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Abstract

OLIGOPOLISTIC pricing decisions—in which the choice variable is not
dichotomous as in the simple Prisoner’s Dilemma but continuous—have

been modeled as a Generalized Prisoner’s Dilemma (GPD) by Fader and
Hauser, who sought, in the two MIT Computer Strategy Tournaments, to
obtain an effective generalization of Rapoport’s Tit for Tat for the three-
person repeated game. Holland’s genetic algorithm and Axelrod’s
representation of contingent strategies provide a means of generating new
strategies in the computer, through machine learning, without outside
submissions.

The paper discusses how findings from two-person tournaments can be
extended to the GPD, in particular how the author’s winning strategy in the
Second MIT Competitive Strategy Tournament could be bettered. The paper
provides insight into how oligopolistic pricing competitors can successfully
compete, and underlines the importance of “niche” strategies, successful
against a particular environment of competitors.

Bootstrapping, or breeding strategies against their peers, provides a
means of examining whether “repetition leads to coöperation”: we show that
it can, under certain conditions, for simple and extended two- and three-
person GPD repeated games. The paper concludes with a discussion of the
relationship between Selten’s trembling-hand perfect equilibrium and
Maynard Smith’s evolutionarily stable strategies, with practical simulations
of successful and unsuccessful “invasions” by new strategies.
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1.  Competition among the Few

THE OLIGOPOLY problem can be stated as: with a small number of
competitive sellers, what is the equilibrium pattern of price and quantity

across these sellers, if any? Cournot, in his celebrated example of mineral-
water producers (1838), envisaged that competing firms would decide their
production levels, and that a market-clearing price would occur from the
aggregate of their supply facing a market demand. He characterized
equilibrium in this market as occurring when the output of each firm is the
best response to the other firms’ outputs; that is, the equilibrium level of
output for each firm depends on the actions of its competitors, and no single
firm can increase its profit by using a different output level. This strategic
feature distinguishes oligopolistic equilibria from those of pure competition
and monopoly. Cournot’s analysis was explicitly for static, one-shot markets.

In a review of Cournot’s book fifty years later, Bertrand (1883) argued
that price—rather than quantity—was the variable set by firms, in which
case, as he demonstrated, competition between sellers of homogeneous goods
results in the competitive price and quantity, even if there are only two
sellers. If the products are differentiated, then the seller who quotes a higher
price still sells some quantity, and the price-setting equivalent of Cournot’s
equilibrium is an example of a Nash equilibrium in a non-coöperative game,
where the firm’s output level is its (pure) strategy. Any strategy combination
is a Nash equilibrium if each player’s optimal strategy belongs to the
appropriate strategy set (that is, is attainable by the player) and if it is
impossible that any single player can obtain a higher payoff through the use
of a different strategy, given the strategy choices of the remaining players.

A market of three sellers, each facing an elastic demand and selling a
differentiated output, can be modeled as a three-person Generalized
Prisoner’s Dilemma (GPD): each seller’s profits would be maximized by a

_______________
* The author would like to thank Robert Axelrod for his comments and assistance, John

Grefenstette for his GENESIS algorithm and advice, David Midgley for several valuable
electronic discussions, and David Schaffer, John Koza, and the anonymous referees for
their comments. Earlier versions of this paper were presented at the December 1988
meetings of the American Economics Association in New York under the auspices of the
Econometric Society, and at the Third International Conference on Genetic Algorithms, at
George Mason University, June, 1989.
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coöperative, high price, but competition drives the price down towards the
Pareto-inferior, non-coöperative, Nash price and hence each seller’s total
profits down, even though with elastic demand the market grows. Will
repetition break this logic? Three-person GPD tournaments at MIT (Fader
and Hauser 1988) and the AGSM were run to see whether entrants’ strategies
could generalize Rapoport’s Tit for Tat (coöperate on the first round and then
mimic one’s opponent’s previous move) from the two-person to the three-
person repeated game.

In this paper we revisit the price wars of the GPD tournaments armed
with the techniques of machine-learning known as the genetic algorithm
(GA), which can—with the appropriate modeling of strategy selection—
obviate the need for submitted strategies. Section 2 gives a brief history of
research into games and oligopoly behaviour. Section 3 discusses Axelrod and
Forrest’s method of modeling strategies in repeated games as bit-string
mappings between each player’s state and that player’s next move or action,
which enables the GA to search for solutions efficiently. Section 4 reports
results of niche strategies against unchanging environments of strategies.
Section 5 introduces the idea of bootstrapping to obtain an optimum
optimorum, given the implicit constraints of the particular model, and reports
results of this in two- and three-person games. Section 6 discusses concepts
of stability, and examines the stability of stable strategies when confronted
with invaders. Section 7 concludes with a discussion of future research work
on market strategies. The Appendix provides a brief overview of genetic
algorithms.

2.  Game Theory and Strategic Behaviour

MICRO-ECONOMICS has recently been enriched by studies of strategic
behaviour among small numbers of competitors, in oligopolistic markets

(see J.W. Friedman 1983, for instance). Following Cournot, these have been
in terms of the dynamic adjustment of the competitors’ behaviours, and have
been facilitated by the insights from game theory (Schelling 1984; Ulph
1987). Strategic behaviour is important because in competition among few
agents the individual agent is neither powerless (pure competition) nor
powerful (monopoly), and the interaction among competitors cannot be
readily described in a closed form.

The strategic behaviour of two competitors has been extensively studied
in simple two-person games, the most productive of which has been the
Prisoner’s Dilemma (PD) (Diekmann and Mitter 1986)—although, as
Rapoport (1988) reminds us, there are hundreds of other strategically
unequivocal ordinal 2 × 2 games to be explored. In its one-shot version the
PD demonstrates how the logic of self-interest, in the absence of trust or
enforceable pre-commitment, results in a Cournot–Nash solution of non-
coöperation that is Pareto-inferior to the coöperative solution.

In a single PD game, the dominant (pure) strategy is to defect, despite a
higher payoff for coöperation, because of the reward of cheating and the
penalty of being cheated. In a repeated PD game of unknown length,
however, the higher payoff to coöperation may result in strategies different
from the Always Defect of the single game, because of the possibility of
punishing defection provided by later rounds. By breaking the logical
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imperative of mutual defection inherent in the static, one-shot PD, the
repeated PD—in which the players repeatedly face each other in the same
situation—can admit the possibility of learning on the part of the players,
which may result in mutual coöperation or some mixed strategy on their part,
as they learn more about the type of behaviour they can expect from each
other and build up a set of commonly held norms of behaviour.

An early analysis of successful strategies in the repeated PD (Luce and
Raiffa 1957, pp.97–102) suggested that continued, mutual coöperation might
be a viable strategy, despite the rewards from defection, but for twenty years
no stronger analytical results were obtained for the repeated PD.

In the late 1970s, political scientist Robert Axelrod, in an investigation
of the emergence of coöperative behaviour and social norms in Hobbesian
societies, hit upon the idea of exhaustively pitting strategies for the repeated
PD by coding them into computer algorithms. He called for entries of
strategies (for the repeated PD) coded as computer algorithms, and ran
successive tournaments that attempted to reveal the “best” (highest scoring)
strategy (Axelrod 1984, Axelrod and Dion 1988). In essence the tournaments
were an attempt to search the strategy space by asking researchers in diverse
disciplines to devise and submit strategies.

As is now widely known, Axelrod’s tournaments revealed that one very
simple strategy is very difficult to better in the repeated PD: Rapoport’s Tit
for Tat. When pitted against a “nasty” strategy, such as Always Defect, it
does almost as well, itself defecting on every round but the first, but at the
cost of the aggregate score. When played against itself, each player’s
aggregate score is a maximum, since every round will then be mutual
coöperation, a result which resembles collusion, although each player’s
decisions are made independently of the other’s.

Axelrod’s tournaments and later tournaments modeling a three-person
price war (Fader and Hauser 1988) were an attempt to pit as wide a variety
of strategies against each other as possible, in order to derive more robust
results and insights than would follow with a small set of strategies, although
knowledge of Tit for Tat’s success in the two-person tournaments may well
have conditioned later strategies, as Nachbar (1988a) argues, questioning the
robustness of the results.

Mathematically, the problem of generating winning strategies is
equivalent to solving a multi-dimensional, non-linear optimization with many
local optima. In population genetic terms, it is equivalent to selecting for
fitness. Indeed, in a footnote, Cohen and Axelrod (1984, p.40) suggest that

One possible solution may lie in employing an analogue of the adaptive
process used in a pool of genes to become increasingly more fit in a
complex environment. A promising effort to convert the main
characteristics of this process to an heuristic algorithm is given by John
Holland (1975). This algorithm has had some striking preliminary
success in the heuristic exploration of arbitrary high dimensionality
nonlinear functions.

Such a research program was also suggested—albeit in more general
terms—by Aumann (1985, pp.218–219) and by Binmore and Dasgupta (1986,
pp.6–7, 12–14).

Axelrod then used the GA to “breed” strategies in the two-person
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repeated PD game (Axelrod 1987, Forrest and Mayer-Kress 1991). Axelrod
reported that the GA evolved strategy populations whose median member was
just as successful as Tit for Tat, whom they closely resembled. (In 95% of the
time, the evolved rules make the same choice as would Tit for Tat in the same
situation.) In some cases the GA was able to evolve highly specialized
adaptations to a specific environment of strategies which perform
substantially better than does Tit for Tat in that situation. Miller (1989) and
Marks (1989) have both extended Axelrod’s recent work, and examine how
the GA can be used in the breeding of strategies to such problems as the two-
person PD with uncertainty (“noise”) (Nalebuff 1987). This paper examines
examples of oligopolistic markets, such as the three-person PDs of the price
war (Fader and Hauser 1988).

The advent of GAs (and machine learning) means that a much more
exhaustive set of potentially winning strategies can be generated by a single
researcher, without the combined efforts of many competitors. This is
because, within any given degree of “strategic complexity”, any potential
strategy is grist to the GA’s mill, and will eventually be tested if it is a
contender for best strategy, given the environment of competitors.

3.  Modeling Oligopolistic Behaviour

3.1  Modeling Strategies in Repeated Games

IN ORDER to use the GA, we follow Axelrod and Forrest in modeling
strategic behaviour as bit-string mappings, by first determining what the

possible actions of the players are for any round; let us assume that the finite
set of actions, Si, for player i is unchanging and identical across players.
Then player i’s decision before each round is to choose an action (which may
be a scalar or a vector) si from the set Si of possible actions. If the
competitive interaction among players is strategic, then each player’s
performance in each round is a function of his opponents’ moves as well as his
own. In the absence of information about the other players’ decisions for the
next round of play until they reveal their hands, their previous moves—which
are known with certainty since we assume a game of perfect and complete
information—provide the best information about their forthcoming moves. It
is possible to look back at as many rounds as desired; we shall designate
strategies that look back only one round as one-round-memory strategies, and
so on.1 Note that Tit for Tat is a one-round-memory strategy, and hence
evidence that against many different strategies a long memory is not
necessary for profitability.

In a strategic competition the action si must be contingent upon what

_______________
1. Aumann (1985, p.218) speaks of “states” of mind that depend “only on the previous state

and the previous action of the other player”; the player’s action then depends only on the
new state. He also speaks of limiting the complexity of a strategy by limiting its memory,
and presents (Appendix 5.5) a zero-round-memory strategy, called “memory zero”. Marks
(1990) discusses the relationship between complexity, bounded rationality, and finite-
memory strategies.
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the player expects his opponents to do themselves in the next round, an
expectation which is a function of their moves in the past. So long as the
action set for each player is finite, there is a finite set of events, Qi , defined by
the past actions of players over a given number of rounds.

If we denote the event or state of history that player i experiences
before round t as qi(t) ∈ Qi , then we can model the decision of which action
si(t) to make at round t as a mapping from state qi(t) to action si(t) ∈ Si . The
state of player i one round later, qi(t + 1), will include all the actions made in
round t, and the consequent action of player i in round t + 1 will be a function
of qi(t + 1).

These two steps for player i can be written as

si(t) = fi[qi(t)], (1)

where fi is the action function fi : Qi → Si and,

qi(t + 1) = gi[qi(t), sj(t)], j ≠ i, (2)

where gi is the next-state (or transition) function gi : Qi  × Sj → Qi , j  ≠ i. The
next-state function is conceptually simple enough: in a one-round-memory
strategy the previous state qi(t) (= qj(t)) was simply the set of all players’
actions in round t − 1; qi(t + 1) (= qj(t + 1)) is simply the set of all players’
actions in round t. For strategies with longer memories, the state qi(t) can be
thought of as a stack: the most recently occurring round’s actions at the
bottom, the oldest round’s actions at the top; the next-state function pushes in
the latest actions at the bottom and discards the forgotten round’s actions.

Of course, we could include elements other than the players’ actions in
each player’s state qi(t). For instance, the cumulative scores (undiscounted)
were available to the programmers in the MIT tournaments. One possible
strategy might be simply to ape the last round’s action of the player with the
highest cumulative score—to ride on his coat tails. The state might simply be
the move of the most successful player last round, in which case the action
function would be a simple one-to-one mapping.

What is described in this paper is a search in strategy space for a
mapping from historic state to next action—the action function fi(•)—which
results in the highest score in a repeated game. This corresponds to
determining the most successful solution to a repeated oligopolistic game.
One question to be answered will be the extent to which the dynamic nature
of the game results in a coöperative solution, when the one-shot PD dictates
the non-coöperative Cournot–Nash solution.

3.2  Strategies as Bit-String Mappings

Consider a game in which each player has to choose one of four possible
courses of action (they could be prices themselves or they could be more
complicated procedures for determining a price).2 We can represent these 4

_______________
2. The action function maps from contingent state to next-round action. We have spoken of

the action as identical with the player’s next-round move, but this is not necessarily so;
the action could be a procedure to calculate the next-round move. For example, there
could be two actions: (1) next-round move = arithmetic mean of all players’ last-round
prices, or (2) next-round move = geometric mean of all players’ last-round prices. The
number of possible actions is less than the number of possible moves in this case. Of
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possibilities with a binary number of length 2 bits (where 00 is 0, 01 is 1, 10
is 2, 11 is 3). Now, the action function fi(•) is a mapping from historical state
to next-round action, so for each possible state there must correspond a 2-bit
length of the binary string. If there are two other players, each also facing 4
possible actions (leading to 4 possible moves per player), then a one-round-
memory strategy must allow for a possible number of states equal to 43 = 64.
The general rule is that the number of contingent states equals m r p, where
there are p players each with m possible moves per round and where each
individual looks back r rounds.

In the example above, the complete mapping fi(•) must associate a 2-bit
length of binary string with each of 64 possible contingent states. If we are to
have a unique correspondence, with no overlapping segments, then the
minimum length of a binary representation of the action function mapping
fi(•) must be 64 × 2 = 128 bits. This mapping string will not alter through
the repeated game, but the lengthening history will result in varying
contingent moves. Depending on the competitive environment (the
opponents’ strategies), each mapping string fi(•) will result in a score: the
cumulative profit resulting from the outcomes of the rounds of the game.
Thus, we are using the undiscounted limit-of-means criterion to select with—
with a finite game, we are simply comparing the means of the strategies.

Although the mapping strings lend themselves to computer simulation
and machine learning, they do not readily reveal to the human eye the class
of strategies they model (nice, nasty, grudging, forgiving, generous, etc.). As
soon as a string gets much over 16 bits long, such recognition is difficult.
Perhaps using constructs from the theory of finite automata will assist (Miller
1989, Marks 1990); perhaps there is no way to characterize a complex
strategy: the only way to understand it is to watch its behaviour in a
repeated game.

This representation allows us to use the GA to develop what is in effect
a machine-learning process to search for strings which are ever more
successful at playing the repeated game. As explained by Schaffer and
Grefenstette (1988), our process can be classified as an example of the Pitt
approach to machine learning (Smith 1981), in which each string is evaluated
for evolutionary fitness (its score in the repeated game), and this score is used
to control the selection of strings used to generate a new set of strings. The
particular GA we use is Grefenstette’s GENESIS (1987). (See a discussion of
genetic algorithms in the Appendix.)

4.  Niche Strategies

_______________________________________________________________________________________
course, this is simply a model of a two-state decision process: use the binary string to
determine the second-stage process for determining the next-round move. It
demonstrates, however, that there is no reason why the number of a player’s possible
moves should be equal to the number of his possible actions. Indeed, the action could be a
vector: a numbered process plus a parameter, for instance.
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CONSIDER a repeated PD game: each player has two choices: coöperate
C or defect D, so the choice can be represented by a single bit: 0 for C

and 1 for D. With a one-round memory, and only considering the moves of
each player, the event space contains four possibilities (CC, DC, CD, or DD),
where XY means that one’s last move was X, one’s opponent’s was Y. With
four events, each mapping to a single bit to determine the next move, the bit
string will be 4 bits long, resulting in 24 = 16 possible strategies. For
instance, the string (0111) means that one will coöperate if both players
coöperated last round, otherwise one will defect; the string (0011) is Tit for
Tat: one mimics one’s opponent’s last move; (1111) means always defect,
whatever one’s opponent’s last move.

It can be shown that a game of a fixed number of rounds N will result in
a score equal to that obtained in a game of uncertain length, where w is the
probability that any round is not the last, in a risk-neutral world. This
probability can in turn be shown to be equivalent to an implicit discount rate
r. This enables us to relate the length N of a fixed-rounds game to an implicit
discount rate r. A payoff of R units for an N-round game equals NR units.
The expected payoff of a game in which the probability of continuing is w is
R (1 + w  + w 2 + w 3 + . . .  ) = R � (1 − w ). Equating these, we see that
w  = (N −1) � N. If we think of w as a discount factor, then the implicit discount
rate r is given by r = (1−w ) � w or r = 1 � (N − 1). (This can also be obtained by
considering NR as the present value of an infinite flow of R discounted at r
per round.)

Marks (1989) reports on machine-learning solutions of a repeated two-
person PD (Figure 1) with three-round memory, replicating Axelrod (1987).
The values are constrained by T  > R  > P  > S, and in general by 2R  > T +S.
In this model, there are 64 (= 43) possible states, corresponding to the 4
possibilities of action in each of the last 3 rounds. Since the action (C or D)
can be modeled by a single bit, the complete mapping can be modeled by a
string of length 64, corresponding to 264 −∼ 1020 possible combinations. An
additional 6 bits are used to model the “phantom memory” of unplayed rounds
for the first three rounds, following Axelrod and Forrest.

R, R S, T
T, S P, P

Figure 1. The Simple Prisoner’s Dilemma

We used Axelrod’s “niche” environment of five rules (Axelrod 1984,
p.199) and sought a “better” (higher scoring) strategy than Tit for Tat. We
used his values of T = 5, R = 3, P = 1, and S = 0. With 151-round games (w =
0.9934, r = 0.67% per round),3 our benchmark scores in this niche were:

_______________
3. We used 151-round games because Axelrod (1987) did so, following the mean length of the

games in his second (1984) tournament, in which the number of rounds per game was a
random variable, to preclude end-game plays, as discussed below.
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Always Defect: 223.980
Always Coöperate: 369.768

Tit for Tat: 382.392
Tit for Tat outscored both the ultra-nice Always Coöperate and the ultra-
nasty Always Defect. After breeding a population of fifty 70-bit-string
strategies for 2,000 generations—a total of 100,000 trials, each trial resulting
in a weighted average of the scores of 151 rounds of the repeated symmetric
PD against each of the five “niche” strategies—the best individual strategy
scored 394.0348, and appeared after trial 79,083, in the 1,581st generation.
Since two of Axelrod’s five niche strategies were non-deterministic, the
apparent superiority of the new strategy may not be statistically significant,
but nonetheless provides an insight into the structure of a possibly Tit-for-
Tat-dominating strategy.

On examination the winning structure was very similar to a three-
round-memory Tit for Tat. (Recall that Tit for Tat requires only a single-
round memory.) The difference is that a coöperative C on the part of the
opponent following two defections D in the immediately preceding rounds is
not sufficient to elicit a coöperative C from the strategy: two successive Cs
are required. “Grudging Tit for Tat”—as the strategy was dubbed—would
forgive a single defection by its opponent if it was followed by a C, as would
Tit for Tat, but two Ds would require two Cs before it would also coöperate
again.

Miller (1989) also reports an attempt to use the GA to breed niche
strategies against Axelrod’s environment; he models strategies as finite
automata, rather than the action functions described above, which can model
“trigger” strategies, but are difficult to extend to three-person games. Miller
also considers bootstrapping evolution.

5.  Bootstrapping Evolution

AXELROD (1987) pointed out that any strategies bred using the GA would
be highly adapted to the particular “niche” defined by the rules of their

competitors. Thus, each simulation session would be unique, up to the level
of definition of the niche rules. And yet the literature of repeated games has
been concerned with examining the extent to which repetition results in
coöperation. The GA can be used to explore the extent to which this is true,
for particular games as models of market interactions.

In the one-shot PD game the Cournot–Nash non-coöperative
equilibrium dominates the Pareto-superior coöperative solution. This result
generalizes to n-player games and provides a rationale for price wars when
there are a small number of sellers of differentiated products, as the MIT
tournaments modeled. With a simple game played between two opponents for
more than a single round, the possibility of responding to an opponent’s
defection in the previous round with a defection in this and later rounds
raises the possibility that the threat of defection may induce mutual
coöperation. But for games of finite duration with low discount rates (we can
use the mean of all rounds for the game score or the discounted present value
of the rounds’ results) this hope is dashed by the end-game behaviour, or
what Selten (1975) called the “chain-store paradox”. In his second open
computer tournament, Axelrod (1984) chose the number of rounds per game
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probabilistically, with a 0.00346 chance of ending with each given move (or w
= 0.99654), in order to eliminate submission of strategy algorithms which
might exhibit end-game behaviour. In the genetic-algorithm tournaments, so
long as the number of rounds played is greater than the number of rounds
remembered, there can be no such behaviour. We used 22-round games (w =
0.9545) for convenience, except when the implicit discount rate (r = 4.76% per
round) was too low, as discussed below.

There is a discontinuity for infinitely repeated games (or supergames):
the Folk Theorem (Aumann 1989) tells us that any individually rational
payoff vector can be supported in infinitely repeated games, for sufficiently
low discount rates. (For high discount rates the threat of future punishment
may not be sufficiently great to offset the gain from defecting now.)

In order to explain the apparent evidence of coöperative behaviour
among oligopolists in the real world, among experimental subjects in clinical
trials, and among strategy simulation tournaments—all of them examples of
finite repetitions—researchers have sought relaxation of the underlying
assumptions in the finite game. Radner (1980, 1986) assumed a type of
bounded rationality similar to satisficing. Kreps et al. (1982) assumed
incomplete information—they relaxed the assumption that rationality is
“common knowledge” (Aumann 1976) among the players. Neyman (1985) and
Radner (1986) argued that limited complexity of players’ strategies, and
Harrington (1987) argued that limited complexity of players’ beliefs, could
result in the emergence of coöperation. J.W. Friedman (1971) and Sorin
(1986) showed that a sufficiently high discount rate was sufficient.
Fudenberg and Maskin (1986) extended the proofs in the infinitely repeated
case to games of three or more players. See Marks (1990) for further
discussion of this isse.

As Binmore and Dasgupta (1986) suggest, an evolutionary competition
among game-playing programs provides an avenue for linking prescriptive
game theory with descriptive game theory: in the long run not quite all of us
are dead, only those who were unsuccessful in the repeated game—some
genes (combinations of zeroes and ones in the binary string) of those who
scored well survive in their descendents. This provides a learning model in
which it is the generations of populations of strategies that learn, not
individuals, which are immutable strings of bits. Samuelson (1988) provides
a theoretical framework for examining the processes of the evolution of
strategies, at least for finite, two-person, normal-form games of complete
information. He proves that, under certain properties of the evolutionary
process, equilibrium strategies will be supported that are “trembling-hand
perfect” (Selten 1975, 1983; Binmore and Dasgupta 1986), a subset of
Cournot–Nash equilibrium.

Our results support the contention that “repetition breeds coöperation”,
at least for two-person games with unique Nash–Cournot equilibria. Our
method is to “breed” populations of strategies (our binary mapping strings),
where each individual strategy in a population of strategies is pitted against
all other strategies (or combinations of strategies in three-person games) to
obtain a “fitness” score for each strategy. This bootstrap breeding, together
with the GA’s search properties, should result in “evolutionary” convergence
to the optimum optimorum of all possible strategies. (There is some doubt
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whether all loci will be optimally selected for: an individual emerging into a
population of similar strategies will not experience much opportunity to
respond to hugely different strategies, and over time there may be genetic
drift, as the descendents lose some traits previously strongly selected for.4

The consequences of this for the possibility of invasions are discussed below.)
As a consequence of the GA’s processes, in bootstrapping we speak of

convergence to behaviour, not to structure: when, amongst themselves, the
population of strategies all play the same action for the duration of each
repeated game and for all possible combinations, we say that the population
has converged. We examine in Section 6 the resistance of these converged
populations to the introduction or invasion of new strategies from outside.

5.1  The Simple Prisoner’s Dilemma

In a simple, two-person, symmetric PD with perfect information and the
Axelrod payoffs in a repeated game amongst one-round-memory strategies
(using a 6-bit string: 4 bits for the contingent states, and 2 bits for the
phantom memory used in the first round of a 22-round game, that is, w =
0.9545, r = 4.76% per round), the population of 50 individuals converged5

from a random distribution of bit strings to a population supporting the
coöperative equilibrium (C,C) in 22 generations.

The bootstrap evolution was repeated for two-round-memory strategies,
with their more subtle strategic possibilities. (They use a 20-bit string: 16
bits for the 4 × 4 contingent states, and 2 × 2 bits for the phantom memory.) 
The population of 100 individuals converged from a random distribution to
the uniform coöperative behaviour of (C,C) in 61 generations.

5.2  Extended Prisoner’s Dilemma Games

A more realistic PD might allow players to shade their coöperation or
defection (To 1988) by choosing actions with payoffs between the two
extremes of the simple game. For instance, the row player’s payoff matrix of
Figure 2 is a superset of the simple PD payoff matrix, and allows a greater
variety of strategies, even only with one-round memory, which is reflected in
the longer mapping string. With 4 possible actions, each action must be
coded with a 2-bit segment, and there are 16 possible states with one-round
memory, corresponding to the 4 × 4 payoff matrix above. The strings must be
36 bits long: 2 × 42 for the next action, plus 2 × 2 strings for the phantom
memory. Starting from random strings, a population of 50 strategies
converged to coöperative behaviour (A, A) after 419 generations of
bootstrapping, using 22-round games (w = 0.9545, r = 4.76% per round).

_______________
4. It has been suggested (Goldberg and Smith 1987) that the recessive genes of diploid

genotypes are a reservoir of stored information that proved fit in earlier environments,
and that GAs which included diploidy and dominance will thus perform better in “noisy”
environments than does GENESIS, which utilizes haploid genotypes.

5. By converging to a uniform population, we mean that the process first attains a uniform
population of strings—there may be subsequent generations which are non-uniform, as
the recombinant operators generate new individuals, as further bits and bit combinations
are tested—not the time of apparent stability, some generations later.
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A B C D
A 27, 27 18, 33 9, 39 0, 45
B 33, 18 23, 23 13, 28 3, 33
C 39, 9 28, 13 17, 17 6, 21
D 45, 0 33, 3 21, 6 9, 9

Figure 2. An Extended Two-Person Prisoner’s Dilemma

Following Sonnenschein (1989), we consider a more interesting two-
person game with three alternative actions, call them L, M, and H. The
payoff matrix of Figure 3 reveals that (M, M) is the unique Nash equilibrium:
given that one’s opponent plays M, the best that one can do oneself is to play
M too. (Note that because we must use two bits to code for action, we have to
include payoffs for a fourth possibility, O—large negative payoffs will select
against this possibility.)

L M H O
L 15, 15 5, 21 3, 10 5, –50
M 21, 5 12, 12 2, 5 12, –50
H 10, 3 5, 2 0, 0 5, –50
O –50, 5 –50, 12 –50, 5 –50, –50

Figure 3. Profits: Monopoly L, Cournot M, and Competitive H

A bootstrapped population of 25 one-round-memory strategies (36-bit
strings) converged from random to the coöperative solution (L, L) after 33
generations of 22-round games, showing that repetition can lead to the Low
output–high profit equilibrium.

An alternative score to the average payoff per game is the discounted
present value of the payoffs. Sonnenschein (1989) shows that when the
discount rate per round is high—he uses ⁄3

4—the present value of the future
costs imposed by one’s opponent in response to one’s preëmptive defection is
less than the immediate gains from a defection. That is, a defection from
(L, L) by one player will garner him 6 units now, at the cost of 3 units per
future round forgone indefinitely if his opponent defects in the next and
succeeding rounds. The present value of an annuity of 3 units discounted at
⁄3
4 is 4 units. So the present value of the payoff is increased by defection, and

the coöperative equilibrium of (L, L) cannot be supported.
As reported above, in a 22-round game with an implicit discount rate of

4.76% per round and using average scores, a population of 25 random 36-bit
strings converged to the coöperative solution of (L, L) in 33 generations. With
an explicit additional discount rate of 80% per round in the 22-round games,
the coöperative equilibrium was not supported: an identical population of 25
random strings converged to the Pareto-inferior Cournot–Nash solution of
(M, M) in 31 generations. This is in accord with Sonnenschein’s argument.
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5.3  The MIT Competitive Strategy Tournaments

The simplest three-person game is a repeated PD with one-round memory.
Each round corresponds to one of eight possible states (CCC, CCD, CDC,
CDD, DCC, DCD, DDC, DDD), where XYZ means that one’s last move was X,
one’s first opponent’s was Y, and one’s second opponent’s Z. Since, in the
simple PD, one’s choice is dichotomous, the mapping string from state to
action need only be 8 bits long. An example is the string (01110111), which
models one’s strategy of coöperating (0) only when both of one’s opponents
coöperated in the last round (whatever one did oneself), otherwise defecting
(1).

In November 1984, the MIT Marketing Center in the Sloan School of
Management announced a three-person repeated game, in which participants
were invited to submit a strategy, the outcome of which was one’s price in the
next round of the repeated game, given complete knowledge of one’s own
previous moves (prices), one’s own cumulative score (total profits,
undiscounted), and the previous moves and scores of both other players
(Fader and Hauser 1988). One reason was to explore how Axelrod’s two-
person results generalize to more complex and managerially relevant
situations.

The model is of sales of differentiated goods. With prices of Pi, Pj , and
Pk, the payoff π i for any player i is given by:

π i = 3375 (Pi−1) Pi
−3.5 Pj

0.25 Pk
0.25 − 480, (3)

where i  ≠ j  ≠ k. This corresponds to a constant-elasticity-of-demand,
constant-returns-to-scale differentiated triopoly (Fader and Hauser 1988).
The payoff of equation (3) results in a “coöperative” price of P o = $1.50, the
joint maximization price (Shubik 1980), which would result from collusion,
and in a “defect” price of P * = $1.40, the non-coöperative Cournot–Nash price,
which maximizes the payoff independent of the others’ prices. Two other
prices are the two-player coalition price, P c , which maximizes the profits of
two colluding firms independent of the third firm’s price, P c  −∼ $1.44; and the
“envious” price, P e , which maximizes the firm’s share of total profits,
P e  −∼ $1.36.

In 1986, a new tournament was announced, in which with the prices Pi,
Pj , and Pk the profit function for any player i was:

π i = 200 (8 − 6 Pi + Pj + Pk)(Pi − 1) − 180, (4)

with i  ≠ j  ≠ k. This profit function corresponds to a linear-demand,
differentiated triopoly. This new function was chosen because it does not
yield unique values of the Cournot–Nash price, P *, or the two-person
coalition price, P c , which means that creating and maintaining two-person
coalitions will be harder.

Both contests may be considered as oligopoly markets, with three
sellers who compete with price: if they could collude, then the joint
maximization price, P o, maximizes the profit of each, but independent profit-
maximization results in the Cournot–Nash price, P *. The price war has
strong elements of the PD: defection (price cutting) dominates collusion
(pricing at the joint-maximization level), at least in the one-shot game, but if
the game continues, then the threat of a continuing price war may result in
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all three choosing the joint maximization price, or near to it.
We could model each player’s action as choosing a price in cents

between $1.36 and $1.51, 16 possible actions. Each action can be coded by a
4-bit binary number, 0000 → $1.36 and 1111 → $1.51. We could model the
possible states as the triple of prices from the previous round: a one-round
memory. With three players and 16 possible prices, there are 163 = 4,096
possible states. The mapping string for this model would be 163 × 4 = 16,384
bits long, which models 216,384 −∼ 104,932 possible strategies.

In practice, we might want to use some knowledge of the structure of
the payoffs to reduce both the number of possible actions and the number of
distinct states. For instance, we might reduce the number of actions from 16
to, say, the 4 price points: P o, P *, P e , and P c , perhaps with a further
“shading” action: up a little, down a little, or steady. This would require 2
bits for the price, and another 2 bits for the shading. (This would provide
enough bandwidth for 24 = 16 actions again, even though we only use 4 × 3 =
12—could this redundancy be used?) We could similarly look at 123 possible
states: for each player, is he in (at, above, below) one of the four price-point
regions? This gives 4 × 3 possibilities per player, so the number of possible
states is 123 = 1,728. This means a string of length 1,728 × 4 = 6,912, which
models 26,912 −∼ 102,081 possible strategies, still a heap of possibilities!

If we abandon shading, then there are 4 possible actions (which require
2 bits), and 43 = 64 possible states or events, resulting in a string of length 64
× 2 = 128 bits, which models 2128 −∼ 1039 possible strategies. To simplify the
problem, we consider only a dichotomous three-person game, in which each
player has to choose whether to price at the coöperative level ($1.50: C) or at
the non-coöperative level ($1.40: D). In this case the bit string will be 8 bits
long, plus 3 bits for the phantom memory.

The payoff matrix of Figure 4 has been calculated from the payoff
function of equation (4), from the second MIT tournament—although the
payoffs for the same price combinations are very similar for the function of
equation (3).

C D C D
C 20 10 10 0
D 28 20 20 12

C D

Figure 4. First Player’s Payoff Matrix

In Figure 4 the payoff to defecting with one other player results in the same
payoff ($20) as does the three-way collusion of (C,C,C); in Figure 5 this has
been reduced slightly. For both Figures, Player 1 chooses the row, Player 2
the column, and Player 3 the matrix.

A bootstrapped population of 25 one-round-memory strategies (11-bit
strings) playing 22-round (w = 0.9545, r = 4.76% per round), three-person PD
games converged from random to the one-shot Nash non-coöperative
behaviour of (D, D, D): this took 31 generations for the payoffs of Figure 4 and
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C D C D
C 20 10 10 0
D 28 15 15 12

C D

Figure 5. First Player’s Payoff Matrix

23 for Figure 5. A bootstrapped population of 50 two-round-memory
strategies (70-bit strings) playing 22-round, three-person PD games also
converged from random to (D, D, D), taking 27 generations for the payoffs of
Figure 5.

These results were at first disturbing: the GA was apparently not
finding the global optimum. The implicit discount rate r of a 22-round game
is 4.76% per round. Perhaps this rate is too high to support the coöperative
(C,C,C) behaviour as an equilibrium? The length of the repeated game was
increased three-fold to 66 rounds, increasing w to 0.9848 and lowering the
implicit discount rate r to 1.54% per round, and the answer was: yes. An
identical random population of the 25 one-round-memory strategies
converged to the coöperative equilibrium after 35 generations, again using
the payoffs of Figure 5. Apparently both the theory of repeated games and
the GA are vindicated.

6.  Invasion and the Trembling Hand

EARLY work by biologists on the emergence of coöperation in animal
populations (Maynard Smith 1982) was also concerned with the

evolutionary stability of strategies (or genetically determined behaviour
traits): their ability to survive in the face of an “invasion” by other strategies.
Our formulation allows precise and unambiguous simulations to be made of
such occurrences by use of a non-random initial population of strategies that
has been seeded with any desired ratio of incumbents to specific invaders.
The invaders can be any of the strategies possible within the particular
formulation used.

Moreover, the “convergence” spoken of above is related to the general
concept of the ability of a population, over several generations, to respond to
the emergence of new strategies—by the genetic recombinations of mutation
and crossover or by exogenous invasion—either by successfully out-competing
the new strategies, which will die without issue, or by interbreeding with the
successful newcomers, so that, over several generations, the successful genes
spread through the new generations of offspring.

Binmore and Dasgupta (1986, pp.16–19) argue that the equilibrium
concept that Selten (1975) calls perfect equilibrium but that they call
trembling-hand equilibrium6 is relevant to the discussion of stability to
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invasion—it is also relevant to the convergence of the GA’s evolutionary
process towards a uniform payoff (that is, uniform behaviour in the present
generation). Roughly speaking, a Nash equilibrium for any game is a
trembling-hand equilibrium if each of its component strategies remains
optimal even when the opponents’ hands “tremble” as they select their
equilibrium strategies.

Consider a two-person symmetric game, the scores of which will be
inputs to the GA in generating the new set of offspring strategies. Suppose a
population of individual strategies A is invaded by a small number of
strategies B. Let ε be the proportion of Bs in the total population of Bs and
As. It will then be as though each player were facing an opponent using a
mixed strategy—choosing A with probability (1 − ε ) and B with probability
ε—as Binmore and Dasgupta argue, the opponent may be regarded as a
player who selects A “but with a trembling hand”. We discuss the results of
deliberate introductions of Bs into populations of As below.

Maynard Smith’s evolutionarily stable equilibrium demands that

U [A, (1 − ε) A + εB ] > U [B, (1 − ε) A + εB ],

for all sufficiently small ε , where U (X, Y) is the score of X against Y. If A is
an evolutionarily stable strategy (ESS), then a population of As is immune to
invasion by a small group of Bs. Boyd and Lorberbaum (1987) argue that no
pure strategy can be evolutionarily stable in a repeated PD. They argue that
no strategy whose behaviour during the nth round is uniquely determined by
the history of the game up to that point is evolutionarily stable (that is, has a
higher expected fitness than any rare invading strategy) if w, the probability
of not ending the game, is sufficiently large. That is, if w is sufficiently
large—if the game continues for a sufficient number of rounds without
discounting—then no strategy can be best against all opponents. Nachbar
(1988b) and D. Friedman (1991) have examined the relationship between ESS
and Nash equilibrium in both static and dynamic processes. A closer study of
the convergence and stability of our evolutionary processes demands a closer
study of the mechanisms of the GA, and perhaps an acceleration of
convergence through better selection mechanisms. This must await a later
paper.

6.1  Invasion of an Extended Prisoner’s Dilemma

We have reported above the bootstrapping of the repeated game whose payoff
matrix is shown in Figure 3, and its sensitivity to the number of rounds per
game (that is, to the probability w of not stopping before the next round). As
reported, with the high explicit discount rate of 80% per round, the
coöperative equilibrium was not supported in a bootstrap evolution of 25
random one-round-memory strategies (36-bit strings). After convergence to

_______________
6. They prefer trembling hand to perfect in order to clearly distinguish the concept from

another of Selten’s: subgame-perfect (Binmore and Dasgupta 1986, fn.18). All
trembling-hand equilibria are subgame perfect, but the converse is not true. See also
Selten (1983).
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the non-coöperative equilibrium of (M,  M), the explicit discount rate was
switched to zero. For 20 further generations the non-coöperative equilibrium
appeared stable.

6.2  Invasion of the Three-Person Game

Several simulations of invasion were performed with the three-person games
of Figures 4 and 5, using one-round-memory strategies (11-bit strings). In
both cases, with 22-round games (w = 0.9545, r = 4.76% per round), an initial
population of 24 ultra-nice Always Coöperate strategies (00000000000) was
successfully invaded by a single ultra-nasty Always Defect (11111111111); it
took 39 generations for convergence to (D, D, D) with the payoffs of Figure 4,
and only 23 generations with those of Figure 5.

Using the payoffs of Figure 5, an initial population of 24 Always
Coöperates was seeded with a single strategy (10000000000) that defects
when everyone has coöperated on the previous round, but otherwise
coöperates. After 7 generations all strategies were alternating between C and
D, but after 18 generations the invasion was complete: all strategies were at
the non-coöperative equilibrium, (D, D, D).

As remarked above, we found that lengthening the number of rounds
from 22 to 66 (w = 0.9848, r = 1.54% per round) permitted support of the
coöperative equilibrium (C, C, C), but when we repeated the invasion of 24
Always Coöperates by one Always Defect we obtained convergence to the
non-coöperative equilibrium, which demonstrates again that although a
larger number of rounds (and hence a higher value of w) enables support of
the coöperative solution, it does not ensure its emergence, the final
convergence still being a function of the initial population of strategies.

7.  Conclusions

THERE has been much recent theoretical work on the outcomes of
repeated games, both infinite and finite. In particular, researchers have

sought to answer the question: does repetition in the finite game result in a
greater degree of coöperation than will occur in a one-shot game? This work
does have policy implications: if the conditions for coöperative behaviour to
emerge as a stable equilibrium of repeated encounters (“games”) in the
absence of outside enforcement are not too restrictive, then apparent market
collusion may be just that: apparent. If the conditions are not too restrictive,
then coöperative or collusive behaviour in markets will not be sufficient
evidence of clandestine agreements to collude. These conclusions are not
new. What is new with this paper is a method for cutting through the
theoretical (and very technical) expositions: we have provided a means of
modeling strategies in repeated games, the degree of complexity of which is
only limited by the imagination of the modeler. The GA of machine learning
provides a technique for efficiently selecting from the immense number of
possible strategies those that perform best, as scored in the repeated game.
Moreover, the number of players is no conceptual limit—as computing speeds
increase, the complexity of problems amenable to solution will become ever
more realistic. Optimal solutions to the MIT tournaments will be published in
a future paper.

The GA is a parametric optimization technique, but the parameters are
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coded as binary strings, and so permit a much greater range of possible
solutions than are possible with calculus-based methods. Indeed, a program
for future research is to characterize families of strategies parametrically, so
that optimal strategies can be sought, with fewer constraints than traditional
techniques. The contingent-action strategies we have considered here is one
possibility, Fujiki and Dickinson’s LISP “grammar” is another.7

Utilizing these modeling techniques and the GA for solving the selection
of optimum strategies, we have reported results similar to Axelrod’s for the
simple symmetrical two-person PD. We have used “bootstrapping”—breeding
strategies against their peers—to examine the emergence in repeated games
of stable equilibria, whether coöperative (as in infinite supergames) or non-
coöperative (as in the one-shot PD). We find that, so long as discounting is
sufficiently low (both explicitly in the scoring function and implicitly from the
game length), coöperative equilibria are supported, as theory would suggest.

To what extent is the convergence of the machine-learning search
process of the GA a model of real-world equilibrating behaviour? Given the
simplicity of our models, probably only slight, but this convergence is related
to theoretical notions of stability in evolutionary processes and to the
susceptibility of populations of strategies to the invasion of new strategies,
whether spontaneously generated by the recombinant operations, or
exogenously introduced. Since explicit examination of the changing
membership of the population of strategies is possible, the convergence
process—including the fitness scores of specific strategies—can be closely
monitored. This awaits future study. This paper reports on successful and
unsuccessful invasions of exogenously introduced strategies.

The author’s hope is that this paper demonstrates that the research
programs outlined by both Aumann (1985) and Binmore and Dasgupta (1986)
are underway—Holland’s GA provides a powerful tool for the continued study
of strategies for repeated games. The strategies cannot collude since they are
nothing more than stimulus–response machines, and yet even in three-person
interactions, such as oligopoly markets, coöperative behaviour can occur.

There is no conceptual reason—although CPU time may provide a
constraint—why these modeling and solution techniques cannot be used for
examining games which are closer to market situations. Nalebuff (1987) has
asked how robust Tit for Tat would be in the case in which there was not
perfect information about one’s opponent’s past moves, or at least in which
the players mistakenly believed that they possessed perfect information about
each other’s past moves. So long as the simulation provided sufficient
statistical power for selection of bits in the mapping string, and given that
the model could accommodate strategies of sufficient subtlety, the machine-

_______________
7. Fujiki and Dickinson (1987) describe using the GA to generate programs written in Lisp

to “solve” the repeated PD—this is much more complex than our binary strings. Using a
“grammar” of possible strategies, they found that against Axelrod’s environment (Axelrod
1984) the strategy known as Tit for Two Tats scored best, and that when bootstrapping
the best strategy was the “trigger” strategy of coöperating until first defected against, and
then always defecting.
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learning techniques should provide an answer to Nalebuff’s challenge.
Indeed, Miller (1989) has bred finite automata strategies in noisy games.

We have discussed above relaxing three of the features of simple
models: (a) strategies with longer than one-round memories, (b) games with
more than two possible actions per player, and (c) games with more than two
players. With each of these relaxations our models (slowly) come closer to
modeling reality. A further relaxation might (Midgley 1988) be (d)
partitioning the players into two or more groups, each with a distinct payoff
matrix or function—this raises the interesting question of how the market
system will behave with each group facing a changing set of opponents (in a
three-person game) and facing a distinct payoff function. There may not be
convergence to a stable equilibrium, but then that may model the real world.

Appendix: Genetic Algorithms8

IN SECTION 3.2 we have seen how strategies (sets of rules) for playing
repeated games of the Prisoner’s Dilemma can be represented as bit strings

of zeroes and ones, each locus or substring (or gene) along the string mapping
uniquely from a contingent state—defined above by all players’ moves in the
previous round or rounds of the repeated game—to a move in the next round,
or a means of determining this next move.

We describe these strings as “chromosomes” because GAs use selection
and recombinant operators—crossover and mutation—derived by analogy
from population genetics in order to generate new sets of strings (a new
generation of “offspring”) from the previous set of strings. Brady (1985) notes
that “during the course of evolution, slowly evolving genes would have been
overtaken by genes with better evolutionary strategies,” although there is
some dispute about the extent to which such outcomes are optimal (Dupré
1987). The GA can be thought of (Bethke 1981) as an optimization method
which overcomes the problem of local fitness optima, to obtain optima which
are almost always close to global. Moreover, following biological evolution, it
treats many candidate solutions (individual genotypes) in parallel, searching
along many paths of similar genotypes at once, with a higher density of paths
in regions (of the space of all possible solutions) where fitness is improving:
the “best” individual improves in fitness and so does the average fitness of the
set of candidates (the population).

Hereditary models in population genetics define individuals solely in
terms of their genetic information: the genetic structure of an individual—or
genotype—is represented as strands of chromosomes consisting of genes,
which interact with each other to determine the ultimately observable
characteristics—or phenotype—of the individual. A population of individuals
can be viewed as a pool of genetic information. If all individuals in the
population have equal probability of mating and producing offspring, and if

_______________
8. For an introduction to GAs, see Goldberg (1988). Also see Davis (1991) and Rawlins

(1991). For another application of genetic algorithms to economics, see Marimon et al.
(1990).

- 18 -



the selection of mates is random, then the information in the gene pool will
not change from generation to generation. But environmental factors affect
the fitness of phenotypes of individuals, and hence affect the future influence
of the corresponding genotypes in determining the characteristics of the gene
pool—the principle of natural selection, which results in a changing gene pool
as fitter genotypes are exploited. Natural selection can be viewed as a search
for coädapted sets of substrings which, in combination, result in better
performance of the corresponding phenotype (the individual’s behaviour) in
its environment.

Schaffer and Grefenstette (1988) argue that the theory of GAs derived
by Holland (1975) predicts that substrings associated with high performance
will spread through the new populations of bit strings. Paraphrasing Holland
(1984), a GA can be looked upon as a sampling procedure that draws samples
from a potential set T. With each sample is associated a value, the fitness (or
score) of the corresponding genotype (or fundamental hereditary factors).
Then the population of individuals at any time is a set of samples drawn from
T. The GA uses the fitness (scores) of the individuals in the population at
each generation to “breed” and test a new generation of individuals, which
may include the best individuals from the previous generation. The new
generation is “bred” from the old using genetic operators: selection of parents
according to their fitness, crossover of genetic material from both parents,
and random mutation of bits. This process progressively biases the sampling
procedure towards the use of combinations of substrings associated with
above-average fitness in earlier generations (that is, sample individuals
characterized by higher scores because their behaviours are “better”), so the
mean score of successive generations rises owing to selective pressures. A GA
is all but immune to some of the difficulties that commonly attend complex
problems: local maxima, discontinuities, and high dimensionality.

The GA is an answer to the problem of obtaining a robust and efficient
use of information contained in a limited amount of experience: the difficulty
is the low level of confidence that can be placed on inferences from limited
samples. The GA, so Schaffer and Grefenstette (1988) argue, results in a
near-optimal trade-off between exploration (gaining more reliability from
more experience) and exploitation (using the information from past
experience to generate new trial structures). The GA can be described in
essence as (1) producing the initial population P (0) (randomly or using some
seeding method); (2) evaluating each trial structure of the population P (t) at
any time t; (3) selecting the fittest trial structures, as measured by their
scores (in our case in the repeated games); (4) applying the genetic
recombination operators to the selected parent structures to produce the
offspring generation, P (t +1); (5) testing against a stopping rule—if YES, then
stop, if NO, then return to stage (2).

The initial population P (0) is usually chosen at random, but can be
constructed to contain heuristically chosen initial strings. In either case, the
initial population should contain a wide variety of structures. The structures
of the population P (t +1) are chosen from the population P (t) by a randomized
“selection procedure” that ensures that the expected number of times a
structure is chosen to be a “parent” is proportional to that structure’s
performance, relative to the rest of the population. That is, if unique
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structure xj has twice the average performance of all the structures in P (t),
then xj is expected to appear twice in the mating pool. At the end of the
selection procedure, the mating pool contains exact duplicates of the selected
structures in population P (t), in proportion to their share of the aggregate of
fitness scores.

Although realizations of the GA differ in their methods of survival
selection, of mate selection, and of determining which structures will
disappear, and differ in their size of population and their rates of application
of the different genetic operators, all exhibit the characteristic known as
implicit parallelism. Any structure or string can be looked at as a collection
of substring components or schemata which together account for the good or
bad performance of the individual structure. Then Holland’s Schema
Sampling Theorem (Holland 1975, Davis 1991) demonstrates that schemata
represented in the population will be sampled in future generations in
relation to their observed average fitness, if we can assume that the average
fitness of a schema may be estimated by observing some of its members.
(Note that many more schemata are being sampled than are individual
structures of the population being evaluated.) Genetic algorithms gain their
power by searching the space of all schemata and by quickly identifying and
exploiting the combinations which are associated with high performance.

This can be formalized. A population of binary structures of length L
bits can be viewed as points in an L-dimensional space. Genetic algorithms
search for better structures by focusing on partitions (hyperplanes) of this
space associated with good performance or high fitness. A kth order
hyperplane (0 ≤ k ≤L) is defined as an (L −k)-dimensional subspace, and is
specified by assigning values to only k of the L string positions or loci, the rest
being filled with the # symbol. Let H be a hyperplane in the representation
space. Let M (H,t) denote the number of individual structures in P (t), the
population at time t, that are members of the hyperplane H. For example, y 2
below is a member of the hyperplane #1001###. Holland (1975) has shown
that the effect of selection alone (in the absence of other genetic operators) is
that

M (H,t+1) =
µ (P,t)
µ (H,t)_______ M (H,t), (A1)

where µ (H,t) is the average fitness of the structures or schemata that are in
both P (t) and in H, and where µ (P,t) is the average fitness of all structures in
P (t). Thus, the number of samples allocated to a hyperplane H changes
exponentially over time, growing for the above average and dwindling for the
below average. The relationship in equation (A1) applies to each hyperplane
represented in the population. In general, in a population of N binary
structures of length L bits, between 2L and N 2L distinct hyperplanes are
available for sampling. Genetic algorithms test and search for these high-
performance substrings or schemata, which far outnumber the individual
structures in the population at any time, since a single structure is an
instance of 2L distinct hyperplanes (Σ k=0

L  LCk).
The most important recombination operator is crossover. Under the

crossover operator, two structures in the mating pool exchange portions of
their binary representation. This can be implemented by choosing a point on
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the structure at random—the crossover point—and exchanging the segments
to the right of this point. For example, let two “parent” structures be

x 1 = 100:01010, and
x 2 = 010:10100.

and suppose that the crossover point has been chosen as indicated. The
resulting “offspring” structures would be

y 1 = 100:10100, and
y 2 = 010:01010.

Crossover serves two complementary search functions. First, it provides new
strings for further testing within the structures already present in the
population. In the above example, both x 1 and y 1 are representatives of the
structure or schema 100#####, where the # means “don’t care, because the
value at this position is irrelevant.” (If 1001 is a point, then 100# is a line,
and 10## is a plane, and 1### is a hyperplane.) Thus, by evaluating y 1, the
GA gathers further information about this structure. Second, crossover
introduces representatives of new structures into the population. In the
above example, y 2 is a representative of the structure #1001###, which is not
represented by either “parent.” If this structure represents a high-
performance area of the search space, the evaluation of y 2 will lead to further
exploration in this part of the search space. The GENESIS package
(Grefenstette 1987), which we use, implements two crossover points per
mating.

A second operator is mutation: each bit in the structure has a chance of
undergoing mutation, based on an interarrival interval between mutations.
If mutation does occur, a random value is chosen from {0,1} for that bit.
Mutation provides a mechanism for searching regions of the allele space not
generated by selection and crossover, thus reducing the likelihood of local
optima over time, but mutation is capable only of providing a random walk
through the space of possible structures.

The basic concepts of GAs were developed by Holland (1975) and his
students (De Jong 1980; Bethke 1981; Goldberg 1988; and others).
Theoretical considerations concerning the allocation of trials to structures
(Holland 1975; De Jong 1980) show that genetic techniques provide a near-
optimal heuristic for information gathering in complex search spaces. A
number of experimental studies (De Jong 1980; Bethke 1981; Grefenstette
1986) have shown that GAs exhibit impressive efficiency in practice. While
classical gradient search techniques are more efficient for problems which
satisfy tight constraints (e.g., continuity, low-dimensionality, unimodality,
etc.), GAs consistently out-perform both gradient techniques and various
forms of random search on more difficult (and more common) problems, such
as optimizations involving discontinuous, noisy, high-dimensional, and
multimodal objective functions (Holland 1984; Brady 1985).

The GAs do not require well-behaved, convex objective functions—
indeed, they do not require closed objective functions at all—which provides
an opportunity for an exhaustive study of the solution to repeated games.
This is possible because to use the GA to search for better solutions it is
sufficient that each individual solution can be scored for its “evolutionary
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fitness:” in our case the aggregate score of a repeated game provides that
measure, but in general any value that depends on the particular pattern of
each individual chromosome will do.
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