessment of

statistical predictions, Journal of the Royal Statistical

Society B 36 (1974) 111±147.

[59] V. Subramianian, M.S. Hung, A GRG2-based system for

training neural networks: Design and computational

experience, ORSA Journal on Computing 5 (4) (1993)

386±394.

[60] K.Y. Tam, Neural network models and the prediction of

bank bankruptcy, OMEGA 19 (5) (1991) 429±445.

[61] K.Y. Tam, M.Y. Kiang, Managerial applications of neural

networks: The case of bank failure predictions, Manage-

ment Science 38 (7) (1992) 926±947.

[62] R.R. Trippi, E. Turban, Neural Networks in Finance and

Investment: Using Arti®cial Intelligence to Improve Real-

World Performance, Probus, Chicago, IL, 1993.

[63] J. Tsukuda, S. Baba, Prediction Japanese corporate

bankruptcy in terms of ®nancial data using neural

network, Computers and Industrial Engineering 27

(1994) 445±448.

[64] G. Udo, Neural network performance on the bankruptcy

classi®cation problem, Computers and Industrial Engi-

neering 25 (1993) 377±380.

[65] Z. Wang, C.D. Massimo, M.T. Tham, A.J. Morris, A

procedure for determining the topology of multilayer

feedforward neural networks, Neural Networks 7 (1994)

291±300.

[66] R.L. Wilson, R. Sharda, Bankruptcy prediction using

neural networks, Decision Support Systems 11 (1994) 545±

557.

[67] F. Zahedi, A meta-analysis of ®nancial application of

neural networks, International Journal of Computational

Intelligence and Organizations 1 (3) (1996) 164±178.

32 G. Zhang et al. / European Journal of Operational Research 116 (1999) 16±32


