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AGENT-BASED MODELS

In ABM/ACE models, a population of software objects is:

— instantiated, and each agent is given

— cer tain internal states (e.g., preferences,
endowments) and

— rules of behaviour (e.g., seek utility improvements).

The agents are then permitted to interact directly with one
another and a macrostructure emerges from these
interactions.
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Patterns Emerge

Patterns in this macrostructure may then be (Axtell, 2005).

— compared with empirical data,

— agent internal states and rules revised, and

— the process repeated until an empirically plausible
model obtains.

e.g. ACE stock markets have been used to model
heterog eneous ag ents: will the stylised features of such
markets emerge? Yes.
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What is an Agent?

An agent: a self-centred program that controls its own
actions based on its perceptions of its operating
environment.

Derived from the Distributed AI notion of a network of
calculating nodes.

Example: the automata in Conway’s Game of Life or
Schelling’s segregation game.

Another example of an agent that won $2,000,000 in a
challeng e by the U.S. Department of Defense earlier this
month ...
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Stanley here .
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Ag ents and agency

Wooldridg e & Jennings (1995) would give computer
ag ents these proper ties:

• autonomy: no others control their actions and
internal state,

• social ability: can interact and communicate with
other agents

• reactive: they perceive their environment and
respond

• procative: they initiate goal-directed actions

• (intentionality: metaphors of beliefs, decisions,
motives, and even emotions)
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Eight Desired Attributes of Modelled Agents (G&T)

1. Knowledg e & beliefs.
Ag ents act based on their knowledg e of the
environment (including other agents), which may be
faulty — their beliefs, not true knowledg e.

2. Inference .
Given a set of beliefs, an agent might infer more
information.

3. Social models.
Ag ents, knowing about interrelationships between
other models, can develop a “social model”, or a
topology of their environment: who’s who. etc.
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Eight Desired Attributes ...

4. Knowledg e representation.
Ag ents need a representation of beliefs: e.g.
predicate logic, semantic (hierarchical) networks,
Bayesian (probabilistic) networks.

[Sebastian] Thrun [leader of the winning team
in the 2005 DARPA Grand Challenge] had a
Zen-like revelation: “A key prerequisite of true
intellig ence is knowledg e of one’s own
ignorance ,” he thought. Given the inherent
unpredictability of the world, robots, like
humans, will always make mistakes. So Thrun
pioneered what’s known as probabilistic
robotics. He programs his machines to adjust
their responses to incoming data based on the
probability that the data are correct. — Pacella
(2005).
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Eight Desired Attributes ...

5. Goals.
Ag ents driven by some internal goal, e.g. survival,
and its subsidiary goals (food, shelter). Usually
definition and management of goals imposed on the
ag ent.

6. Planning.
Ag ent must (somehow) determine what actions will
attain its goal(s). Some agents modelled without
teleology (simple trial-and-error), others with
inference (forward-looking), or planning.

7. Language .
For communication (of information, negotiation,
threats). Modelling language is difficult. (Want to
avoid inadver tent communication, e.g. through the
genome of a population in the GA.)

8. Emotions.
Emergent features? Significant in modelling
ag ents? Or epiphenomenal?
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How to Model Agent Architecture?

Early approach to modelling cognitive abilities (symbolic
paradigm) was fragile , complex, and lacked
commonsense .

Since then, five approaches:

1. Production Systems

2. Object Orientation

3. Language Parsing & Generation

4. Machine-Learning Techniques, and (most recently)

5. Probabilistic Robotics (Thrun et al. 2005).

Ignore 3., 4. next lecture, 5. too new.
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Production Systems

Contain:

1. a set of rules (a condition + an action),

2. a working memory, and

3. a rule interpreter (is the condition satisfied? if so,
act)

No prespecified order of rules: contingent.

The agent’s designer specifies how to break ties among
rules.
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Object Orientation

In “object-oriented” programming languages:

• “objects” are program structures containing data +
procedures for operating on those data;

• the data are stored in “slots” inside the object;

• the procedures are called “methods”;

• objects created from templates called “classes”;

• classes are ranked in a hierarchy, with subordinate
classes more specialised.

e.g. Pedestrian flow in a shopping mall — Class:
pedestrian; Slots: location, direction, gait; Subclass 1:
lone walkers; Subclass 2: group walkers (with a List of
Who, and Interactions with others in the group).

If the rules are specified at the class level, then all agents
share the rules, but with different attributes.

OO computer languages: C++, Lisp, Java. etc.
< >
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Probabilistic Robotics

In the 2004 DARPA Grand Challenge, robots used
Production System architecture .

Results: The most successful entrant in last year’s race
completed just 7.4 miles of the 150-mile off-road (desert)
course , and only six of the fifteen cars competing
travelled even 1.3 miles.

In the 2005 Grand Challenge, many robots used
probabilistic (or Beysian or fuzzy-logic) architecture .

Results: “Stanley,” Stanford’s robotic Volkswagen Touareg
beat the field, completing the 132-mile race with a winning
time of 6 hours 53 minutes and 58 seconds (an average
speed of 19.1 mph). Four other vehicles successfully
completed the race. All but one of the 23 finalists in the
2005 race surpassed the 7.36 mile distance completed by
the best vehicle in the 2004 race.
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Grand Challenge Rules

• The vehicle must travel autonomously on the ground
in under ten hours.

• The vehicle must stay within the course boundaries
as defined by a data file provided by DARPA.

• The vehicle may use GPS and other public signals.

• No control commands may be sent to the vehicle
while en route .

• The vehicle must not intentionally touch any other
competing vehicle .

• An autonomous service station is permitted at a
checkpoint area approximately halfway between start
and finish.

The Stanford team won the first prize of US $2,000,000.

< >



Lecture 2 R.E.Mar ks © 2005 Page 14

Modelling the Environment

Definition of the environment depends on what is being
modelled.

For individuals:

• move in a space, or on a network;

• use sensors to perceive the environment, including
others;

• perhaps be able to affect the environment directly;

• perhaps receive and send signals in the
environment.

For computer agents, the order of agents running can be
crucial (“concurrency”). Sometimes, buffering their
signals is sufficient.
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G & T Use NetLogo to build a multi-agent simulation.
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Economic Journal June 2005 Feature —

• focussed on Complex Adaptive Systems CAS in
economics

• appeared just after Leombruni & Richiardi asked,
“Why are economists sceptical about agent-based
simulations?” (Physica A 355: 103−109, 2005.)

• included 4 papers: introduced by Markose , with
papers by Axtell, Robson, and Durlauf

• addressing, respectively,

— markets as complex adaptive systems,

— formal complexity issues,

— the co-evolutionar y Red Queen effect and
novelty, and

— the empirical and testable manifestations of
CAS in economic phenomena.
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Leombruni & Richiardi’s answer:

(From 1970, only 8 ACE articles of 26,698 in top 20 econ
journals.)

Possible reasons:

i. interpretation of the simulation dynamics and
generalization of the results,

ii. estimation of the simulation model

iii. I would add: in general, no necessary conditions
from simulation, just sufficient conditions

iv. and validation of the model.
(but also applies to closed-form models)
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Markose and the EJ Feature on CAS:

• many “anomalies” not understood or modelled using
conventional optimisation economics:

— innovation,

— competitive co-evolution,

— persistent heterog eneity,

— increasing returns,

— “the error-driven processes behind market
equilibrium,”

— herding,

— crashes and extreme events such as October
1987.

• need the “adaptive or emergent methods” of ACE
simulation
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Moreover ...

Axtell (2005) argues that:

• the decentralised market as a whole can be seen as
a collective computing device

• the parallel distributed agent-based models of k-
lateral exchang e → the specific level of complexity
(polynomial) in calculations of equilibrium prices
and allocations.
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Simon’s Bounded Rationality

Ag ent-based models, following Simon (1982), also assume
Bounded Rationality. Indeed, in the absence of Turing
machine (universal calculator), it is difficult not to.

But Epstein (2006) reflects:
“One wonders how the core concerns and history of
economics would have developed if, instead of being
inspired by continuum physics ... blissfully unconcerned
as it is with effective computability — it had been founded
on Turing. Finitistic issues of computability, learnability,
attainment of equilibrium (rather than mere existence),
problem complexity, and undecidability, would then have
been central from the start. Their foundational importance
is only now being recognized.
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Epstein on the virtues of boundedly rational agents ...

“As Duncan Foley summariz es:

`The theory of computability and computational
complexity suggest that there are two inherent
limitations to the rational choice paradigm.

One limitation stems from the possibility that the
ag ent’s problem is in fact undecidable , so that no
computational procedure exists which for all inputs
will give her the needed answer in finite time.

A second limitation is posed by computational
complexity in that even if her problem is decidable ,
the computational cost of solving it may in many
situations be so large as to overwhelm any possible
gains from the optimal choice of action.’ (See Albin
1998, 46).”
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