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1 Introduction

The purpose of this paper is to propose and describe an alternative to an
overarching theory for social simulation research. There are a number of reasons why
some general framework will be useful.

One is that the social simulaton community seems to produce a bespoke model
for every situation or issue modelled. The evidence is not hard to find. The only
attempt explicitly to relate models to one another was reported by Axtell et al. [1].
The results reported in that paper were achieved by means of a collaboration between
Axtell and Epstein at Brookings and Axelrod and Cohen at Michigan to demonstrate
that their respective models yield the same results when applied to the same social
situations.

One reason for aligning models in this way is that, informally, we have more
confidence in results obtained from a wide range of model specifications than we
would if different models gave contradictory results. To the extent that we want to
search for results that are robust with respect to the social situation or with respect to
the particular representaton of agent cognition in a given socia situation, then it is
clear that the accumulation of model alignments in this way is essentia in all
circumstances where analytical results are not available.

A second reason is to be able to determine when or whether agent
representations of modelling techniques used in the analysis of one issue can be used
in the analysis of others. In extending domains of application of models, is it
necessary to change representations of cognition channels of interaction among agents
and, if so, how?

In summary, an important guide to the direction of social simulation research
and application would be some means of situating models relative to one another and

relative to domains of application.



Whil e the procedures and results reported in [1] represent an important step in
this diredion, the dfort involved seans to have been considerable, invalving large
amourts of programming and personal visits between the two institutions. The result
was a useful and impressve demonstration d the paosshilities of “docking” or
“aligning” models developed in dfferent software environments for different
purposes. Moreover, those authors were interested in determining one relationship
among models. subsumption a what econametricians cal nesting. This means that
one model isaspedal case of the other.

The development of what are called below provides a basis for model alignment
and situating which can be more general than subsumption and which is a much more
eoonamicd approad than that used by Axtell et al.

2 Canonical task environments

In mathematics, canonicd matrices are dfedively matrices of a standard form
and there ae transformations which can be performed on dher matrices to show that
they can be made into canoncal matrices. All matrices which, by means of alowable
operations, can be transformed into a canonicd matrix have the properties of the
canonicd matrix.

So a canonicd task environment in social simulation will naturally be defined as
an abstract form with knovn properties that can be used to represent environments
and the dfeds of cognitive behaviour in such a way that models with perticular
domains of applicaion can be mapped unambiguously into models st in canorical
task environments.

The virtues of canoricd task environments will be demonstrated by using it to
cepture three @mputational models of organizational behaviour. These ae the
Carley-Svoboda [3] modd in which workers in an organization have the task
colledively to reamgnize the modal digit in a digit string; the Moss[8] model of the
resolution d criticd incidents by an environmentally sensitive organization and the
virtual design team (VDT) model [7] in which agents have to cooperate in arder to
achieve adesign task. The Carley-Svoboda model incorporates a recognition task; the
Mossmodel an independent action task and the VDT model a moperative adon task.
The Mossand VDT models are distinguished in this regard by latter’s incorporation
of a aitical path mode to describe the necessary work programme for the design task



while, in the Mossmodel, any sequence is posshle and effedive sequences emerge &
aresult of agent cognition and kehaviour.

All of these models are intended to capture dements of agent cognition in
organizations. The Carley-Svoboca mode relates organizational structure to effective
agent cognition; the Moss mode relates communicaion among agents to effedive
organizational performance and the VDT model relates both organizational structure
and communicdion to performance. So, athough the models are implemented in
different ways and represent cognition dfferently, they are dearly in the same
domain. The verba description d their areas of application suggests that the Carley-
Svobodatask environment is nested in the task environment of the Mossmodel which
in turn is nested in the task environment of the VDT model.

One purpose of this paper is to state that set of nesting (or subsumption)
relationships analyticdly. This is dore by showing that both the Mossand VDT task
environments map dredly into the Carley-Svoboda spedficaion d the task
environment. This, for reasons to be @nsidered in the section following, is the
starting point for the canonical task environment developed below. In order to
maintain as much comparability as possble anong the implementations of the three
models, a single base representation o cognition will be employed, athough some
differences in implementation are required for each model. These diff erences and the
reasons they are required are themselves informative in relating these models to ore
ancther. Finally, athough a simple matrix-based set of relations among the aspects of
the eavironment and the relationships among adions and aspeds of the environment
is implemented here, generdization d the tedhniques to arbitrarily complex
relationships among aspeds of environmental states and agents adions will be
described though na implemented here.

3 Developing a canonical task environment

The astomary form of reporting models and results is as if a problem were
identified and the model used to analyse that problem appeared like the 7" Cavalry
riding to the rescue. In this case, an accourt of the development of the suggested
canonicd form of task environment roba will it self help to demonstrate its canoncity
and to suggest an approac to the development of canoncd task environments in

general.



The inspiration for the model described here is a set of models by Kathleen
Carley and her coll eagues which represent the environment as a digit string and model
agents with the objedive of recgnising certain characteristics of that string such as
whether it contains more 1s or 0s. The key paper here is by Carley and Svoboda [3].
This model has much the same @ntent as the Radar-Soar model [15] in which radar
station analysts were observing airplane daraderistics in arder to determine whether
they were friendy, neutra or hostile. The arplanes had nine observable
characteristics each of which could take values of low, medium or high. Agents were
either analysts or managers. In bah cases, cognition was represented in Soar, the
computer architedure manifestation d Alan Newell’s [12]unified theory of cognition.
Severa dternative formulae were gplied to relate the charaderistic vaues to the
“actual” status of the arplane @ friendy, etc. There is no analyticd difference
between representing an airplane & alist of tokens from the set {low, medium, high}
on the one hand a a list of digits from the set {0, 1, 2} on the other. In fad,
converting the tokens into numbers was one of the steps involved in cdculating the
status of the arcraft.

This gives us an initial representation d the environment for a canoricd mode:
the digit string. In al of these models, organizationa structure is represented by
spedfying agents that observe subsets of charcteristics or, equivalently, pasitions in
the digit string and the agents to which the observing agents report and the ayents to
which they report, and so on.Decision-making within that structure is imposed by the
modeller or at randam or, in the latest version, by a speaa agent (the CEO) who
periodicaly modifies the organizational structure & a agnitive ad. In al of these
cases, the function d the organization is corredly to recognize some caraderistic of
the digit string. In the radar model, the recognition task is in practiceto recognize in
which o three ranges lay the value of afunction d the dements of the digit string and
in the Carley-Svoboch model to recognize whether a bit string contained more 1s or
Os.

A canonca task environment that is restricted to the representation o
recognition tasks is clealy too limited to provide afocus for the isaues of concern to
the social simulation community as represented by, say, recent conference volumesin
the field such as [5] and [6]. To extend the model to alow for agents to ad is
therefore anatural step.



In order to suppat socia simulation modelli ng of real institutions and systems,
it is esential to demonstrate that a canonicd task environment suppats application
models of such institutions and systems in its domain. For this reason, the daboration
of the radar and dgit string models to include adion by agents entailed a mapping
from amodel of the organizationa structure and systems involved in the management
of criticd incidents in an environmentally sensitive industry—the UK water and
treament industry. The model was based oninterview and documentary data provided
by North West Water PLC [§].

The relevant charaderistics of the model are the representation o operating
sites as noncognitive agents that communicated by telemetry with the central
systems. The telemetry data included alarm states for intruders, fires, floods, le&ks of
various kinds, pump failures, and so on. There was also information provided by the
pulic concerning pulicly observable events sich as mains coll apses or dead fish in
the rivers. In eat case the event could be occurring a not. So far, this applicdionis
not esentially different from the radar problem. The occurrence of an event is
represented by a 1 and the non-occurrence by a 0. Ordering the 1s and (s by operating
site and event type (intruder, fire, mains collapse, chlorine le&, etc.) yields a digit-
string representation d the environment. In addition, ead of these aitica events has
asociated with it a @rredive adion such as remove intruder, extinguish fire, repair
lek. The simplest extension to the Carley-Svobodch model that will capture the
paosshiliti es for adion to resolve aiticd incidents is a bit string s implemented as a
vedor and another bit string a, also a vector, of the same length as sand in which a1
represents taking the adion such as remove intruder at a particular operating site anda
0 indicaes that the adion is not being taken at that site. The dfed of a1 in a given
pasition in the adion string a changes the value of the crrespondng digit of sfrom a
1toaO, uressitisarealy 0.

This gives us a straightforward dfference equationfor the state string:

(1) As=-la

The North West Water engineers allow for probabiliti es that adion taken to
resolve one event might create another so that, as a fictional example, in repairing a
pump it is possble that a fire will be started. This implies that the efficient matrix
of equation (1) might have off-diagonal elements. Consequently, we require amore
general form of the wefficient matrix: an adion-state-change matrix (ASCM), to be
denoted by A where [a;] is the dfed of the unit adion at the ith digit of the action
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string on the jth dgit of the state string. The nation o a probability or observed
frequency distribution d such events is captured in the usual way by a probabili ty
matrix P where [pj] is the probability that a dhange in the ith dgit of the adion string
will have the spedfied effea onthe jth dgit of the state string

A further effed is that of “snowbaling’. One event might trigger ancther
withou any actions having been taken. The “snowballing” or state-state-change
matrix (SSCM) will be denated by S. Thereis no reason nd to allow for each link in
the sequence of dstate-state interaction to be subjed to an olserved frequency
distribution and if that isthe cae we define an appropriate probabili ty matrix.

While the SSCM will naturally be asquare matrix of size equal to the length of
the state digit string, we would na exped in general that there will be an adion to
affect every aspect of the environment or, in the present context, as many rows as
columns of the ASCM. So if there ae a adions and s defined aspeds of the state of
the environment, the ASCM will by an axs matrix. So, ignoring snowballi ng, instead
of equation (1) the dhange in state digits due to adions will be
(2) Bs = Aa,

In kegoing with the evidence from North West Water, we assume that a dhange
in a state digit at one period will affed the values of a some state digits at the next
period so that, ignoring for the moment constraints on the values of the digits,

(3) Bs = Aa,, +SAs

Substituting recursively into the seamndterm on the right,
T
(4) As = AZ S'a., + STJrlASt—(nl)

At period 0,the dhange from the “previous’ periodis 0 and so at period t, the
changein the state string is

(5) As, = AZ S'a,.,

Planning isues becme important when the value of coefficients in the A matrix
are larger in magnitude than the diff erences between current and target values of the
state string digits they affed. Readhing the target values can orly be dore indiredly
by changing related state string digits or by an indirea route of increasing the
discrepancy from the target values in order to converge in some other way. This kind
of planning is a natural application for representations of cognition bah as modelli ng
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and as formal logics of any of the intelligent planning algorithms and to investigate

how the dficiencies of these various approadhes relates to organizational structures.

4 Action in the canonical task environment

In this sction, the environments from two further models are mapped into the
canonicd task environment to demonstrate how to alow for agents to take adions to
influence the environment. Moss North West Water model [8] is concerned with
adions that can be taken independently of every other. The VDT model captures
cetain feaures of criticd path models including the requirement that some results
require several adions to be mmpleted in paralel or in a crtain order. The Moss
model gives to individuals independent control tasks while the VDT model gives to
individuals sme @-operative @ntrol tasks. In this sdion, we demonstrate that they

are bath in the domain of the same augmentation d the recogniti on task environment

4.1 Recognition task environment.

The Carley models as noted do na represent action by agents — only
observation, reporting and formulating hypotheses abou the implicaions of the
observations. In terms of the canonical model, the action string contains all Os and
equation (4) becomes
(6) As =0

In this model, nahing would ever change withou some exogenous perturbation
of the digit string. In order to represent changes in organizational forms and to
anayse the eff ectivenessof different assumed structures in the recogniti on task, states
in thismodel are changed by randam mutations in the digits of the state string so that,
in the recognition task model, the state dhange equationis
(7) Bs, = Shs, +m

Thisyields the usual sort of geometric progresson so that
t
(8) As = ZST [, +S' [As,

Sincethe value of Asy = 0 by construction, the change in the state string at any

timetis smply

(9) Bs, = ZS i,



In all of the task environments discussed in this paper, there is a user-specified

probability that any element of my will be non-zero and, if non-zero, an equal chance

of being positive or negative. Changes in the state digit string are bounded so that the
value of every element in the state string is a non-negative, single-digit number. The
number base of the state string is therefore the number of categories in which each
observed event could be placed. An increment of (say) 1 from the highest single-digit

number is always 0 and a decrement of 1 from O is the highest single-digit number.

4.2 Independent control task model

This is the model aready reported. In the simulation runs reported in the next
section, random mutation of the state string digits was implemented in order to
generate some noise in the system. When the agents were successful in eliminating
discrepancies between observed and target digits at the positions they observed, the
noise was necessary to create new discrepancies and, so, use the cognitive capacities
of the agents and their organizational structures. This is also consistent with the view
of the critical-incident managers of North West Water that particular types of events
have known probabilities of occurrence. The state change eguation for the

independent control task model is

.
(10) As = ZST(AaT_T +m)
Figure 1: Digraph representing relationship between a and a strings

ay a as
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4.3 Co-operative task control model

A co-operative cntrol task model effedively requires a network relationship
among adions and targets. In order to see what is invalved here, and how it is
incorporated into the canonca model, we interpret the action string of equations (5)
and (10) as intermediate outcomes of lower-level acts denoted by the string a
Suppcee that there ae three intermediate outcomes represented by the digit string a =
[a1, &, ag] andthreedired adions avail able to agents represented by the values of the
digit string & = [a1, 02, a3, A4, as]. The relationship between the vaues of the
elements of a andthe dements of a ae given by the digraphin Figure 1.

The correspondng edge matrix is

@ 10 0 OC

(IDE=( 1 1 0 Of

M 10 1 1F

We define the operator [J so that
(12 E Ua =min(, |E; =1)

This is a perfectly standard path algebra so that we auld allow for as many
links among the a nodks leading to the a nodes as we wished. Two steps in the
traverse from aleaf node to an a noce would be determined by E [JE and three steps
by E OELE, and so on.Each o these steps would be asumed to take one gpropriate
time period.

Allowing only for single links between the o nodes and the a nocks,

(13)a =E0aq,

1

The state change equationisthen

T
(14) As, = ZST(AE Oa, +m)

4.4 Thecanonical task environments. a summary

The relationships among the canonicd task environments defined so far are
easily seenin Figure 2.

The @operative task environment is reduced to the independent task
environment by conflating the first level of actions taken by individuals with the

“levers” on the environment. Formally, this amourts to alowing only one level of



actions which is equivlent to setting the edge matrix equal to the identity matrix. To
reduce the task environment further to the recognition task environment, we simply
allow there to be no non-zero values of the actions. This will reduce either of the
more general task environments to the recognition task environment.

The relationship among models whereby one is reduced to another by setting
individual parameters to specific values is known in econometrics as nesting and is, |
believe, what Axtell et al. had in mind by subsumption. Consequently, the argument
of this section indicates that the co-operative action environment subsumes the
independent action task environment which in turn subsumes the recognition task

environment.

Figure 2: Relationships among the three canonical task environments

tAst - ¥ S'(AEDa +m)
=0
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N
As = 5 S (Aa +my)

=0
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a,, =0@l 1)

5 The scope of smulation results

While it is important to investigate relationships such as subsumption among
models and the canonical task environments will certainly facilitate such
investigations, it is also important to determine the scope of the results obtained from
individual models. By scope of the results, | mean the range of canonical
environments over which a set of results will be replicable. For example, Carley and
Svoboda obtained a number of results about organizational structure in the recognition
task environment. Those results are themselves clearly more robust if they are aso

found in the independent and cooperative action environments. Moreover, and
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perhaps more importantly, if we find that results obtained in the recognition task
environment typically can be replicated in the more complicated task environments,
there will be obvious computational economies to be had in simulation experiments.

In order to identify those results that are dependent on the task environment, it is
obviously important to implement the other features of models in common ways.
Clearly there will have to be some differences. Agents in the recognition task
environment will not require the capacity to act and agents in the independent action
task environment will not require the capacity to co-operate while action and
co-operation both are required in the co-operative action task environment. In order
to minimize the differences in results due to implementations of agents, the agent
specifications will have to be nested in a manner corresponding to the nesting of the
task environments.

Accordingly, the three canonica forms of the task environment are
implemented in SDML, using its object oriented features to ensure that these are
nested in the manner identified in section 4. The purpose is to investigate the scope of
the results obtained in the original models that inspired the canonical representations
of the task environment in the first place.

SDML supports three hierarchies with object oriented features. Two of these
hierarchies support multiple inheritance and one supports simple inheritance. The
top-level hierarchy is the module hierarchy. Within each module is a hierarchy of
types. The type hierarchy entails the definition of containers and a hierarchie of
agents containing other agents. The module and type hierarchies support multiple
inheritance and the container hierarchy supports simple inheritance.

Models in SDML are associated with modules. The modules associated with
models for the various task environments will require either to contain or inherit both
the functionality required for the task environments and the representations of agents
with cognitive capacities relevant to their respective task environments.

5.1 Themodule hierarchy

The module hierarchy for the development of the task environments is
reproduced in Figure 3. The top-level module, standard, contains the essentia
functionality of SDML and cannot be modified by the user. All of the other modules

must be submodules of standard and, so, inherit the essential SDML functionality.
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The two modues, Endorsing and Cognition implement a representation o
dedsion-making and mental modelling that has been used in a large number of
models including those reported by Moss (1998, Moss and Sent (1998, Moss and
Dautenhahn (1998, and Moss Gaylard, Walli s and Edmonds (1997). The Endorsing
modue ontains the implementation d a development from Paul Cohen’s (1985)
endasements <heme. Agents endorse information, aher agents, menta models,
rules of behaviour, information sources or other objeds of the model. The
endarsements are mnemonic tokens which have paositive values if good a negative
values if bad. The magnitude of the value asciated with each endarsement token
indicates its classof importance This is used to cdculate the overall endarsement
value of one object in order to compare it with the endorsement values of other
objeds.

Figure 3: Thetask environment module hierarchy

standard
Endorsing
Cognition
Canonical
ReaognitionModel ActionModel
IndependentActionM odel CooperativeActionModel
IndependentHumans IndependentRobots vdtM odel CooperativeRobotsM odel

Every endarsedble type of objed (rules, mental models, etc.) has associated with
it an endorsement scheme which defines the endarsement tokens and values as well as
a number base for cdculating the values of all endorsements of an oljed. If the

number baseis b, the endorsement valueof an oljea will be
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(15)E = Zbe' - Z}ba
&H &

where g is the value of the ith endorsement token. Clearly, the value of an
endorsement token in class n is b times as important as a token in class (n-1). The
finer the grain of endorsement values, the closer bisto 1.

An example of an endorsement scheme is reproduced in Figure 4 from the
SDML rule setting up the endorsement scheme for the workers in organizations in the

action models.

Figure4: SDML rule setting up plan endor sement scheme

and
= ?grain 1.3\
= ?endorsementValues
[[planSuccessful 3]
[planOnTrack 2]
[planOffTrack -1]
[planWrongInDirection -2]]

permanent
(endorsementSchemeDefinition
planEndorsementScheme
?endorsementValues
?grain)

The grain of the endorsement scheme (b in equation (15)) is 1.3. The variable
?endorsmentValues is set equa to the list of tokens and their respective values.
The object planEndorsementScheme is then asserted to the permanent database so
that each worker in the model can accessit at any time during a simulation run.

Because this rule is defined for the cognitive element of agents of type Worker
in the ActionModel module, al agents of that type in every task environment
providing for agent actions will have the same endorsement scheme for plans of
action.

The Cognition module implements a representation of agent cognition taken
from Soar and ACT-R at the computational end of cognitive science. Thisis based on

a problem space architecture with a set of tasks being associated with each problem
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gpace. The problem spaces are alarm, noPlanExists and communicate. In other
models, the problem space architecture has been considerable more elaborate. A cut-
down version is used in the models reported here in order to maintain the issues
assoicated with canonical task environmentsin the sharpest possible relief.

The problem space alarm arises when a worker notices that the value of the state
string at a position observed by that agent differs from some target value. The
objective of the agent is then to change the value of the state string digit to its target
value. The first question is whether the agent has a plan defined that will be
applicable in the current circumstances and which has as a goal the change in the
value of the state string at the specified position. If not, then the agent enters the
problem space noPlanExists and then has a number of rules to guide the creation of a
plan. If thereis an appropriate plan, or once one is defined, the agent is no longer in
the noPlanExists problem space and the problem space communicate becomes
apposite. In that problem space, the worker communicates with a superior in the
organization to inform that superior of the action taken or that no action could be
taken but that the observed digit of the state string is not at its target value. The
possible components of the plans will differ with the model but the problem space
architecture and the plan endorsement scheme will not. If there are several possible
plans, the chosen plan will be one with the highest endorsement value.

Inspection of the module hierarchy will confirm that the extent of such common
properties of the various models is substantial. The problem space architecture and
the endorsements mechanism have been defined in this way because they are
compliant with Soar and ACT-R cognition as used in social simulations by Ye and
Carley (1995) and Moss (1998) and because they allow for the specification of the
problem spaces and associated tasks as well as the endorsements and their values on
the basis of data supplied by domain experts. The expert input is not relevant in this
case but it is by no means inconsistent with the canonical task environments.

5.2 Thetype hierarchy

Type hierarchies are augmented by modules but all types and their subtypes
defined higher in the module hierarchy are inherited. In the present case, there is one
type hierarchy defined in the Canonical module (see Figure 3). In the type hierarchy
are two types which can be changed by users and for which subtypes can be defined.
These are the types Object and Agent. In fact, Agent is a subtype of Object. Its added
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functionality is in having rulebases and databases and the ability to access them.
Similar type hierarchies to that implemented for the models set in canonical task
environments have been reported several times previoudy (e.g. in Moss (1998)).

The segment of the type hierarchy starting with type Agent and including its
subtypes that are relevant to the substance of the models set in canonical task
environments is reproduced in Figure 5. The types in boldface are defined in the
module Canonical. The types CognitiveAgent and CogSimModel are defined in the
module Cognition. The other types are primitive to SDML and are inherited from the

modul e standard.

Figure5: Segment of type hierarchy from the Canonical module

Agent

;

Worker TaskGenerator /C/ompositeAgent LoopingAgent CogSimModel

l

MetaAgent ParallelCompositeAgent SeriinCompositeAgent ’
CognitiveAgent
WorkerMeta CEO OpsContainer OrganizationModel
A 4 A 4
Industry Organization

In the lower left corner of Figure 5 are the type MetaAgent and its subtypes.
Instances of type MetaAgent are unique agents in that they have not only their own
databases and rulebases but, in addition, they can treat the rulebases of certain other
agents as databases. That is, instances of type MetaAgent and its subtypes can read
the rules on certain rulebases and they can also write rules on those rulebases. In all
of the models reported here, each agent of type Worker contains an instance of type
WorkerMeta. The instance of WorkerMeta devises mental models and, on the basis
of those mental models, devises plans of action. These plans of action comprise
sequences of actions and the conditions in which those actions will be taken. The
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adions are acually taken by the antaining instance of Worker becaise the amndtions
and adions are written as rules to the rulebase of the Worker instance

In general, any agent can contain a meta agent and any meta agent can read
from and write to the rulebase of its containing agent, or container. Instances of the
type CEO are the mea agents of instances of Organization. Ead organization
contains one CEO instance which, following Carley and Svoboda (1996, reorganizes
the structure of the organziation periodicdly in order to improve its effediveness

Instances of LoopingAgent and its subtypes function ower nested iterations
correspondng to time levels. The instances of ParallelCompaositeAgent and its
subtypes contain subagents that fire their rules in parale at eadch time period. The
instances of Serial CompositeAgent and its subtypes contain agents that fire their rules
in aspedfied order.

The mmbination d parallel and seria behaviour with time levels is most easily

sean inrelation to the wntainer hierarchy.

5.3 Thecontainer hierarchy

The outermost container in SDML is always universal Agent which is the only
instance of type Universe. Usually it contains only a single subagent which is an
instance of a user defined type of model. The cntainer hierarchy defined by the
typesin modue Canonicd isreproduced in Figure 6.

The model has two active subagents. taskGenerator and industry. Industry
can contain an arbitrary number of organizations. In all of the models reported here,
there was only one industry but, in Figure 6, two are shown to indicate better the
cgpacity of the setup. Each organization contains a ceo and an gperations container
cdled opsContainer. The rulebases of ceo are active before the rules of
opsContainer and its subagents. The rulebases of the workers contained by
opsContainer beame adive dfedively in paradlel. That is, noworker can “see” the
adions or consequences of any actions of any other worker in the aurrent time period.

At the start of each task cycle, taskGenerator colleds all of the adions taken
in the previous task cycle and calculates the mnsequential changes in the state string,
incorporating any mutations which it also determines. After the state has been
updated, the industry becomes adive and the organization rulebases are activated in
paralel. So the model cyclesin this way over taskcycles. There ae three taskCycles
per day. The only effed of the distinction is that, at the start of ead day, the ceo of
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eath organization considers the need for reorganization onthe basis of conflicting
adions by workers in the organization olserved duing the previous day. The ceo has

no aher function and it has no active rulebases except at the start of the day.

Figure 6: Container hierarchy defined in module Canonical

day
taskCycle
\ organizationModel
industry
organization-1 organization-2
taskGenerator
ops- ops-
Container Container
w-1 ceo w-1
ceo
w-2 w-2
w-n’ Ww-n

In order to alow for communicaion among agents in the determination o
adions, opsContainer in ead oganization cycles over a time level caled
decisionCycle. This enables agents to decide to refer some deasion upto a superior
or to isue a instruction to a subadinate so that the cmmunicaion is receved
during the same task cycle. The neel for this additional time level follows from the
paralel nature of the adions of each worker in the organization. Consequently, ore
worker will “say” something to another worker (by asserting a dause to the recaving
worker’ s database) but the redpient of the message will not be ale to olserve it until
the foll owing time period —in this case the foll owing decision cycle.

Before each worker adivates its rulebases, its meta agent (if any) is adivated.
In the representation o cognition wsed here, each meta agent cycles over time level
elaborationCycle during which it moves among its problem spaces to get as far as
possble in dedding onthe gproapriate rules of adion for its containing worker. This

is explained more fully by Mosset al. (1997).
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6 Experimental design

The purpose of the experiments reported below is to use the framework of the
canonical task environments to assess the extent to which results obtained in (say) the
recognition task environment extend to more complicated task environments.

The object-oriented features of SDML are used to ensure that there is a single
implementation of as many as possible of the common features among task
environments and models. Some features, such as organizational structure are not
hard-wired. Indeed, the purpose of the experiments reported below is to identify any
implications for organizational structure that extend over different task environments.
So we start with a common organizational structure for al models as reproduced in
Figure 7 and alow the CEO of the organization to alter the structure at the start of
each day. This agent is allowed only to eliminate conflicting actions by workers and

managers in the organization.

Figure7: Initial organizational structurein all models

In the remainder of this section, the experiments with each of the canonical task

environments are described and motivated.

6.1 Recognition task environment

The genera innovative aspect of the Carley-Svoboda paper was that it
combined the modelling of structural organizational change with learning by adaptive
agents within the organization. Their findings focused on comparisons of
organizational performance under individua learning with no change in
organizational structure, structural change with no individual learning and dual-mode
learning in which both structure can change as the CEO learns and individuals within
the organization learn and, in this case, new individuas can be hired. Their
conclusions in each case were based on ssimulations of 1,000 initial organizational
forms over 20,000 task cycles each. Evidently, they simulated 60,000,000 recognition
tasks.
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The purpose of this gction is nat to conduct a replication experiment. It is,
instead, to use the canonical task environments to determine how the results from one
experiment fare under increasingly complex task environments. The recogniti on task
environment provides our baseline. Experiments were run in which agents are
adaptive and develop mental models of relationships between their observations of
assgned state string digits and their predictions of the modal numera in the string.
The only possble representations of an increase in the cmplexity of the environment
is an increase in the number of non-zero elements of the state-state thange matrix
(SSCM), an increase the number base of the state string or an increase in the length of
the state string. Demonstration o the experimental value of canornicd task
environments will sufficiently entail increases in the interadion among digits in the
state string while using only bit strings of different lengths. Via the endarsements
medhanism, managers come increasingly to value subordinates who correctly guess
the modal numeral and to ignore those who persistently guess the incorrect modal
numeral. The observer-workers generate and test relationships between their
observations and the modal state string digit value, endorsing thaose relationships (or

models) acardingly.

6.2 Independent action task environment

A further dimension o complexity is suppated by the adion task environments
in that the off-diagonal, nan-zero elements of the adion-state change matrix (ASCM)
can be increased as well as increasing the non-zero elements of the SSCM. In order
cleanly to compare the eff ects of complexity on the results obtained in the recognition
task environment with the results from the independent action task environment,
increasing SSCM-based complexity alone will be undertaken first and then, for given
levels of SSCM-based complexity, different levels of ASCM-based complexity will
be modell ed.

In kegping with the specification d the Moss(1998) model, the objedive of the
organization will be to maintain a set of target values of observed dgits in the state
string. In these experiments, the initial state string provides the target values for the
organization. The state string is then perturbed by mutation and the task of the
organization is to bring the value of the state string back to its target value. If all
events are to be “off”, then the natural initial (and target) value of the state string is 0

at every position.
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6.3 Co-operative task environment

Two sets of experiments are required here. The first is to replicae the task
environment of the VDT model itself and the second to compare results in the
cooperative adion task environment with the results obtained in experiments with the
other task environments.

The purpose of the VDT model was to represent a design problem. That is, the
relevant “environment” was, for example, a space launch vehicle which dd na exist
and the task was to crede a vehicle with spedfied charaderistics. In effect, the space
launch vehicle had no characteristics at the start of the design process and had a
spedfied set of requisite tharacteristics at the end. If we cnsider each dgit in the
state string to represent the dsence(if 0) or presence (if 1) of a charaderistic, then the
initial state string would contain all zeroes and the target state string would contain all
1sandthe adions would change the state string over the course of the simulation from
the initial to the target string. The first set of experiments demonstrate that the
spedficaion d cognition and the process of organization restructuring implemented
in this model suppats the adievement of al design oljectives. One question d
interest here is how robustly effedive the organizational structuring processis with
resped to the complexity of inter-relationships among the design features (SSCM-
based compl exity).

The second set of experiments relates the m-operative adion task environment
badk to the previously considered environments by taking the target state to be the
initial state with randam perturbations. The effect of both types of complexity in the
cooperative adion environment can then be compared with the eff ects of complexity

in the independent action task environment.

7 Experimental results

7.1 Recognition task environment

The recognition task environment model was run with three onfigurations in
which dfferent state string lengths and dfferent degrees of connedivity among states
were set. The agents were adaptive but no changes in organizational structure or
reporting arrangements were dlowed. The amulative percentage of corred
asssgnents of the modal digit value by the top-most manager is reported in Figure 8.
These results are representative of the outputs from the runs condwcted with these
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models. There are nine observer-agents who report their views of the modal digit
value to their managers who, in turn, report to the top-most manager. If the state
string is of length nine, then as Carley and Svoboda pointed out, a majority voting rule
will correctly identify the modal digit value. However the rule used by managersin

this model was to take the views of the majority positively endorsed subordinates.

Figure 8: Recognition task environment: resultswith three configurations
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With a nine-digit state string, accuracy was perfect. The 12-digit and 36-digit
state strings gave more interesting results and these are reported in Figure 8. By
inspection, the effect of the initial conditions ceases to dominate the series by the 50™
task cycle. The average cumulative percentage of correct guesses over the remaining
149 task cycles was just over 92.5% while for the two runs with 36-digit state strings,
the averages were just under 79% and just over 79.5%. There is no chance in that
period of either a type | or atype Il error in correctly assigning an observation to
simulation run with a 12-digit or a 36-digit state string.

If we take the same interval of task cycles to distinguish between the two runs
with 36-digit state strings but different degrees of connectivity among states, then
formally the series with the higher degree of connectivity (0.4) has the lower average
of correct assessments of the modal digit value than does the series with the lower
degree of connectivity (0.05). However this result is spurious since, eliminating the
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last 30 observations from the series (that is from the point where the two time series
cross), the series reflecting the higher degree of connectivity shows the higher average
of correct assessments (0.793) than does the series reflecting the lower degree of
connectivity (0.798) also with high levels of confidence (at least 99.9% in all cases).

The conjecture that arises naturally from these results is that complexity of
relations among the digits of the state string has no unambiguous effect while
increasing the length of the state string reduces accuracy of organization judgement.
It is simply noted for further investigation that the results with the longer string are
remarkably close to the level of the cumulative correct estimates found by Carley and
Svoboda for the nine-digit state string at 76.14% for the case where individuals learn
but there is no structural change in the organization.

7.2 Independent action task environment

The measure of organizational efficiency used in the models with action task
environments was the number of task cycles that elapsed between the time the value
of adigit was changed from its target value until the time it was returned to its target
value. The results of four simulation runs, collected in Figure 9, indicate that the
results are more sensitive to the length of the state string that to the complexity of the
relations among the digits of the state string or, in this case, the complexity of
relations among actions and state-string digits.

All of the simulation runs were conducted over two hundred event cycles in 50
days. At the start of each day, the CEO could change the manager to which any agent
reported but not the fundamental organizational structure.

The forward-most row on the y-axis of the chart in Figure 9 is obtained from a
simulation run in which the state string had 12 digits while in al other runs the state
string had 36 digits. As indicated along the x-axis, giving the intervals of event
durations, a considerably higher proportion of the events in the 12-digit simulation
were resolved within two event cycles than in any of the 36-digit simulations
including the 36-digit ssimulation which was otherwise identical to the 12-digit
simulation.

In none of the simulation runs were there many episodes lasting more than 10
event cycles although even that number was reduced to zero by either higher degrees

of interaction among states (SSCM-connectivity) or between actions and states
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(ASCM- connectivity). These effects of SSCM- and ASCM- connectivity are more
easily seen in Figure 10.

Figure 9: Distribution of event durations (independent actions)
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Figure 10: Scatters of event durations over time (independent action)
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All of the scater diagrams in Figure 10 are on the same scdes of elapsed task
cycles (the x-axis) and event durations (the y-axis). Eadh pdnt corresponds to the
elapsed task cycle & which an event ended (x) and the duration d the event (y). In
the top row, are the scaters for two runs with low SSCM- and ASCM-adivity.
Clealy, dthowh alarger proportion d events are resolved within two event cyclesin
the 12-digit simulation, there is also a higher volatili ty of the durations as indicaed by
the dots satered up to 80 task cycles as well as their distributions in the upper
reades of the dhart throughthe simulation. The scatter in the upper reaches of of the
upper right hand chart is lesspronourced, thowgh again it is not related in any way to
the passage of time. It appears from the two lower charts that either a higher degree
of ASCM-conredivity or of SSCM conredivity provides enough information to the
agents and the CEO to forestall the longer durations of events. The longest duration
in either case was fven event cycles as oppaed to 80 and 60 event cycles,
respedively, in the lower-conredivity runs.

The purpose of this paper is not to enter into detaill ed analysis of the reasons for
these dhanges but, rather, to identify the questions that require more cmplicaed
models if they are to be answered by means of simulation experiments. Nonetheless
one posshility for the cause of these differences is that the CEO will have had more
information resulting from conflicting actions by agents in the higher connedivity
runs and, so, was adjusting the reporting relations among workers and managers more
adively. If so, the adivities undertaken within the organization and the condtionsin
which they are undertaken are important influences on managers ability to modify
organizational structure in order to improve organizational performance  This
conjedure is entirely consistent with Alfred Chandler’'s (1962 historicd analaysis of

the development of, for example, the multi-divisional firm.

7.3 Co-operative action task environment

The experiments with the @-operative action task environment were set up
identicaly to the experiments with the independent adion task environment except
that the aiticd path model was gedfied in addition. Apart from that difference the
eff ects of which are the subjeda of interest here, experiments were run with 12 and
36-digit strings and the same parameter values for generating the ASCM and the
SSCM. In keeping with the purpose of the VDT model, a series of experiments was
runin which the ASCM was the identity matrix of rank equal to the length of the state
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string and the initia state string contained orly Os while the target state string
contained only 1s.

The aiticd path network was generated by setting

* the maximum path length from an atomic action to a final adion that

determined the value of a digit in the a-string,

» the number of further actions that any adion in the network could suppat

and

» the maximum number of suppating adionsfor ead adion.

In every experiment, the maximum path length was 7, the maximum number of
suppated adions by any action was 3 and the maximum number of suppating
adions for any adion was 4. The network was generated by creding a sump of
adions defined by the maximum number of branches from the adion, the maximum
number of branches to the adion and the maximum length of any path to the adion.
For each actionin the sump, ead of the three parameters were dhosen at randam from
theinterval [1,m] where mwas the globally defined maximum number of suppated or
suppating actions or path length, respedively.

In the test runs, conforming as much as possble to the VDT model, the number
of task cyclesin which the state string digits were dl converted from Os to 1s was in
every case the minimum paossble —i.e., the longest path length in the network. This
indicated that the representation d cognition implemented in the model used for this
series of simulations was efficient in the asence of any ASCM or SSCM compl exity.

The equivalent of Figure 9 for the m-operative task environment is Figure 11.
While there looks to be greaer variability among the results from different
configurations of the simulation runs, we observe once again that the experiments
with the longer state strings all entail a smaller propation o the lowest event
durations than the experiment with the shorter state string. Of course, in all cases, the
durations tended to be alittle longer because the shortest possble duration was the
length of the longest adion peth required to eff ect the relevant final action.

The scatters of event durations over the simulation runs are again in the pattern

observed in the independent action task environment experiments.
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Figure 11: Distribution of event durations (co-oper ative actions)
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Figure 12: Scatters of event durations over time (co-oper ative action)
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The same pattern of results is apparent in Figure 12 as in Figure 10 insofar as
either higher SSCM connectivity or higher ASCM connectivity is associated with the
absence of extreme values of the duration of events. It is aso clear from a

comparison of Figure 11 with Figure 9 that there is more variability among the
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durations of events corresponding to the various simulation runs with 36-digit state
strings in the co-operative activity task environment than in the independent activity
task environment.

7.4 Comparison

It is important to recognise that the comparisons made here are not based on
significant amounts of experimental data. A few simulations have been run and the
reported results are typical of those runs. The purpose remains that of illustrating the
role of canonical task environments in specifying questions and establishing a
framework that substitutes for closed-discipline theory in relating models to one
another and to problem domains.

The clear difference observed here between the recognition task environment
and the action task environments is that an increase in state string length reduces the
efficiency of an organization in identifying the modal digit value while it increases the
efficiency with which agents are able to identify and act on deviations of actual from
target digit values. The latter result is found for both independent and cooperative
action task environments.

It has aready been noted that the effect of connectivity or complexity either
between actions and state aspects or among different aspects of the environmental
state are associated with an absence of events of long duration whereas the absense of

such connectivity is associated with a scattering of events of extreme duration.

8 Conclusion

The results obtained in the reported simulation experiments indicate that agents
that can act on their environments are more efficient in richer environments while
agents that seek only to recognize a pattern in their environment are less efficient in
richer environments. The richer environment gives the agents more information and
the ability to act enables them to test their understanding of relationships in that
environment. The endorsement schemes used to represent the consequences of
experience for agents enabled them to construct and retain models of their
environments which were validated by the correctness of their predictions.
Consequently, the richer the environment, the finer the relationships that can be
identified and the ability to act gave the agents information about changes in the states

of their environments as well as information about the states themselves. In effect,
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action enabled the agents to test relationships among first differences as well as levels
while in a recognition task environment they could only observe levels or an analogy
thereto.

If this account is correct, it suggests that the Carley-Svoboda and Ye-Carley
results are not general. In particular, they do not extend directly to organizations that
influence their environments. This is not to suggest that the results on the relative
efficiencies of organizational structures will not translate to other task environments
but, rather, that those results must be tested independently in simulations of those
other task environments.

Thisis abenefit of the canonical task environment. The differences between the
models are clear so that differencesin results must be related to those clear and formal
differences in the specification of the task environments. It might well be that the
specific differences are a consequence of the representation of cognition and that
other representations would yield another set of differencesin experimental results. If
so, then we have afurther issue to anayse in the devel opment of our panoply of social
simulation techniques and representations. Moreover, these further issues relate in a
clear manner to the canonical task environments just as, in closed disciplines, issues

relate in clear ways to the theoretical structures that enclose the discipline.

9 Directionsfor further research

The canonica task environment was implemented to support one feature that
was not used in the experiments reported here.

Since agents do not observe the SSCM, they must formulate mental models
about the relationships among state string digit values. However, there can be digits
that are not observed or observable by agents. In such cases, the columns of the
ASCM corresponding to those unobservable digits are themsel ves unobservabl e since,
otherwise, the agents would know the effects of actions on aspects of the environment
of which they are unaware. A consequence of this setup is that some actions taken by
agents will have unobservable side effects that, through the SSCM, will influence the
digits they can observe. Since these effects can be the result of the actions taken by
any agent, there is an inherent variability in pattern of changes in the state string that
is not random and yet is not readily predictable by the agents in the models. This
increases the difficulty of the mental modelling process and its effects on exiting
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models would give further indication d the dfeds of complexity on the models
implemented reported here.

A sewnd retura line of development would be to replace the ASCM and the
SM with more daborate relationships among actions and states and among
different aspeds of the state of the environment. For example, there ae anumber of
models of diff erent aspects and grains of climate diange. The FUND model [14] has a
set of equations for determining dobal mean temperature (GMT). The exogenous
variables of those equations are emissons of greenhouse gases (GHGs) on the basis of
which the model returns the GMT. A pilot simulation model relating agent behaviour
resulting in GHG emissons and the cnsequences has been cast in the canonicd task
environment framework by deaoding the action dgit strings into rates of change of
GHG emissons and encoding the GMT as a segment of a state string. Moreover,
recognition d unknowvn side dfects and environmental interadion is being taken into
acournt by augmenting the state string with unotservable digits with an ASCM and a
SSCM relating the emissons to unolservable aspeds of the dimate that influence the
observable apeds. This work will be reported in due murse and is mentioned here
only to indicae diredions in which socia simulation models that suppat palicy
anaysis can be integrated into a wherent programme of modelli ng research withou
impoverishment of environmental representations.

The limitations of digit strings as a basis for canoricd task environments have
not been investigated. It is obviously passble that other representations of actions
and the environment will turn ou to be more gpropriate ather in particular
applicaionsdomains or in general. Thisisan iswue for further investigation.
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