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Abstract. Advances in game theory have provided an impetus for renewed
investigation of the strategic behaviour of oligopolists as players in repeated
games. Marketing databases provide a rich source of historical evidence of such
behaviour. This paper uses such data to examine how players in iterated
oligopolies respond to their rivals’ behaviour, and uses machine learning to derive
improved contingent strategies for such markets. in order to provide insights into
the evolution of such markets and the patterns of behaviour observed. The paper is
an application of repeated games and machine learning to adaptive behaviour over
time in the retail market for ground coffee. Using empirical data on the weekly

- prices and promotional instruments of the four largest and several smaller coffee
sellers in a regional U.S. retail market, and using a market model to predict sellers’
market shares and profits in response to others’ actions in any week, we examine
the adaptive strategic behaviour of the three largest sellers. We model the sellers’
strategic behaviours as finite automata with memory of previous weeks’ actions,
and use the Axelrod/Forrest representation of the action function, mapping state to
action. We use a genetic algorithm (GA) to derive automata which are fit, given
their environment, as described by their rivals® actions in the past and the implicit
demand for coffee. :

Keywords. iterated synchronised oligopoly, asymmetrical competition, pricing,
marketing srategies, stimulus-response behaviour

1 The Issues

We are interested in the strategic implications of asymmetric competition.
Previous work [Carpenter, Cooper, Hanssens & Midgley 1988] (CCHM) has
estimated the Nash-equilibrium prices and advertising expenditures for asymmetric
market-share models in the extreme cases of no competitive reaction and optimal
competitive reaction. There are, however, three important limitations to building
marketing plans on either of these competitive scenarios.

First, such static, single-period strategies do not provide insight into the actions
undertaken over time by major manufacturers and retailers. As was called for in
the CCHM study, it is time to investigate dynamic, multiperiod strategies.
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Second, major sources of asymmetries are missing from the CCHM equilibrium
analysis. There are two main sources of asymmetries. They can arise from stable,
cross-competitive effects, but can also arise from temporary differences in
marketing offerings. One brand on sale by itself might gain much more than ifit
were promoted along with four other brands in the categary. While the CCHM
study incorporated measures of distinctiveness into their development of methods
for reflecting asymmetric competition, the equilibrium analysis used a simpler
model that did not account for this source of asymmetries.

Third, the CCHM effort studied market share, while we here investigate multi-
period strategies, when the market response is fundamentally asymmetric in both
sales volume and market share.

There are major barriers to traditional avenues of investigation. Mathematical
exploration is hampered because sources of asymmetry explicitly violate the
global-convexity requirements of most economic models. One major altemative to
mathematical exploration is muiti-period simulations, such as Axelrod’s first
tournament [Axelrod 1984] or the Fader/Hauser tournament [Fader & Hauser '
1988]. While these have the advantage of allowing strategies to be played out
over time, they have previously only been undertaken with symmetric and
hypothetical market-response functions. We want to use asymmetric market-
response functions that charactetize brand behaviour in actual markets to study the
evolution of robust strategies.

Data from an asymmetric model of 2 regional U.S. coffee market are used to
breed simple artificial agents. We shall demonstrate that, in the limited tests we
can feasibly conduct, these agents outperform the historical actions of brand
managers in this regional market.

2 Modelling the Managers

Competitive marketing strategies can be represented as sets of rules that map states
of the market to actions undertaken by brands, brand managers or retailers. These
sets of rules, in turn, can be represented as chromosome-like strings. The fitness
of each string can be judged by the profits it produces over a period of many
interactions, following Axelrod [1987].

A player choosing a strategy can be thought of as choosing a machine (a [inite
automaton) or artificial agent that will play instead of the player [Marks 1992a].
Such a machine is designed to have 2 unique action in response to each possible
state.! The state is defined by the history of actions taken by the player and the
historic actions and reactions of other players. This line of reasoning builds on
devclopments by Axelrod and Forrest [Axelrod 19871, They view players (€.g.,
managers) as being characterized by bounded rationality [Simon 1972}, in which
memory, computing ability, or competence af pattern recognition is limited. The
states of the market are the number of past actions of all players in limited

I This is a pure-strategy machine (i.e., a strategy chosen with probability 1.0); no mixed
strategies are allowed. N



227

memory. If there are p players, a possible actions per round, and m rounds of
memory, then the number of states is amP.

The Axelrod and Forrest study demonstrated that genetic algorithms (GAs)
could take the place of the human programmers used in the original Axelred
tournament [Axelrod 1984] or the Fader & Hauser [1989] tournaments. Axeirod
reports that the GA evolved strategy populations whose median member
resembled Tit for Tat and was just as successful. In some cases the GA, which
does not require well-behaved, differentiable, globally-convex objective function,
was able to generate highly specialized adaptations to a specific population of
strategies for particular situations that performed substantially better than Tit for
Tat, .

Afier Axcliod’s pionecring study, other applications of GAs to economics have
appeared [Miller 1989; Eaton & Slade 1989; Marks 1992a, 1992b; Marimon,
McGrattan & Sargent 1990; Arthur 1990; and Arifovic 1994], with one
application in marketing [Hurley, Moutinho, & Stephens 1994].

Our challenges are (i} to develop strings that represent real stratcgics in
asymmetric markets, and (i) to calibrate asymmetric market-response functions
that transiate the market states into fitness measures for each brand.

We can coevolve artificial agents, using the asymmetrical profit functions, and
then take each of the coevolved agents in the final generation and separately play it
against the actual history of the other n—1 brands, and assess its performance
against that actually achieved by human brand managers. That is, we can ask if
our procedure of encoding, inecding and testing has evolved a strategy for Folgers
(say) which would have been more profitable than Folgers was historically at
competing in the retail coffee market.

3 Asymmetric Competition in a Regional U.S. Coffee
Market

3.1 Choice of Market Example

We want to work with an example of competition that exhibits four aspects of
real-world markets:

(1) Differential gffectiveness of marketing-mix instruments across brands. Each
brand may have its own unigue sensitivity to consumer response 1o its marketing
actions.

(I) Stable cross-competitive effects. Some brands gain much more from the
tosses of certain rivals than would be dictated by market share alone, while other
brands are far more insulated by competitive boundaries than the symmetric-
market hypothesis would allow.

() Asymmetries due 1o the temporal distinctiveness of marketing actions.
That is, representing the role of choice context on what brands are chosen:
marketing actions must be distinctive to be effective.
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(IV). The dramatic swings in voiume that characterize promotion response.
Scanner data reveal that, when vicwed at the store or chain level, market response
to tactical market-mix decisions is abrupt and dramatic.

The retail coffee market analyzed in Cooper & Nakanishi [1988} satisfies all
four criteria. There are eight brands: Folgers, Maxwell House Regular, MH Master
Biend, Hills Bros., Chock Full C’Nuts, Chase & Sanborne, Yuban, and an
aggregate of premium brands called All Other Branded (AOB). The data track the
sales impact of price per pound (net of coupons redeemed), major newspaper ads,
in-store displays, and store (not manufacturer) coupons, for 80 weeks in three
grocery chains operating in this two-city market. For the sake of simplicity,
however, we focus or the 52 weeks of data for Chain One.

The asymmetric market-share model and the category volume model have been
combined into a single-shot market sirulator called Casper (Competitive analysis
system for promotional effectiveness research) [Cooper & Nakanishi 1988, pp.
219-257]. In order to use this simulator as an instructional device, manufacturers’
unit costs and promotional costs have been estimated for each brand. This allows
us to estimate total profits for each brand for any market scenario. These estimates
are thought to be roughly accurate.?

Typical behaviour of some brands is to cut their price and engage in newspaper
advertising, in-store displays, and coupon distribution after a period of higher
prices and no other activity. The effect, not unexpectedly, is usually to increase
sales and market share, and perhaps total profits in the market, depending on the
costs of the promotions and the activities of other brands in the market—this is a
strategic interaction. The overall patterns of prices and sales for the three major
brands available in Chain One (Folgers (F), Maxwell House Regular (M), and
Chock Fuil O’ Nuts (C)) are depicted in Figure 1 and the average prices and annual
market shares for all brands are shown in Table 1.

There are at least three main ways we might breed artificial agents.

(). Breed populations of each of the eight brands against the history. of the
other seven far each of the 52 weeks. The procedure would be repeated for each of
the eight brands. While this procedure will quickly breed agents to maximize
profits against the fixed moves of the other seven in any week, it is essentially
static and ignores the multi-period nature of strategic interactions.

(). Breed popuiations of each of the eight brands against the history of the other
seven over the time frame, with g agents each playing against the entire 52-week
period, until convergence. This approach is better, since each brand’s g agents are
exposed to 52 weeks of the other brands’ actions. But the 52-week pattern is stil
static in that the foeal brand’s competitors do nnt react to the actions of its

artificial agent, they simply repeat history.

2 Profit margins and hence unit costs were cstimated from publicly available corporate and
SBU-level accounting information rather than provided by the companies concemed. To
the extent these estimates are inaccurate, the validity of our results for the coffee market
may be reduced.
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Figure 1. Prices and sales of the three sirategic brands

Table 1. Average prices and annual market shares

Brand Price per pound Market share.
Maxwell House Regular $2.40 37%
Folgers $2.45 24%
Chock Fuil O'Nuts $2.36 16%
MH Master Blend $2.78 13%
Chasc & Sanborne $2.36 2%
Hills Bros. $1.91 2%
Yuban $3.13 <1%
All Other Branded $2.56 - 6%

Furthermore, there is no way around the static nature of the data, since they do
not reveal what the contingent strategies of the competing brands might have been.
As these contingent strategies are what we are trying to evolve, we believe
breeding our agents against historical actions is not adequate.
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(III). Coevolve populations of each of the eight brands against all of the other
brands, using the Casper model W wstimate the profits generated from each 52-
week game, but with all actions generated by artificial agents rather than by
history. This is analogous to breeding the agents in a laberatory experiment rather
than the field, as in (I} and (II) above. We would then trial the best artificially
bred agents for each brand against the historical actions of the other seven over 52
weeks. This approach reveals the best-adapted brand strategy by comparing the
brands’ scores against actual profits over the historical periods.

“I'wo tests of the artificial agents are explicit in the third approach. One is thetr
profit performance against other artificial agents in the laboratory, the other is the
field test of each against the historical actions of the others. Neither of these is
perfect, the laboratory test because it is entirely artificial and moreover because
convergence of behaviour and genetic drift resuitin a smaller number of states. and
so a smaller number of positions on each string being tested for, the field test
because it suffers from the lack of learning noted in (IT) above. But the only better
tests we can currently envisage are to play an artificial agent against the future
actions of coffee brand managers either in a brand management game or in the real
market. We have not yet conducted such tests.

There are significant problems of complexity with an eight-brand example,
especially if a wide range of possible actions are allowed, and hence a large
number of possible states of the game need to be encoded for in an agent's bit
string. With only 52 weeks of data, we might not have an adequately rich
environment in which to test a complex agent. By this we mean that some
contingent strategies might not be invoked by the environment {(with a maximum
of 51 distinct states} and therefore their fitness never tested. For these reasons we
sought to simplify the problem.

3.2  Modelling the Coffee Players

We want to reduce the number of possible states for computational reasons, and,
morc importantly, for data reasons. We can do this hy reducing the number of
rounds of memory, which is prabably not realistic, by reducing the number of
actions of the players (again, not realistic), and by reducing the number of strategic
players (again, not realistic). This implies that any economy will occur only with a
cost to realism. So the question becomes, what can we du with the smallest
sacrifice of realism?

First, we assume that the decision to use coupons is simply a decision to lower
price (which is net of coupons). Rather than considering price to be a continuous
variable, with a consequently very high number of states, we represent four price
tevels. Figure 2 shows that the smoothed frequency polygon for Folgers® prices
has four rough peaks. The right-hand or most common peak relates to the shelf
price of Folgers, while the othcrs denote promotional prices. The frequency
polygons for other major brands have similar quadrimodal characteristics.
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Given that each brand has a choice of four prices and also whether to display or
not, and to fearure or not, there are 16 possible actions per week per state. - In the
historical data, features and displays only occur with low prices, and therefore we
might reduce the number of actions per brand per week to four, where each price
level had an ascociated feature and display value. Four actions can be coded in two
bits, considerably reducing the complexity of the problem.

PROPCRTION PER UNIT
ANNQD

18 18 22 25 28
PRICE

Figure 2. Folgers’ price distribution

We model the market as having three strategic players (Folgers, Regular
Maxwell House, and Chock Full O’Nuts), with the other brands as fringe players,
who act as non-strategic price takers. This means there are only 64 possible states
(three players, each with four possible actions) which results in strings of 128 bits.
A one-round memory game with three sirategic players also requires six bits of
phantom memory, resulting in 134 bit strings for strategies. Strings of 134 bits are
not only easy to estimate, but the 52-week environment is adequate to evolve
effective agents of this length. The three strategic brands emphasized in this
simplification are by far the major players in this market.

We used a version of the GA3 to simulate the actual behaviour of the brands in a
realistic manner. To reduce complexity we set up the algorithm using a single

3 We adapted GAucsd, the U.C. San Diego version of GENESIS, originally written by
John Grefenstete at the U.S. Naval Research Laboratory.
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population of strings for the three brands rather than three separate populations.
With coevelution, we did not use the hisiorical pattern of actions, but only the
payoffs (profits) as estimated by the Casper model, which were used to derive a
4oodood payoff matrix for each of the three major brands. The four possible
actions that define each face of this payoff cube were a High price to approximate
the co-operative or collusive price, a high price to approximaté the two-person
coalition price, a low price to approximate the non-cooperative, Nash-Cournot
price, and a Low price to approximate the envious price. We had also to
determine the amounts of fcature and display promotions associated with each
price level. (See Midgley Marks & Lee [1994] for details). See Table 2 for the
marketing mix associated with each action for each brand. The non-strategic
sellers’ prices per pound are: MH Master Blend $2.90, Hills Bros. $2.49, Yuban
$3.39, Chase & Sanborne $2.39, and All other brands $3.68.

Table 2. Possible actions for each strategic brand

. Price Feature Display
Action ($/1b) (% stores) {% stores)
Folgers
Low $1.87 79 68
low $2.07 82 53
high $2.38 0 t]
High $2.59 0 0
Maxwell House Regular )

Low $1.96 95 68
low $2.33 84 0
high $2.40 0 [\
High _ $2.53 0 0
Chock Full O'Nuts

Low $1.89 100 Vi
low $2.02 99 64
high $2.29 0 0
High $2.45 0 0
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Each brand participates in 50-round games, with all possible combinations of the
other two brands. Although the number of rounds is fixed, the one-round memory
eliminaics cnd-game strategies. With a population of size 25, testing each
generation of strings requires 8,125 50-round games (325 games per string per
generation). Each brand has complete information on all previous actions, but not
on other brands® profits (payoffs).

4 Results
4.1  First Experiments—Unconstrained

The first computer experiments found convergence, with all brands pricing at their
Low price with promotions—not a collusive high price. This finding is the result
of including a model for category volume as well as market shares, If only shares
were modeled, strategies would probably have converged on the collusive price.
But historically most of the sales and profits in this market have occurred at Low
prices with promotions, because of stockpiling, forward buying, and brand
switching (if not all brands are at Low prices), rather than through increased
consumption. At least for the period we have data for, we can consider coftee as a

" mature category with stable long-term consumption rates.

4.2  Second Experiments—lnstitntional Constraints

To increase realism, we added some institutional constraints. Chain 1 does an
excellent job, long run, of maximising profits while not exhausting demand. Its
policy is to promote (Low} only une major brand at a time for the duration of one
week. We mimicked this policy by saying no player could foilow one week's Low
with another Low, and only one player per week at Low. Ties of two or more
gtrings (brands) that, given the state of the oligopoly as a result of past actions,
would simultaneously price at Low are broken by random chuice; the loser(s)
arbitrarily price at high.

These constraints resulted in an interesting pattern of behaviour in which brands
roughty alternated in pricing Low, with the other two brands pricing low, high, or
High. But too frequent pricing of Low and low results in saturation of demand.

43 - Third Experiments—-Demand Saturation

To make the experiments even more realistic, we introduce time into the demand
side by adding demand saturation. Casper is a one-shot, brand planning simulator
that does an excellent job of forecasting single-peried demand. But while this
market is very volatile in the short run, it is very stablc in the long run. For details
of the demand-saturation implementation, see [Midgley Marks & Lee 1994]. Two
things follow if the degree of saturation is greater than 100%: the total sales
volume for the latest week is reduced by the degree of saturation, and the profits of
the brands are reduced for each of the three competing brands.
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With institutional and demand constraints in place, two patterns of competition
evoived. In some cases we got convergence to all low pricing. In other cases we
got patterns of behaviour similar to that observed historically in Chain 1. Figure 3
shows the simulated behaviour of the three strategic brands with the institutional
and demand constraints.
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Figure 3. Price paths for the three artificial competitors

It is important to note that (e results showa in Figure 3 are for threc optimized
(coevolved) agents competing against each other over fifty weeks. As such, the
frequency of price competition is higher than we observe in the actual market,
because the optimized agents invariably respond to the previous week’s actions of
their competitors. For example, the artificial agent for Folgers reduces its price
thirty-seven weeks out of fifty, whereas the brand managers for Folgers only
promoted fourteen weeks out of fifty. Similar statistics for Maxwell House are
thirty weeks out of fifty for the artificial agent, versus eleven weeks in the data.
For Chock Full O'Nuts the artificial agent promotes thirty-seven weeks out of
fifty, versus scventeen weeks in the data. Over the three brands the artificial
agents reduce their prices approximately 2.5 times as often as we observe in the
market. If we focus on deep price reductions, the artificial agents employ these
1.9 times as often as we cbserve in the market. In itself this ‘over-competition’ is
not unexpected, as our artificial agents do not face the practical barriers
encountered by brand managers. In the artificial laboratory, information on
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competitors’ actions is received instantaneously, and promaotional responses can be
implemented within one or two weeks.

‘In the course of the ‘laboratory’ simultations the best performing string
improved over the 325 50-round games per string. per generation by 1.4 times.
The best string emerged in the 63rd generation, and remained unbeaten (in wrms
of its average profit) for the next 37 generations.

4.4  Fourth Experiments—Tests Against Historical Actions

The final series of experiments is not concerned with breeding better agents as
such; rather, we took the best agents from the third series of experiments and
tested each in turn against the historical actions of their two major competitors®.
We did this by taking an-artificial agent, assigning it to one of the three brands,
and allowing it to respond to the historical actions of all other brands over a 52- -
week periodS. In fact, as the GA was set to evolve a population of 25, we had 25
*best” agents, and so the test could be repeated 25 times. How well do those
strings perform in comparison to human brand managers?

Figure 4 shows that when the final generation of agents is assigned to the
Folgers brand most of them do markedly better than human brand managers (as
measured by Folger's historical average profit over the 52 weeks). Indeed we
have also placed a control line of 25% better than history on the figure and it can
be seen that 14 of the 25 agents exceed this. Even the two worst agents gencrate
average profits of 96% and 93% of the historical figure, whereas the best agent
does over 240% better than the human brand managers. Although not detailed
here, similar results can be generated for Chock Full O’ Nuts and Maxwell House,
whose best agents do 233% and 120% better than hurnan brand managers do.

While the historical test is limited, in that the competitors do not learn from: the
changed actions of the brand managed by the artificial agent, these results are
impressive. They demonstrate that the ‘laboratory” results can be translated to the
field. Moreover, given the simplicity of the agents (one-round memory, limited to
4 actions) it is remarkable that they can out-perform human managers. Before we
discuss the reasons for this performance, we should ask what the patterns of agent
behaviour are that lead to improved profits. This is not an easy question to answer
because of the difficulties of presenting all the data in an understandable form.
But Figures 5 and 6 shed some light on the issue. Figure 5 shows the historical
price actions of Folgers compared with the price actions of the best agent (string
24). Figure 6 shows the same historical actions compared with the worst agent
(string 20 of the final generation).

“+ With the historical actions of the other five brands input to the profit caleulations but not
‘recognised’ by the agent: the perceived market state is invariant to the other five’s actions.
5 In performing this test it is necessary to classify the historical actions of the other major
brands into Low, low, high and High. We did this by inspection, partitioning the price
distribution into four roughly equal levels, using Figure 2 for Folgers, eto.
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Figure 6. Folgers’ price paths—worst agent versus history

The comparison between these two figures suggests that while the “worst” agent
behaves quite similarly to the human manager, the “best”” agent is prepared to keep
the price low and promote more frequently. Although we do not present the
figures here, similar conclusions can- be drawn for Chock Full O’Nuts and
Maxwell House.

5 Conclusion

The general conclusion is that the artificial agents price promote more irequently
than human managers. We observe the highest level of promotion when the three
optimized agents are competing with each other in our ‘laboratory’—an
- environment which perhaps represents the most competitive scenario we can
achieve. Indeed, we might define these resuits as the maximum competitive
intensity possible in this market (given our sales model and institutional
constraints). All actual markets would be likely to show less intense competitive
activity. Hence, it is not surprising that when we place one of these optimized
agents back into the historical market we observe a lower frequency of promotion.
This is the case for many of the final strings—whose behaviour more resembles
human managers. But it is still true that the best of our agents promote more
frequently than do their human counterpoints and we can speculate on the reasons
why this might be so.

One reason may be that human brand managers are not in a position to respond
to competition on a week-by-week basis. More likely, they negatiate with the
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chains for a series of promotions to occur across a defined promotional period
(often of thirteen weeks duration). Major responses to competitive actions then
oceur in the next promotional period, rather than by inunediate adjustments to the
current promotional plan. This suggests that competitive response in real markets
may be more measured and less immediately reactive than that generated by our
optimized artificial agents. Institutional constraints may therefore serve to
dampen competition.

But there may be reasons for the greater level of promotion which have more to
do with our agents than with the institutional constraints and brand managers: the
choice of one-round wemery and the sclection of the four reference prices. One-
round memory restricts the agent to only being directly ‘aware’ of the most recent
actions of its competitors. Two or more rounds of memory would allow the agent
to take a more balanced approach to competitive reaction, since the agent might
then ‘assess’ how aggressive a competitor’s strategy was across a greater number
of instances of market-place behaviour. For example, observing that a.competitor
has promoted for two consecutive periods implies greater aggression than if that
competitor has only promoted for one perind out of two. '

What then are the managerial implications of this approach? We betieve these
are threefold. First, the artificial agents allow the managers of any brand to check
future promotional plans against the likely response of their competitors.
Promational plans can be input for their own brand, and the competitive responses
to these plans generated from the agents of the other brands. Second, the agents
also enable managers to test ‘what-if’ scenarios, both for their own brands and for
the brands of their competitors. Both these may help alleviate the resistance to
market modelling which is observed in many consumer product companies. In our
opinion some part of this resistance stems from the static or competitively myopic
nature of current modelling approaches. Managers expect models to be able to
simulate the conscquences of a planning period (often four promotional periods or
a year) and to factor in likely competitive responses. Third, the agents may be
useful in training junior brand managers: the agents could form the basis of a
game whereby junior managers make decisions for one brand and the agents for
other brands provide the competitive test of these decisions. With appropriate
agents this would inject an element of realism into training by simulation games.
This element is missing from many gamés at present because they use other teams
of junior managers to make the competitors’ decisions and also often have
unrealistic algorithms for market response.
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