Although neural networks do offer a few advantages over some other nonlinear methods,
in certain situations these advantages are difficult to utilize. However, many neural net
work applications in the social sciences are flawed in ways that obfuscate such effects. In
this article, the neural network methodology is reviewed, some common flaws are
pointed out, and a rather commonplace data set—dealing with school delinquency—is
analyzed for illustrative purposes.
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any complex processes can be explained in terms of a

number of simpler processes (at least according to the
reductionist point of view). Equivalently, many complex systems can
be modeled in terms of a number of elementary entities and the inter-
actions between them. Perhaps the best example of such a system is
the brain. For instance, most neurons in the brain perform the rela-
tively simple task of outputting an electrical signal when the total
inputinto the neuron exceeds a given, predetermined, threshold. How-
ever, the complex tasks performed by the brain can be faithfully mod-
eled in terms of the interactions between such neurons (Churchland
and Sejnowski 1992). The interactions take place via synaptic connec-
tions, and the electrical resistance of a connection determines the
strength of the interaction between the connected neurons. Typically,
a single neuron in the memory centers of the brain is connected to
approximately 10,000 other neurons in a fully interconnected fashion,
but certain portions of the brain have been observed to have a layered
structure, for example, a vision layer taking inputs from the sensory
receptorsinthe eyes and a motor layer that controls the eye muscles.

Although it may not be obvious atfirst sight, the latter (layered net

work of connections is functionally similar to a nonlinear, multivariate
regression model. The vision layer of neurons is analogous to the set
of independent (predictor) variables, whereas the motor neurons are
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analogous to the dependent (response) variables. The map between
the vision and motor layers can then be thought of as a mathematical
function represented by the regression model. This interpretation has
been fruitful both in the neurosciences and in statistics and has given
rise to a cross-disciplinary field generally referred to as neural net
works (NNs). NNs have been used in a wide range of applications,
including organizational processes (Carley and Svoboda 1996;
Schrodt 1991), decision making (Artyushkin et al. 1990; Lenard,
Alam, and Madey 1995), and communications (Woelfel 1993). Some
of these studies use NNs as a dynamical model of the interactions,
whereas others treat NNs as a statistical tool for estimating the interac
tions from sample data. This article is concerned only with the latter
aspect of NNs.

NNSs are often presented as a novel and assumption-free statistical
method for performing regression and classification. However,
recently, it has become evident that NNs are by no means assumption
free, although the assumptions may be considered milder and more
implicit than those of many other methods. This robustness has given
rise to a rapid popularity of NNs among statistical model builders.
Several excellent discussions of NNs and their relation to other statis-
tical methods can be found in Bishop (1996), Masters (1993), and
Sarle (1994b).

One may also argue that the use of NNs has been somewhat
extravagant, the justification for which has been the NNs’ capability to
model highly nonlinear relationships and nontrivial interactions
between the variables of a model. One may even expect this property
to imply that an NN can outperform all other methods. Indeed, many
applications have enjoyed this flexibility with great success (Collins,
Ghosh, and Scofield 1988; Marzban and Stumpf 1996; Paik and
Marzban 1995; Van Nelson and Neff 1990). However, for a given data
set, an NN may be outperformed by a method with many restrictive
and explicit assumptions. For example, if the function underlying the
datais a polynomial, then polynomial regression will certainly outper
forman NN (Bishop 1996). In other words, itis not true that the milder
and more implicit assumptions of NNs automatically render them
superior to the alternatives.

The flexible fitting property of NNs and the search for the “best”
statistical method have given rise to a plethora of research articles
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wherein different statistical methods are compared and contrasted
(Anderer et al. 1994; Garson 1991; Hardgrave, Wilson, and Walstrom
1994; Marzban, Paik, and Stumpf 1997; Paik and Marzban 1995; Wil
son and Hardgrave 1995). Many such endeavors are flawed in that
they neglect (at least) three important contingencies, namely, that the
choice of the best method is contingent on (1) the proper implementa
tion of the methods, (2) the measure of performance, and (3) the data.
Some of the improper implementations of NNs involve the following:

» Anad hoc value for the number of hidden nodes (one of the two quanti
ties that determine the complexity or nonlinearity of an NN)

» The use of a single data set for estimating both the optimal number of
hidden nodes and the performance of an NN

» An inappropriate choice of the error function to be minimized

« Adisregard for the existence of local minima in the error function

The second contingency refers to the dependence of any empirical
comparison between two models on the measure of performance em-
ployed for the comparison. Performance is a multifaceted entity, and it
is entirely possible that model A may outperform model B in terms of
one facet of performance but not in terms of another. Often, however,
the multifaceted nature of performance is neglected in the comparison
of one method with another.

As for data dependence, it must be emphasized that it is entirely
possible that method A will outperform method B on one data set but
not on another. This contingency is one that requires only a confes
sion, in that it is sufficient to acknowledge that any empirically estab
lished superiority of one method over another is specific only to the
particular data set (and measure) being analyzed.

In this article, an NN methodology that encompasses the above-
mentioned contingencies is reviewed and then illustrated in an-analy
sis of arather “generic” data set—one that has been employed in many
analyses (Lee and Smith 1994; O’'Brien and Rollefson 1995; Reardon
1996; Rees, Argys, and Brewer 1996). The aim of the article is two
fold: (a) to point out some errors that are commonly made in NN appli
cations and (b) to prove that sometimes (e.g., when the data are too
noisy) the many advantages of a properly implemented NN are not
easily realized. For example, it is shown that any amount of
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nonlinearity allowed in a correctly implemented NN causes it to-over
fit" the particular data set examined herein. This implies that the opti
mal NN is a linear one and, in turn, that the classification boundaries
underlying the present data set are mostly linear (to within statistical
errors). Additionally, a linear discriminant analysis—a model with
many explicit assumptions—is undertaken and shown to perform
comparably with a linear NN and superior to a nonlinear NN.

NEURAL NETWORKS

An NN generally refers to a network of elementary processing
units, called neurons or nodes, interconnected via synaptic connec
tions, or simply, weight.It is the set of values assigned to these
weights that determines the task the NN is to perform; and to arrive at
the desired weights, the NN must be trained. In this sense, NNs are
parametric models, and training is nothing more than the process
of parameter estimation. There exist a wide variety of NNs for per-
forming an equally wide range of tasks, but the way in which NNs
are trained cagenerally be divided into (at least) two paradigms—
unsupervised and supervised. The key idea in the former is self-
organization, in that such an NN is designed to automatically search
for salient features in the data. Such NNs are nonlinear analogs of the
traditional methods for cluster analysis. Supervised NNs, on the other
hand, are nonlinear analogs of regression and classification methods
wherein the dependent variable is known and used in the training pro
cedure. For such NNs, training refers to the process of varying the
weights to minimize the “difference” between the output of the NN
and the desired value of the dependent variable. The data set used for
this process is called the training set.

A particular type of supervised NN is the so-called multilayered
perceptron wherein the network has a layered architecture with the
nodes on a given layer not interacting with one another. It is this type
of NN that is the primary interest of the present article. In fact, it will
be assumed that the nodes on a given layer interact only with those of
the adjacent layers. The input layer contains the nodes that represent
the independent variables, and the nodes of the output layer represent
the dependent variables of the problem. An NN with one hidden layer
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Figure 1: A Multilayered Perceptron With Four Input Nodes, Three Hidden Nodes (on
one layer), and One Output Node
NOTE: Also shown are three of the weights/parameters.

containingH hidden nodes (Figure 1) can be written as a single
parameterization:

Yk :f[zﬁlw:‘kf(z]/"nwyxj _ej)_e,k]! (1)

wherew, W', 6, 6" are weights (parameters) that are to be estimgted,
are the output nodes, ardhre theninput variables. The functiofx)

is called the activation function and represents the manner in which
any two nodes interact with one another, and this in turn affects the
function represented by the NN as a whole (i.e., the function relating
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the inputs to the outputs). A linear activation function between two
nodes renders the NN a linear function as a whole, regardless of the
existence or the number of hidden nodes. A nonlinear activation func
tion does not guarantee that the NN can represent any nonlinear func
tion; for that, it is necessary to introduce hidden nodes into the NN. A
commonly employed, nonlinear activation function is the so-called
logistic function,f(x) = 1/(1 + exp®); the logistic function varies
between 0 and 1 and, therefore, allows for a probabilistic interpreta
tion of the values taken by the nodes.

To elucidate equation (1), it is helpful to consider some simple
cases. With one input noateone output nodg and no hidden nodes,
an NN is a representation of the equatyonf(wx —8), wherewando
are the parameters of the model. Clearl§(@f = x, then the NN repre
sents nothing more than the linear regression mpdeabx — 0. If f(X)
is the logistic function, then the NN can represent a logistic regression
model. In fact, for classification problems (as opposed to regression
problems), it is sufficient to use the logistic function because it allows
for the outputs of the NN to represent class-conditional probabilities
(more on this below].

The wordhiddenmay suggest that the corresponding nodes per-
form some hidden (or mysterious) function. However, they are noth-
ing more than abstract constructs whose function is to introduce and
control the nonlinearity of the NN. They also allow for interactions
between the independent variables. Introducing a single hidden node
renders the NN nonlinear, and the representing equation takes the
(unattractive) form

y= floflwx-8)-87= @)

Y
el

1+6Xp T+ exp ~ O

wherew, ', 6, 0 are the parameters to be estimated from the data.
Clearly, thisyis a highly nonlinear function of, and with an appropri

ate choice of the parameters, it can represent a wide variety of ronlin
ear functions. With more hidden nodes, the representing equation has
more parameters and is even more nonlinear, and therefore can repre
sent a wider variety of functions. In fact, it has been shown that with a
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sufficient number of hidden nodes, one can represent any function
(Hornik, Stinchcombe, and White 1989).

Although itis true that the NN represented by equation (1) is-capa
ble of approximating “any” function to any desired accuracy, the same
is also true of many traditional methods, such as spline regression,
polynomial regression, and projection pursuit (Sarle 1994b). There
fore, NNs are not to be considered a panacea. If there is any advantage
that NNs have over other methods, it is the way in which they handle
the problem of “the curse of dimensionality” (Bishop 1996; Ripley
1996). Briefly, the number of free parameters in polynomial regres
sion, for example, increases exponentially with the number ofinde
pendent variables. By contrast, the number of free parameters in an
NN grows only linearly. The “explosion” of the number of free
parameters in polynomial regression makes it more prone to overfit-
ting problems. On the other hand, the drastically smaller number of
parameters in the NN renders it less likely to overfit data, yet it does
not preventit from approximating “any” function (Hornik etal. 1989).

A statistical model has little utility if it does not produce probabili-
ties. Just as logistic regression models class-conditional posterior
probabilities, the output of an NN can be arranged to represent class-
conditional posterior probabilities. It has been shown that if the activa-
tion function is the logistic function, and if the error function being
minimized is the cross-entropy, defined as

_ 1oy 0 0,0, Ol-¢, OJ
S—NZ, %/ logB;Hﬂl t/)loga_—yiE% (3)

then the output of the NN is the posterior probability of class member
ship, given the inputs (Richard and Lippmann 1991). In this equation,
y;isthe output of the NN for thith case anti= 0,1 are the values of the
corresponding dependent variable labeling the two classes. This con
clusion is contingent on a training set in which the class sizes are pro
portional to those of the sample (i.e., the a priori probabilities); if they
are not, then the outputs must be corrected for the difference (Bishop
1996). However, many NN applications artificially equalize the class
sizes in the training set with no such corrections (e.g., Anderer et al.
1994; Lenard et al. 1995).
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The number of hidden nodes is one quantity that gauges the com
plexity of the underlying function (or classification boundaries, for
classification problems), that is, the nonlinearity of the function and
the complexity of the interactions between the independent variables.
The magnitude of the weights is another quantity that affects the com
plexity of an NN, butto a much lesser degrdy systematically vary
ing the number of hidden nodes, one effectively spans the space of
“all” functions and “all” interactions (Geman, Biensenstock, and
Doursat 1992; Hornik et al. 1989). Therefore, selecting the number of
hidden nodes is tantamount to specifying or selecting the underlying
model in its entirety. Consequently, the “correct” number of hidden
nodes is of paramountimportance in any NN development, and-there
fore great care must be taken to find its optimal value; an NN with a
number of hidden nodes less than the optimal number can underfit the
data, whereas overfitting can occur if the NN has more than the opti-
mal number of hidden nodes. In both cases, the model’s predictive
capabilities are jeopardized. In spite of this, that value is selected in an
ad hoc fashion in many applications (e.g., Hardgrave et al. 1994;
Lenard et al. 1995; Markham and Ragsdale 1995; Warner and Misra
1996; Wilson and Hardgrave 1995).

There are a number of techniques for determining the optimal
number of hidden nodes, but a popular method is bootstrapping (Efron
and Tibshirani 1993). In it, the data are randomly divided into two
sets: a training set for estimating the weights in the NN and a valida-
tion set for determining the optimal number of hidden nodes (or-simi
lar parameters). Note that contrary to some practices, the performance
of atrained NN on the validation set is not a measure of its predictive
(or generalization) capability; another data set—a test set—is
required if an unbiased measure of generalization performance is
desired.

An NN with zero hidden nodes is trained with the training set and
its performance is gauged on the validation set. The number of hidden
nodes is then incremented and the procedure repeated until the valida
tion error begins to rise. In this way, one arrives at the number ef hid
den nodes that precludes overfitting the training set. However,
because the validation error is used in arriving at the number of hidden
nodes, this procedure leads to an NN that overfits the validation set.
This is why the validation error is not an unbiased measure of



Paik / NEURAL NETWORKS 433

generalization performance. To preclude overfitting the validation set,
the original data set is divided again but with a different random-parti
tioning into a training and a validation set, and the entire procedure is
repeated again. The validation errors over the different random sets (or
bootstrap trials) are then employed to compute an average interval and
a confidence interval for the validation performance measures. The
optimal number of hidden nodes is the value beyond which the aver
age validation error begins to rise.

Another important issue in the training of NNs is that of the local
minima of the error function. Most training algorithms (i.e., parameter
estimation techniques) are iterative procedures in which randomly
selected weights are slowly varied in an attempt to minimize the error
function. Given that equation (1) is nonlinear in the weights; fre
guently the training algorithm gets trapped in a local minimum of the
error function. Such an NN does not correctly represent the underly-
ing structure of the data. The simplest way of dealing with this prob-
lemisthe “brute force” way, namely, to repeat the entire training phase
from a different random set of initial weights some number of times.
There exist other methods for eluding local minima (Masters 1993),
one of which (called simulated annealing) is employed in this article;
however, these methods do not guarantee that a global minimum will
be reached, and therefore it is well warranted to augment them with
the brute force method.

LINEAR DISCRIMINANT ANALYSIS

As mentioned previously, NNs are not a panacea, and in fact if the
NN methodology is implemented properly, it may turn out that a more
restrictive model (in terms of the invoked assumptions) outperforms
the NN. Two popular classification models are logistic regression and
discriminant analysis. As previously mentioned, the former is implic
itly implemented in an NN with zero hidden nodes and, therefore, will
be treated as such in this article. A more restrictive variant of diserimi
nant analysis is linear discriminant analysis (LDA); its linearity
allows for the possibility of identifying the “best predictors” in the
model. LDA has several explicit assumptions (Huberty 1994;
McLachlan 1992): The data are assumed to be multivariate Gaussian
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(normal) and the different classes are assumed to have equal-covari
ance matrices (homoelastic). As in logistic regression and NNs, the
“output” of LDA is also the posterior probability of class membership,
given the inputs.

To expose the explicit assumptions of LDA, it suffices to review the
univariate case and the two-class case (labeled as 0 and 1). The basic
equations of LDA are as follows: The likelihood functions for the two
classes are assumed to be normal, that is,

g

1 20
L(x)= exp "

V2mo,

wherey, ando, are the mean and the standard deviation, respectively,
of xin theith class. According to Bayes'’s theorem, the posterior prob-
ability of belonging to classis given by

p.L,(x)
PoLo(X) +p|L1(x),

P (x)=

wherep,, p; are the prior probabilities for the two classes. The dis-
criminant function is then given by the logarithm (conventionally) of
the ratio of the posterior probabilities, that is,

01 10 —p,O
log A =l _ %Dc ol “‘Dc+% “1D+logE'#D 2log—PH
FHs 0,0 O p O

Fy(x) Djo |:bo 1|:| o, o070

This function is the basis of discriminant analysis. If it is negative,
thenxis classified as 0; otherwise, itis classified as 1. Due to its quad
ratic (inx) nature, the model is referred to as quadratic discriminant
analysis. However, it can be seen thatjf= g, (i.e., the two classes
are, or are assumed to be, equivariant), then the discriminant function
is linear inx. It is this resulting equation on which LDA is based.
Although only the univariate case is reviewed here, the advantage of
LDA is in the case where there are several independent variables, in
which case the coefficients of the linear terms can be interpreted (with
some care) as a measure of the predictive strength of the correspond
ing independent variable.
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Although the terméraining andvalidationare not ordinarily used
in non-NN circles, it can be seen that in the context of LDA, training
can be thought of as the estimation of the means and the covariance
matrices. Also note that the appearance of the prior probabilities in the
discriminant function implies that the class sizes in the training set
must be according to the priors; as in NNs, artificially equalizing the
classes in the training set can rob the outputs from their probabilistic
interpretation. The validation set would not be required, since there
are no other parameters (such as the number of hidden nodes) to deter
mine, although it could be employed to decide which model is opti
mal—the quadratic or the linear. Indeed, training can refer to the
process of estimating the parameters of any model—NN, regression,
discriminant analysis, and the like. The validation set can be
employed (via bootstrapping) to select the optimal configuration of
any of the models.

MEASURES OF PERFORMANCE

A quantity that is often selected in an ad hoc fashion is the measure
of performance. A proper choice of the measure is especially impor-
tant because it is entirely possible that method A will outperform
method B in terms of one measure of performance but not in terms of
another. In many NN applications, however, the quantity that is mini-
mized is the mean square error, even though that choice is justified
only if the probability density of the dependent variable is Gaussian
(or at least continuous, or bell shaped), for only then will the parame
ter estimates coincide with the maximum likelihood estimates
(Draper and Smith 1981). However, such NNs are often unjustifiably
employed for classification problems in which the dependent variable
is discrete, for example, binary, three-valued, and so on (e.g.-Hard
grave et al. 1994; Lenard et al. 1995; Markham and Ragsdale 1995;
Warner and Misra 1996; Wilson and Hardgrave 1995).

Another frequently neglected fact is the multifaceted nature of
performance itself. Any comparison between the performance of
one model and another model in terms of a scalar (one-dimensional)
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guantity is apt to be incomplete. Even & 2 contingency table repre
senting the performance of the binary classification of two classes (of
fixed sample size) has two degrees of freedom. Therefore, in a binary
classification task, a faithful comparison would require at least two
independent measures of classification performance. Many such
measures are discussed in the literature (Goodman and Kruskal 1959;
Hays 1973; Paik 1998).

Two types of performance measures must be distinguished: con
tinuous and discrete. The former are computed directly from the (con
tinuous) output of the NN, whereas the latter are computed from-acon
tingency table formed by placing a (probability) threshold on the
output. Cross-entropy (equation [3]) and mean square error are exam
ples of the former, and percentage correctis an example of the latter.

Itis important to examine the behavior of these measures in certain
special situations, such as deviations from normality or small sample
sizes. Such matters have been considered by Hammond and Lienert
(1995) and by Parshall and Kromrey (1996). Another special, yet
ubiquitous, situation arises when the class sample sizes are dispropor-
tionate (Paik 1998). For instance, the use of the commonly employed
measure percentage correctis misleading if the classes are not equally
represented in the data set. This is so because that measure does not
take into account chance or random guessing and, as a result, even ran-
dom classification can yield a 99.9-percent accuracy. Of course, this
shortcoming is readily exposed if the statistical significance of the
measure is considered, but often it is not.

From all the discrete measures examined in the above articles, two
that appear to be relatively “healthy” were selected to gauge the per
formance of the models examined herein. They are Pearson’s chi-
square and the likelihood ratio chi-square, defined as

(C,-E)’
E;

i

X*=z}

LR=%;.C, logé.%@

whereC, are the elements of theX22 contingency table
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C, C,0_0 no.of Os classifed as0  no.of Os misclassified as 1]

C =
C, o.of 1s misclassified as 0 no.of 1s classified as 1

andE; are the elements of the expected matrix, thatis, the contingency
table that would ensue upon random guessing,

E= 1 OC, +C)(C, +Cy) (C+C,)(C,+C )T
C,+C,+C,+C, OC;+C,)(C, +Cy) (Cy+C,)(C,+C,)

Inwhat follows, both measures have been normalized so that a per
fect classification of both classes (i.e., a diagonal contingency table)
will yield a value of 1, whereas random classification (i&= E) will
yield a value of O.

The continuous measurg, is “superior” to the discrete measures
x* andLR, in that the output is not required to be binary. As a result,
most of the present analysis was performed in tern& ldbwever, at
the end of the analysig’ andLRwere employed to assess the classifi-
cation performance of both LDA and NN. Note that in contras§ ¢
andLR are measures of “success,” in that larger values imply better
performance.

DATA

The data were taken from the first follow-up (1990) of the National
Education Longitudinal Study (U.S. Department of Education,
National Center for Education Statistics 1992), base year 1988. The
1990 student component collected basic background information
about students’ school and home environments; participation in
classes and extracurricular activities; current jobs; and goals, aspira
tions, and opinions about themselves. This component also measured
10th-grade achievement and cognitive growth between 1988 and 1990
in the subject areas of mathematics, science, reading, and soctal stud
ies. The 20,706 subjects were all 10th-grade students in the United
States during the 1989-1990 school year. The sampling was donein
a two-stage sampling process, distributed across 1,500 schools,
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involving the selection of a core group of students who were in the
8th-grade sample in 1988. Based on prior literature (Evans et al. 1996;
Kendall-Tackett 1996; Simons etal. 1991; Watts and Wright 1990), 71
variables were selected as the independent variables (see the appen
dix) and the dependent variable was in-school suspension; 15,906 stu
dents were never suspended from school, and 2,169 were suspended
one or more times.

Some amount of preprocessing of the data is almost always-neces
sary, and even beneficial, before any analysis—LDA and NN alike:

» All observations (students) with any missing data were neglected.
 All categorical independent variables were discartled.
« All the independent variables were standardizestpres).

The Pearson correlation coefficienthetween the 71 independent
variables and the dependent variable are plotted in Figure 2. The num-
bers on thex-axis refer to the independent variables as enumerated in
the appendix. The height of each bar in the graph is a measure of the
linear correlation between the independent variable and the dependent
variable. The utility of this figure is in allowing for the selection of the
input variables that are most (linearly) correlated with in-school sus-
pension. For example, it can be seen that the five variables numbered
17, 48, 50, 57, and 59 have the highest linear correlation with in-
school suspension.

METHOD

The popularity of NNs has reached a level at which some well-
known statistical packages now include NN routines (Sarle 1994a).
The present project employed an NN that was developed by the
National Severe Storms Laboratory for tornado detection (Marzban
and Stumpf 1996), and the remainder of the analysis was performed in
SAS (1989).

The NN was trained and validated on (1) all 71 variables; (2) all 71
variables, with equal-class representation; and (3) 5 of the original
variables. The first experimentis the most simplistic, in that no further
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Figure 2: Pearson’s Correlation Coefficientr, Between the 71 Independent Variables and
In-School Suspension

preprocessing of the data is performed. In experiment 2, the two
classes were artificially equalized by including an equal number of 1s
and Os in the training set (but not in the validation set). This balancing
of the classes is believed to enhance the validation performance of an
NN (Masters 1993). As in LDA, it is important to emphasize that
changing the class sizes in the training set robs the output from being
interpreted as a posterior probability; thatinterpretation is valid only if
the classes in the training set are represented according to their sample
a priori probabilities. However, in this experiment, the output of the
NN was transformed according to Bayes’s theorem in order to recover
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the probabilistic interpretation (Bishop 1996). In experiment 3, to
reduce the variance in the data, only 5 of the original variables that are
mutually uncorrelated (Pearson’s .10), yet most correlated with the
dependent variable (Pearson’s.20), were considered; these are the

5 variables with the longest bars in Figure 2. Finally, an LDA was
performed.

After the preprocessing, the remaining 18,075 cases were ran
domly partitioned into a training set (12,000) and a validation set
(6,075), four times, for bootstrapping. The mean interval and the 90-
percent confidence interval of the validation performance meaSure,
over the four different validation sets were then computed. Finally, the
two measures of classification performancg-andLR—were also
computed; because these measures are discrete, their computation
calls for a threshold placed on the output. The threshold was varied in
.01 increments, and the validation performance measures were com-
puted at each increment. In this way, one can identify the optimal
value of the probability threshold and the corresponding value of the
performance measure.

Further details of the training method can be found in Paik and
Marzban (1995). For the technical reader, suffice it to say that simulated
annealing and the brute force method (described above) were both
employed to deal with local minima and that the training algorithm was
the conjugate gradient method. When the improvement in the error
function was less than .00001, training was halted (the stopping crite-
rion) and then reinitiated with an entirely new set of random weights.

RESULTS

As mentioned previously, performance was gauged in terms of one
measure of erro, and two measures of classification succgsand
LR. The results of the three different experiments with the NN are pre
sented in Figures 3 and 4; the error bars on the various curves are the
90-percent confidence intervals. LDA is compared with NN in Figure 5;
these measures have been computed from the validation data set.

(text continues on p. 444)
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Figure 3: Cross-Entropy (S) as a Function of the Number of Hidden Nodes for Exper
ments 1 and 2, Averaged Over the Bootstrap Trials; Also Shown Are the 95-
Percent Confidence Intervals
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the Number of Hidden Nodes in Experiment 3 for Three Bootstrap Trials
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From Figure 3, it is evident that the optimal number of hidden
nodes is zero in experiments 1 and 2. Here, while all nonlinear NNs
(i.e., with nonzero hidden nodes) have lower errors on the training set,
the validation errors are higher. In other words, the nonlinear NNs
overfitthe data, implying that the underlying classification boundaries
are mainly linear, and this is true regardless of the class sizes in the
training set. Because an NN with zero hidden nodes—a linear
NN—minimizing S and with a logistic activation function, is equiva
lent to logistic regression, in experiments 1 and 2 the nonlinear NN has
little to offer.

The nonlinear structure of the data is captured in the last experi
ment. Figure 4 shows the training and validation errors for a range of
the number of hidden nodes and three of the bootstrap trials. It can be
seen that for each trial, the optimal number of hidden nodes is two
(Figure 4). Of course, the performance of this nonlinear NN is far
below that of the linear ones in the first two experiments, but that is
simply because the five-input-node NN has been deprived of the infor-
mation in the larger number of input variables of the first two experi-
ments. However, accompanying that information is more variance,
and so with less variance in the last data set, the NN procedure does
allow for the identification of nonlinear underlying relations.

The graphsin Figures 5 and 6 display the discrete measures of clas-
sification success for different values of the probability threshold. The
measures in Figure 5 are computed from the training set, and the mea-
sures in Figure 6 are for the validation set; both figures pertain to the
first experiment only because the performance of the NN in this
experimentis superior to thatin the other experiments. The dark curve
is for LDA; the other curves are for the NNs with the corresponding
number of hidden nodes. It can be seen that whereas the training per
formance appears to improve with more hidden nodes, the validation
performance is reduced; this is true for bgfrandLR. As such, the
nonlinear NNs overfit the data and have nothing to offer.

Furthermore, LDA performs comparably to the linear NN (i.e.,
with zero hidden nodes, or logistic regression). This is somewhat sur
prising given the data’s violation of the explicit assumptions of nor
mality and homoelasticity invoked in LDA. However, the robustness of
LDA under violations of its assumptions is an attribute that is well known
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(Lachenbruch 1975). This example clearly illustrates how a model
with many explicit assumptions may perform comparably to an NN.

CONCLUSION AND DISCUSSION

The findings illustrate that when appropriately implemented, the
flexibility of NNs cannot always be used, and far simpler models can
sometimes perform comparably to NNs. In many applications, the
number of hidden nodes and the measure of performance are two
guantities that are frequently selected inappropriately, or in an ad hoc
fashion. With these two quantities appropriately determined, a rather
typical social science data setis employed to show that the advantages
of NNs, and their flexibility, do not automatically render them supe-
rior to other models in terms of three measures of performance and
three different training procedures. The reason for the inability of the
NN to outperform LDA is traced to the predominantly linear structure
of the underlying relations when the data are too noisy, not the dispro-
portionate class representation in the training set. As the amount of
variance is reduced through the reduction of the number of input vari-
ables, the NN captures the underlying nonlinearities. However, the
overall performance of the nonlinear NN is hindered due to the
smaller number of input variables. As such, the advantages of NNs are
impossible to realize in the particular data set examined here.

A question arises as to the conditions that may hinder the NN in
identifying any nonlinearities in the data. Itis possible that the under
lying function or decision boundary is in fact linear. Under certain
conditions, it is even possible to identify these situations. For exam
ple, as discussed in the LDA section, if the distribution of the inde
pendent variables is multivariate normal, and if the classes are
equivariant, then the optimal (or Bayes’s) boundary is in fact linear.
Then, no classifier can outperform a linear one. Similarly, if the
assumption of equivariance is significantly violated, then it can still be
said that no classifier can outperform a quadratic one. In both cases, an
NN is simply not required. What if the underlying linearity (or ron
linearity) cannot be established in such a fashion? In that case, eonsid
eration should certainly be given to the development of an NN model.
However, as illustrated in this article, this should not discourage the
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examination of simpler models, since itis possible that the variance in
the data is so large that the existence or the statistical significance of
any nonlinearity cannot be established.

Further discussion of some flawed practices is offered. For
instance, one common practice is to assess performance of an algo
rithm from the same data set (training set) that is used for estimating
the parameters of the model (e.g., Anson and Sagy 1995; Cherry 1993;
Christensen and Duncan 1995; Dannehl and Groth 1992; Famularo
et al. 1992). The performance of any parametric algorithm, including
NNSs, on the training set is positively biased. Indeed, as described in
this article, the performance of NNs on the validation set is alse posi
tively biased. A “third” test setis required for an unbiased assessment.

As already noted, an NN with zero hidden nodes and a logistic acti
vation function is nothing but logistic regression if and only if cross-
entropy is minimized. This is so because logistic regression models
posterior probabilities, but an NN will model posterior probabilities
only if cross-entropy is minimized. Indeed, it is the minimization of
cross-entropy that yields the maximum likelihood parameter esti-
mates (Bishop 1996). In spite of this, many NN applications to classi-
fication problems incorrectly minimize the mean square error (e.g.,
Hardgrave et al. 1994; Lenard et al. 1995; Markham and Ragsdale
1995; Warner and Misra 1996; Wilson and Hardgrave 1995).

As mentioned previously, the nonlinearity of the NN leads to the
existence of local minima in the error function that is minimized. Fre-
guently, however, NN applications neglect to consider this problem
(e.g., Hardgrave et al. 1994; Lenard et al. 1995; Markham and-Rags
dale 1995; Warner and Misra 1996; Wilson and Hardgrave 1995). The
consequence of this practice is an NN whose performance has been
compromised in atleast two ways. First, an NN does not faithfully rep
resent the underlying relations simply by virtue of being in a local
minimum. Second, the optimal number of hidden nodes arrived at via
bootstrapping may be incorrect. The latter may occur when one (or
more) of the various NNs with a different number of hidden nodes is
trapped in a local minimum, leading the bootstrapping procedure to
identify the “wrong” number of hidden nodes.

Another issue worth mentioning is the absence, in this article, of
any expression of classification performance in terms of the percent
age of correctly classified cases. It can be shown that this measure isiill
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behaved when the class-conditional sample sizes are disproportionate
(Paik 1998). The percentage of correctly classified cases can be writ
tenasC,+C)/(C,+C,+C,+C,), whereC are the elements of the<2
contingency table. Note that this expression approaches 100 percent if
C,is much larger than the other three elements of the contingency table,
thatis, when one class is much larger than the other. Consequently, this
measure overestimates the performance of the classifier, and for no
skill-related reasons at all. In spite of this pathology, the percentage of
correctly classified cases is a commonly employed measure of perfor-
mance (e.g., Anderer et al. 1994; Azari et al. 1993; Bernard, McGrath,
and Houston 1993; Boone 1991; Warner and Misra 1996).

Finally, a comment about the explanatory capabilities of NNs is in
order. NNs have been referred to as black boxes, in thatit is difficult or
impossible to ascertain the rule that a trained NN represents. In other
words, even if an NN performs superbly in predicting some phenome-
non, it is quite difficult to decompose the function that the NN repre-
sents in terms of simpler, more “palatable” effects. Even determining
the predictive strength of a given input is a complex task. There are
many reasons for this opaqueness, some of which can be attributed not
only to NNs but to any nonlinear model. One of the reasons is that the
weights of an NN are almost entirely uninterpretable. First, in the
presence of, say, hidden nodé$,(every input node hald weights
connecting it to the hidden nodes. This is in contrast to the single
weight emerging from an input node of an NN with no hidden nodes,
or the single regression coefficient accompanying an independent
variable in multiple regression. Under certain conditions, these single
weights may be interpreted as the predictive strength of the -corre
sponding variable, but what are we to do with mady\yeights asso
ciated with any given variable? To make matters worse, the values
assigned to these weights (via training) depend greatly on the particu
lar global minimum of the error function in which the NN has landed.

In other words, the weights vary greatly from one minimum to
another, whereas the overall performance of the NN in the same min
ima may be comparable. All of these problems can be traced back to
the nonlinear nature of the activation function; in fact, any nonlinear
model will suffer from the same problems. However, as mentioned
above, there are problems that render the weight meaningless even in
linear models. The most notorious of these is the presence of any
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collinearity among the independent variables. It is well known that
such multicollinearity can render the weights uninterpretable even in
linear multiple regression. In short, there are many good reasons for
referring to NNs as black boxes, although many of the reasons are not
peculiarto NNs and apply equally to many other (even linear) models.

APPENDIX
Definition of Independent Variables

1. Students get along well with teachers. 2. There is real school spirit. 3. Rules for
behavior are strict at school. 4. Discipline is fair at school. 5. Students friendly with
other racial groups. 6. Other students often disrupt class. 7. The teaching is good at
school. 8. Teachers interested in student. 9. When student works hard teachers praise
effort. 10. In class often feel put down by teachers. 11. Often feel put down by students
in class. 12. Most teachers listen to me. 13. It doesn't feel safe at this school. 14. Dis
ruptions impede my learning. 15. Misbehaving students often get away with it. 16.
Had something stolen at school. 17. Someone offered to sell me drugs at school. 18.
Someone threatened to hurt me at school. 19. It's okay to work hard for good grades.
20. It's okay to ask challenging questions. 21. It's okay to solve problems using new
ideas. 22. It's okay to help students with school work. 23. It's okay to be late for
school. 24. It's okay to cut a couple of classes. 25. It's okay to skip school awhole day.
26. It's okay to cheat ontests. 27. It's okay to copy someone’s homework. 28. It's okay
to getinto physical fights. 29. It's okay to belong to gangs. 30. It's okay to make racist
remarks. 31. It's okay to make sexist remarks. 32. It's okay to steal belongings from
school. 33. It's okay to destroy school property. 34. It's okay to smoke on school
grounds. 35. It's okay to drink alcohol at school. 36. It's okay to use drugs at school.
37. It's okay to bring weapons to school. 38. It's okay to abuse teachers. 39. It's okay
totalk back to teachers. 40. It's okay to disobey school rules. 41. Time spent on home
work in school. 42. Time spent on homework out of school. 43. How important are
good grades to me. 44. Time spent on extracurricular activities. 45. Visit friends at lo
cal hangout. 46. How far in school father wants me to go. 47. How far in school mother
wants me to go. 48. How far in school I think | will go. 49. Number of close friends
now friends in eighth grade. 50. Number of close friends who dropped out. 51. Among
friends, how important is to attend classes regularly. 52. Among friends, howimpor
tant is to study. 53. Among friends, how important is to play sports. 54. Among
friends, how important is to get good grades. 55. Among friends, how important is to
be popular with students. 56. Among friends, how important is to finish high school.
57. How many cigarettes do you smoke a day. 58. Last 12 months number of times you
drank alcohol. 59. Last 12 months number of times you used marijuana. 60. Last 12
months number of times you took cocaine. 61. | think of myself as a religious person.
62. Sex. 63. Socioeconomic status. 64. Parent’s highest education level. 65. Locus of
control. 66. Self-concept. 67. Entire school enroliment. 68. Reading standardized score.
69. Math standardized score. 70. Science standardized score. 71. History/geography
standardized score.
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NOTES

1. A model is said to overfit a data set if it is dominated by the statistical fluctuations in the
data rather than the underlying function. Intuitively, an overfitted model “wiggles” more than it
should. A more precise definition will be given later. For now, suffice it to say that a model that
overfits a given data set has little or no predictive capabilities.

2. Two points are worth mentioning. First, technically, a neuron and a node are different enti
ties. The former refers to a biological unit, whereas the latter is an abstract representation thereof.
If modeling the neuron is the task at hand, then the distinction is an important one. In the present
context, however, the distinction is irrelevant, and so the two terms will be used interchangeably.
Second, the various components of an NN do not have unique names; nodes and weights, and so
on, are the common terminology in the statistical applications of NNs.

3. Three variants of this layered structure are worth mentioning. First, the activation func
tions for the two layers, that is, the ti®in equation (1), may be different. For example, in-are
gression problem the dependent variable does not necessarily lie in the range 0-1, whereas the lo
gistic activation function is restricted to that range. Therefore, the activation function for the
nodesinthe hidden layer is taken to be the logistic function, but that of the output layer is taken to
be alinear function of the foriifx) = ax+ b. Second, it is possible to connect the input nodes not
only to the hidden nodes but also directly to the output nodes. This allows for explicit linear and
nonlinear terms in the model. Finally, it is possible to have more than one hidden layer. Although
it has been argued that one hidden layer is sufficient for learning “all” functions (Bishop 1996),
an additional hidden layer can sometimes perform some preprocessing of the inputs, such as
transforming the inputs toscores, if the user has not already done so.

4. Consider an NN as shown in Figure 1. There exist two sets of parameters (1) between the
input and the hidden layer and (2) between the hidden and the output layer. However, only the
formerinvolvesinputnodes (i.e., the independent variables), wherein there Hnearameters.
Therefore, the number of parameters grows linearly with

5. The reason the magnitude of the weights can affect the nonlinearity of the NN is that the
logistic function 1/(1 + exp(eax)) is highly nonlinear for large values afbut linear for small
values.

6. A proper inclusion of categorical variables requires the use of extra dummy variables
(Draper and Smith 1981). However, to keep the NN analysis as simple as possible, categorical
variables were not considered as inputs.
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