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Co-evolving Better Strategies in Oligopolistic Price Wars

INTRODUCTION

We use simulated evolution to explore oligopolistic behaviour in a (retail) market with up
to four strategic sellers, comparing our simulation results with historical data derived
from a retail market for ground, vacuum-sealed coffee beans. We find that our boundedly
rational sellers perform well (as measured by their average weekly profits) compared to
their historical counterparts, despite their limited memory and constrained marketing
actions.

Significant features of our work are: first, our agents are heterogeneous: they
respond idiosyncratically to others’ actions, they hav e distinct costs, face distinct demand
curves, and so earn distinct profits. For this reason, we cannot ignore the identities of the
separate players, which would be convenient, were the players identical. Second, we use
the Genetic Algorithm (GA) to model the players’ learning. To avoid “social learning”
(Vriend 2000), when players drawn from a single population pass information to their
“offspring” through the genotype (an extra-market mechanism), we use distinct
populations for the four strategic sellers, which precludes extra-market communication
and learning. Third, we use stochastic sampling (commonly know as Monte Carlo
sampling, see Judd 1998) to generate a distribution of marketing behaviours across the
sellers: given the stochastic nature of the GA, and the complexity of the genotypes and
phenotypes, we use distinct random seeds to generate 50 distinct outcomes.

Computer scientists have dev eloped machine learning, such as the GA (Holland
1976, 1992; Mitchell 1996; Goldberg 1989) and classifier systems (Holland 1976, 1992)
as means of optimising — of finding the argmax of functions not amenable to calculus-
based methods of solution. Social scientists have used and developed these tools (Marks
1989, 2002; Arifovic 1993) but less as optimisers, and more as generators of “adaptive
plans” or “structures that perform well” in complex systems (Holland 1975, 1992), by
modelling “adaptive economic agents” (Holland & Miller 1992) that interact. This
chapter demonstrates a use of the GA in this spirit.

OLIGOPOLISTIC THEORY

Rivalry among retail brand managers in a market for vacuum-sealed ground coffee beans
can be seen to possess characteristics that clearly reflect the oligopolistic nature of the
repeated interaction: the brands are seen as imperfect substitutes by the buyers, the sales
of any one brand, if stimulated by heightened marketing actions, will negatively impact
on the sales of other brands, and there is no single going market price for coffee. We
model Bertrand asymmetric competition among firms, competing with price (and other
marketing actions) rather than quantity.

We hav e access to 78 weeks of supermarket-scanner market data for a city in the
U.S. mid-west by supermarket chain. The marketing actions (price, coupons, aisle
display, advertising) remain unchanged for seven days, from midnight Saturday, for all
brands, a property that lends itself to simulation modelling on a digital computer.

One of us (Cooper) has developed a market model, Casper, which calculates, given
all of the nine brands’ marketing actions, the volume of sales of each brand, the brands’
revenues and profits (Cooper & Nakanishi 1988).1 The brands differ not only in the
demand response of the market (each of their price elasticities of demand is distinct), but
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also in their costs. The brands are truly hereogeneous, as seen in Tables 1 and 2.

Brand Price Market
Share

Folgers $2.33 21%
Maxwell House $2.22 20%
Chock Full O Nuts $2.02 11%
MH Master Blend $2.72 10%
Chase & Sanbourne $2.34 4%
Hills Bros. $2.13 4%
Yuban $3.11 1%
All Other Branded $1.96 3%
All Other Private Labels $1.95 27%

TABLE 1. The Nine Brands: Average Price and Market Share

Own-Price Elasticity AVC

of Market Share ($/lb)

Folgers −4.4 $1.39
Maxwell House −3.9 $1.32
CFON −4.7 $1.19
Hills Bros. −0.5 $1.18

TABLE 2. Asymmetries of the Four Strategic Brands

Casper provides the equivalent of the one-shot payoffs for each of the brands, modelled as
playing a repeated game.2

Although each brand manager must choose the set of next week’s market actions
in ignorance of the other brands’ action next week, this and preceding weeks’ actions are
observable by all brands. So the brands can choose to remember the actions of their rivals
for one, two, or more weeks. Their depth of memory is a measure of their bounded
rationality: an unboundedly rational player would choose to forget nothing, and to use all
remembered information including its weekly profits in deciding what marketing actions
to undertake next week.

But the brand managers do not have unfettered freedom to choose their marketing
actions, since the policies of the supermarket chain constrain them, in two ways. Some
actions (including a price well below the “shelf price”) result in much higher sales, and
higher profits (the lower margins are more than offset by higher volumes of sales). The
chain constrains use of these so-called “promotional” actions. First, no brand may use a
promotional action set two weeks successively. Second, only one brand may use a
promotional action set in any week. The chain acts as the moderator among the brand

1. We can make available the C sources for our programs and the 75 weeks of historical market data on

request.

2. With up to four hereogeneous players, each facing a set of up to eight possible actions, the asymmetric

(8 × 8 × 8 × 8) payoff matrix is much too large to reproduce here.
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managers, who each propose their next week’s action set and acquiesce in the
supermarket’s choice of which brand may promote next week.

Competing against each other, the brand managers are trying to maximise their
av erage weekly profits. The supermarket chain is competing against other chains for
sales, although we do not model this rivalry explicitly here. Instead, we model the
supermarket as trying to maximise “total category volume” of coffee sales. The reason is
that coffee is one of many supermarket categories, but one that might attract more
customers to the chain, and so help to sell higher volumes across many categories. We
model supermarket moderation in several ways, as discussed in detail below.

The competition among brand managers is asymmetric, because each of the brands
is distinct, with distinct price elasticities of demand, distinct unit costs of provision, and
distinct responses to the market. Moreover, solution of the Nash equilibrium of the one-
week game, let alone solution of Nash equilibria in the repeated game, is not amenable to
calculus-based, closed-form techniques.3 There are nine brand rivals in the chain we focus
on, although only four are engaged in what we might call a “rivalrous dance” by altering
their marketing actions every week. Figure 1 shows the behaviour of the three major
strategic brands, and one minor one.

There are two main purposes of our research. First, we wish to calibrate and
validate our model’s behaviour to the historical data. To this end, we use the asymmetries
implicit in Casper to model the brands’ sales, revenues, costs, and profits in any week,
given all brands’ market actions that week. We allow the model to run for 50 weeks, with
up to four “strategic brands” altering their marketing actions from week to week, in
response to the state of the market (defined as the set of all players’ marketing actions) the
previous week. We look for several measures of the simulated competition: weekly
profits, weekly Total Category Volume of coffee sales, and the marketing actions
employed by the four strategic players.

The marketing actions include price, coupons, aisle display, and flier advertising.
Historically, brands’ prices varied from $1.50/lb to $3/lb, with promotional prices below
$2.25/lb. Coupons reduce the price paid at check-out, and are measured by percentage of
stores in the chain that distribute coupons for that brand that week. We net the impact of
coupons out of the retail price to simplify the action space. Similarly, aisle display and
flier advertising are reported as percentage of stores in the chain that include them for any
brand in any week. In practice, as discussed above, the store permits only one brand to
promote itself any week, and we see a consistent pattern in coupons, aisle display, and
flier advertising: only one promoted brand per week.

We could allow the adaptive brand managers of the model to choose their price
from any between 150 and 300 cents per pound, and any percentage of aisle displays and
flier advertising, but in practice we believe, first, that this degree of freedom is not
necessary to replicate historical performance, and, second, that the practical difficulties of
simulating this (such as a huge number of degrees of freedom in the definition of “market
state”, and the need to execute Casper each simulated week instead of using a much faster
compiled look-up table) militate against it.

Instead, we use the historical data to identify, first, four sets, and, second, eight sets
of brand-specific actions which are representative of those chosen over the first 50 weeks

3. The Folk Theorem of repeated games (Fudenberg & Maskin 1986) tells us that there is a multiplicity

of N.E. of the repeated game; in essence, any individually rational outcome can be a N.E. with a

sufficiently low discount rate.
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of data. Later, we use eight action sets that are identical across the four strategic brands,
and find similar results.

The second purpose of our research is to see whether our boundedly rational
artificial brand managers can surpass the performance of their historical counterparts, as
measured by their weekly profits, handicapped as they are by, first, simple one-week
memory, and, two, constrained choice of marketing actions. Necessarily, since we do not
have access to actual historical brand managers in order to pit them against our artificial
brand managers in a laboratory setting, we must be content with closed-loop experiments,
where are artificial brand managers respond to the unfolding history of past rivalries, but
where the historical actions cannot respond to our artificial agents’ actions. We argue
below that both aims are attained.

The structure of the chapter is as follows. After a discussion of the GA, we
describe our historical market data, and then describe the results of a set of computer
experiments, as we increase the number of strategic brands from three to four, and the
number of possible marketing actions per brand from four to eight. We present the open-
loop results of playing our best co-evolved artificial brands against history, and introduce
the Holyfield-Tyson effect of pitting more evolved agents against less evolved agents. We
discuss the implications of our results for insights into Managerial Learning.

BORROWING FROM NATURE: THE GENETIC ALGORITHM

Axelrod (1987) modelled players in his discrete repeated Prisoner’s Dilemma (RPD)
game as stimulus-response automata, where the stimulus was the state of the game,
defined as both players’ actions over the previous several moves, and the response was the
next period’s action (or actions). That is, he modelled the game as a state-space game
(Fudenberg & Tirole 1992, Slade 1995), in which past play influences current and future
actions, not because it has a direct effect on the game environment (the payoff function)
but because all (or both) players believe that past play matters. Axelrod’s model focused
attention on a smaller class of “Markov” or “state-space” strategies, in which past actions
influence current play only through their effect on a state variable that summarises the
direct effect of the past on the current environment (the payoffs). With state-space games,
the state summarises all history that is payoff-relevant, and players’ strategies are
restricted to depend only on the state and (perhaps) the time.

We hav e been using versions of the GA since 1988 to explore oligopolistic
behaviour.4 As we describe above, we model the artificial brand managers as
stimulus−response automata, in effect, where the stimulus is this week’s market state
(defined by the marketing actions of all players, and particularly the four strategic
brands), and the response is the brand’s proposed market actions next week. The eventual
market actions per brand are the outcome of a moderating process performed by the
supermarket chain, responding to the four proposals of the brand managers.

We use the GA to search simultaneously for better automata for each of the four
strategic brands, using their weekly profits as a measure of performance or fitness. Each
brand manager is modelled as a binary string. If there are eight possible marketing
actions to choose from (correlating aisle display and flier advertising with promotional
prices), then we can use three bits on the string to code for next week’s marketing action.

4. Differentiated Bertrand oligopolistic competition closely resembles an asymmetric n-person Prisoner’s

Dilemma (Fudenberg & Tirole 1992).
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How many triples are sufficient for the model? With four strategic players, each with
eight possible marketing actions, there are amp possible states (Midgley et al. 1997),
where a = the number of actions (8), m = the number of weeks remembered (1), and p =
the number of strategic players (4), a total of 4,096 possible states, each state mapping to
a triple of bits on the artificial player’s bit-string “chromosome”, which requires each
string to be 12,288 bits long. Adding an additional 12 bits for the “phantom memory” at
the first of the 50 weeks (to endogenise the initial conditions of the brand’s belief in the
previous week’s market state) gives us 12,300 bits per string. This work is a
generalisation of Axelrod (1987) and Marks (1992), and uses the ability of the GA to
search the highly disjoint space of strategies, as Fudenberg & Levine (1998) have
suggested.

As is well known (see Goldberg, 1989, Mitchell 1996, or the second edition of
Holland 1992), the GA borrows from our understanding of evolution to search for
solutions to problems not easily solved otherwise. An initial population of solutions is
generated; the fitness score of each individual is determined; a subset of individuals is
elected to be the “parents” of the next generation; the “crossover” of pairs of parents is
simulated; and each bit is flipped from zero to one or vice versa (“mutated”) with a small
probability (here 1%). The fitness of each member of the new population is determined.
And the process repeats until convergence.

The GA has been used by engineers as an optimisation tool. Social scientists have
used it in a slightly different way: as a means of simulating co-evolution. In our model,
each brand manager learns from its rivals’ behaviour, and from its rivals’ responses to its
own actions. This mutual leaning means that the competitive environment changes, even
as each artificial brand manager learns to compete more effectively. As a result, there is
no necessary increase in weekly profits, even as the GA winnows the succeeding
generations of their worst performing strings.

Co-evolution requires a separate population for each of the strategic players.5 A
single population would allow extra-market communication and learning to occur via the
genetic operations of selection and cross-over. Not only would this be illegal under
antitrust laws, but such social learning (Vriend 2000) is not what we want to model.
Necessarily, four separate populations requires a much more complex GA program, but
only a co-evolving GA is appropriate. We extensively rewrote the GA software (GAucsd,
based on John Grefenstette’s GENESIS package) (Schraudolph & Grefenstette 1992) to
allow the simultaneous simulation of up to four populations of agents (modelled as bit
strings).

We use a population size of 25, each string being 12,300 bits long, with four
populations.6 This is a non-trivial simulation, but we manage to obtain 2,500 generations,
each of 5.5 million weekly interactions, every 50 minutes on a Mac G5 dual-2Ghz Unix
workstation.

5. Were our players identical, we would have a symmetric game, and could follow the modelling

simplification of Yao & Darwen (1994), as many computer scientists have done. But our players are

not identical: their identity matters, as seen in Tables 1−4.

6. The GA parameters include: Crossover Rate = 13.0, Mutation Rate = 0.01; see Schraudolph &

Grefenstette 1992.
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THE HISTORICAL DAT A: THE RETAIL GROUND-COFFEE MARKET

The data refer to a local U.S. retail market for ground-caffeinated coffee. There are nine
brands or players. Table 1 gives the average prices ($/lb) and market shares for each of
the nine. Table 2 presents further data on the heterogeneity of the strategic players: their
own-price elasticities of market share and their Average Variable Costs (AVC). Figure 1
shows the historical prices (top half) and quantity of sales (bottom half) by brand over 75
weeks. The solid lines map the prices and sales of the three strategic brands, Folgers,
Maxwell House, and CFON; the dotted lines map the other brands. The data are
aggregated on a supermarket chain. As mentioned above, each marketing action
comprises four “marketing instruments”:

1. prices (the price that week of the brand);

2. flier features (the percentage of stores in the chain featuring the brand’s item in
their distributed advertising);

3. in-store aisle displays (the percentage of stores in the chain featuring the brand’s
item as an aisle display); and

4. coupons, which are distributed to households in the district, for redemption of the
brand’s product at the supermarket chain. We adjusted the price in any week by
the percentage of coupons distributed.

COMPUTER EXPERIMENTS

We model the brand managers as artificial agents. The computational experimenter can
control the agents’

• information (what they know when);

• learning (how information about their own and others’ behaviour alters their future
responses);

• degree of bounded rationality (in particular, their memory of past weeks’ actions
and outcomes, perhaps aggregated into coarser partitions);

• sets of possible actions (their deterministic responses to the perceived state of the
market); and

• payoffs (which, like their information, learning, memory, partitioning, and actions,
are asymmetric).

Simulation, although it cannot in general establish necessity, does enable
exploration of the sufficient conditions for the emergence of particular aggregate market
phenomena, given players’ micro behaviour.

First Results

This chapter builds on work reported in Midgley et al. (1997). There we considered the
three most interactive players in the market: Folgers, Maxwell House, and Chock Full O
Nuts (CFON). We allowed each agent four action sets, as derived from an analysis of
their historical prices and other marketing actions. Table 3 shows the four possible action
sets for each of the three agents.

- 6 -



F o l g e r s  Maxwell House C F O N

A P  F D P  F D P  F D

($/lb) (%) (%) ($/lb) (%) (%) ($/lb) (%) (%)

p1 1.87* 95* 69* 1.96* 95* 69* 1.89* 100* 77*

p2 2.07 83 0 2.33 83 0 2.02 100 65

p3 2.38 0 0 2.46 0 0 2.29 0 0

p4 2.59 0 0 2.53 0 0 2.45 0 0

* Asterisked actions are subject to store moderation.

A is Action, P is Price, F is advertising Feature, D is aisle Display.

TABLE 3. The Four Sets of Actions of the Three Strategic Brands

Our intention was to pit the three strategic brands against each other, while the
other brands were unchanging or non-strategic players, in order to examine the co-
ev olution of the three agents’ behaviour. We would need to distinguish convergence of
behaviour (phenotype) from structure (genotype).

We used the Casper market model to derive the three asymmetric 4 × 4 × 4 payoff
matrices for the three strategic players. The payoff matrix indicates any brand’s weekly
profit for each of the 64 combinations of price given in Table 3, given the non-strategic
prices of the other six brands ($/lb) (Table 4).

Master Hills Yuban C&S AOB APL
Blend Bros

2.90 2.49 3.39 2.39 3.68 2.19

TABLE 4. The Fixed Prices of the Other Six Brands

With one-week memory, the agents were modelled as bit strings of length 2 × 43 + 6 =
134 bits. (The 6 bits of phantom memory endogenise initial conditions: each agent has
four possible actions coding to 2 bits, and there are three strategic players.)

Each agent played a 50-round game with each possible combination of the other
two players. The GA used 25 mappings (or strings) per population for each agent.
Therefore, testing each generation required 8125 50-round games, or 325 games per
string per generation. Each agent had complete information of all previous actions in
each 50-round game, but not others’ weekly profits (payoffs).

Figure 2 shows three patterns and average weekly profits with three distinct
populations. For most of the runs, the agents’ behaviour is very similar (Folgers and
CFON pricing at an Every Day Low Pricer (EDLP); Maxwell House exhibiting Wide
Pulsing (WP). In Pattern 3, CFON is exhibiting Promote to the Max (PttM).

Consult Midgley et al. (1997) for a discussion of the patterns of behaviour of the
unconstrained and constrained brands, and the issue of demand saturation over time that
the single-week estimates of Casper evoke. After constraining the brands (as discussed
above) and accounting for demand saturation, our three-brand, four-action model
generates patterns of behaviour similar to Figure 1: brands alternate (roughly) in pricing
at p1, while the other two price at p2, p3, or p4.

Having co-evolved populations of each of the three strategic agents over one
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Pattern 1 (25/50 runs)

Folgers (EDLP)

$1,093

Maxwell House (WP)

$804

CFON (EDLP)

$527

Pattern 2 (16/50 runs)

Folgers (EDLP)

$1,092

Maxwell House (WP)

$804

CFON (EDLP)

$527

Pattern 3 (1/50 runs)

Folgers (EDLP)

$1,045

Maxwell House (WP)

$830

CFON (PttM)

$580

p1 p2 p3 p4

Figure 2: Three Agents, Four Actions.



hundred generations, we decided that one way to demonstrate the extent to which the
agents had learnt to act effectively was to use the most profitable agent by brand from the
hundredth generation and play it against the history of play of the other strategic brands.
In order to do this, we had to partition the historical actions into four intervals for each of
the three strategic brands. We measured performance by the average profits over the
seventy-five week history.

For Folgers and CFON the agents improved on their historical performance, but
Maxwell House sometimes did worse, even on average. But this was an “open-loop”
simulation: the historical managers had responded to the historical actions of all others,
but here could not respond to the agents’ actions. Nonetheless, our very simple agents
generated reasonable performance in a noisy environment.

Four Strategic Players

Previously, we modelled the oligopoly with three strategic players, each with four
possible actions, remembering one week back. As discussed above, the agents were
modelled as bit strings of length 134 bits. To improve the realism of the simulation, we
increase the number of strategic brands to four, by including Hills Bros. This increases
the bit-string length from 134 bits to 520 bits.7 We chose Hills Bros., despite its small
market share, as the fourth strategic agent, because the fourth largest brand (Master
Blend) is not independent of Maxwell House, and so their strategic actions could be
orchestrated by the owner.

The results of introducing the fourth strategic brand are striking. Even though Hills
Bros. has a small market share (4%), its introduction is quite significant. The market
changes in significant, complex, and asymmetric ways. There are changes in the other
brands’ behavior as well as in other brands’ average weekly profits. Figure 3 shows three
patterns and weekly profits which comprise 38 of 50 Monte Carlo runs. The new strategic
agent apparently takes up some of the fixed number of opportunities for major
promotions, and has differing competitive impacts on the other brands. Surprisingly, the
total weekly profits of the first three brands rise when a fourth player is introduced, at
least for the 40-odd patterns of Figures 2 and 3. What these simulations demonstrate is
that a small player (as measured by market share) isn’t necessarily insignificant
strategically. In Pattern 1, Maxwell House is exhibiting High Pricer (HP), and in Pattern
3, Shelf Price (ShP).

Eight Actions per Player

Heretofore the strategic agents (whether three or four) have been constrained by the four
possible actions, chosen from the historically observed actions of the actual brand
managers. In effect, the agents were given a choice of pricing high or low, with minor
variation around the two positions, and they were constrained by the corporate memory
and prior learning of the actual brand managers, who had, we assume, learned not to price
too high (and sell very little) or too low (and earn little and perhaps spark a price war).

We wanted to increase the choices of the agents. The simplest way was to double
the number of possible actions per agent from four to eight. The effect of this on the bit-
string length will depend on the number of strategic agents: for three agents, with one-

7. Four actions requires 2 bits per action; 4 actions, 4 players, and 1-week memory implies 44 = 256

possible states; phantom memory is 4 × 2 = 8 bits. So 2 × 256+8 = 520 bits per string.
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Pattern 1 (28/50 runs)

Folgers (PttM)
$915

Maxwell House (HP)
$730

CFON (WP)
$839

Hills Bros. (HP)
$167

Pattern 2 (9/50 runs)

Folgers (PttM)
$929

Maxwell House (HP)
$715

CFON (WP)
$827

Hills Bros. (HP)
$164

Pattern 3 (1/50 runs)

Folgers (EDLP)
$936

Maxwell House (ShP)
$848

CFON (WP)
$833

Hills Bros. (LP)
$153

p1 p2 p3 p4

Figure 3:, Four Agents, Four Historical Actions — Hundredth Generation



week memory, allowing eight possible actions instead of four increases the length from
134 bits to 1,545; for four agents, the length increases from 520 bits to 12,300 bits.8

By increasing the number of actions to eight, we hoped to give our agents the
opportunity to demonstrate that the four actions used earlier were robust, and that our
assumption of a mature oligopoly were correct, at least in terms of the combinations of
prices and other marketing actions encountered.

Moving to eight possible actions, especially including some beyond the observed
range of actions of the historical brand managers, introduces the possibility of the agents
learning anew what was embodied in the historical range: not to price too high or too low.

F o l g e r s  Maxwell House C F O N  Hills Bros.

A P  F D P  F D P F D  P F D

($/lb) (%) (%) ($/lb) (%) (%) ($/lb) (%) (%) ($/lb) (%) (%)

p1 1.62* 67* 67* 1.60* 97* 97* 1.64 0 0 1.86* 100* 74*

p2 1.83* 97* 96* 1.87* 94* 91* 1.89* 97* 97* 1.91 0 73

p3 1.96 0 0 2.06* 88* 76* 1.89* 98* 29* 1.95* 100* 87*

p4 2.03* 79* 77* 2.33 79 0 2.01 0 0 2.09* 100* 0*

p5 2.04* 85* 0* 2.38 54 0 2.02* 97* 62* 2.19 0 0

p6 2.22 96 33 2.52 0 0 2.31 0 49 2.42 0 0

p7 2.57 0 0 2.53 0 53 2.33 0 0 2.49 0 100

p8 2.78 0 0 2.59 0 13 2.49 0 0 2.56 0 14

* Asterisked actions are subject to store moderation. A is Action, P is Price, F is advertising Feature, D is

aisle Display.

TABLE 5. Four Brands: Sets of Eight Possible Marketing Actions.

Figure 4 shows the weekly profits and patterns of behaviour, as reflected by the
frequency of actions across the three strategic agents. The data refer to 50-run Monte
Carlo simulations. (The black diamonds ♦ in the figures correspond to the asterisks in
Table 5: actions subject to store moderation.)

After four generations, starting from a uniform distribution of actions (because the
bit strings are chosen randomly to begin with, apart from filtering against the actions of
promoting two weeks in succession), we see that the frequencies of actions are still almost
uniform. After 100 generations, however, the agents have focussed on only two or three
main patterns of interaction, with many fewer than eight possible actions used frequently:
agents have co-learnt the two or three actions that are most profitable, given others’
behaviour. The actions are brand-specific.

Specifically, with three strategic agents: CFON is pulsing between Shelf Price
(high) and Promotional Price (low). Folgers exhibits three pulsing patterns: P2 — pulsing
three actions, P1 — more diverse pulsing, with four actions, and P3 — pulsing with two
actions. Maxwell House exhibits a less dynamic choice of Every Day Low Price, and
avoids the store constraints. CFON is pulsing with two action: wide or narrow.

From a 50-run Monte Carlo simulation of four agents and eight possible actions, we
observe in Figure 5 for 44 runs that the four agents exhibit different behaviour: Folgers
and CFON show Wide Pulsing, from high to low, promotional prices (indicated by the

8. Eight actions requires 3 bits per action; 8 actions, 3 players, and 1-week memory implies 83 = 512

possible states; phantom memory is 3 × 3 = 9 bits. So 3 × 512+9 =  1,545 bits per string. Eight

actions per player and 4 players (while retaining 1-week memory) requires 3 × 84 + 4 × 3 = 12, 300 bits

per string.
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Fourth Generation

Folgers

Maxwell House

CFON

♦ ♦ ♦ ♦

♦ ♦ ♦

♦ ♦ ♦

Pattern 1 (27/50 runs) Hundredth Generation

Folgers (WP)
$899

Maxwell House (EDLP)
$1,066

CFON (WP)
$680

♦ ♦ ♦ ♦

♦ ♦ ♦

♦ ♦ ♦

Pattern 2 (14/50 runs) Hundredth Generation

Folgers (WP)
$869

Maxwell House (EDLP)
$936

CFON (WP)
$704

♦ ♦ ♦ ♦

♦ ♦ ♦

♦ ♦ ♦

Pattern 3 (1/50 runs) Hundredth Generation

Folgers (WP)
$813

Maxwell House (EDLP)
$1,198

CFON (NP)
$977

♦ ♦ ♦ ♦

♦ ♦ ♦

♦ ♦ ♦

p1 p2 p3 p4 p5 p6 p7 p8

Figure 4: Three Agents, Eight Historical Actions



black diamonds), but Folgers, with 42% of its actions promotion (of a possible maximum
of 50%) is almost Promoting to the Maximum, whereas CFON is promoting only 22% of
the time; Maxwell House shows High Pulsing, seldom (15%) promoting at low prices;
and Hills Bros. shows Shelf Price ( p6) or higher, promoting only 8% of the time.

Pattern 1 (44/50 runs)

Folgers
$992

Maxwell House
$606

CFON
$570

Hills Bros.
$115

♦ ♦ ♦ ♦

♦ ♦ ♦

♦ ♦ ♦

♦ ♦ ♦

p1 p2 p3 p4 p5 p6 p7 p8

Figure 5: Four Agents, Eight Historical Actions — 2500th Generation

Overall, we can say that, with the eight possible actions of Table 5, a greater degree
of homogeneity emerges, with 44 of 50 Monte Carlo runs being identical. Moreover,
adding a fourth strategic agent increases the degree of competition in the market, which is
here reflected in lower average profits for the first three brands, as well as different
behaviour.

Moderation in the runs of Figure 5 is achieved randomly (by a “zero-intelligence”
chain moderator), but we explored changing this in two ways: first, by altering the
possible actions of Table 5 by eliminating the lowest prices, and, second, by estimating
from the historical data just how moderation was achieved and the chain’s preferences
across brands revealed. We do not report these experiments in detail here, but brands’
profits fell, as did the volume of coffee sold.

When we repeated the open-loop plays between the best of the co-evolved three
agents with eight possible action and the historical brand managers, we found that the best
agents clearly outperformed their historical counterparts: for Folgers by 156%, for MH by
32%, and for CFON by 42%.

The Frankenstein Effect: Agents that showed only a few behaviours in the co-
ev olutionary “lab” were able to evince a wider repertoire when faced with a more variable
environment (the history of actual managers’ behavior). We dub this the Frankenstein
effect because the artificially bred agents were more interesting in the wild than in the lab.

The Holyfield-Tyson Effect:

The artificial agents “learn” through application of the evolutionary techniques of the GA.
This is clear when the agents are solutions to a static problem, as has been the most usual
application of GA techniques in, say, engineering. It is also the case that the first
application of GAs in economics (Axelrod 1987) was static, even if stochastic: Axelrod
used GAs against a non-evolving but mixed-strategy niche of algorithms derived from the
early But Marks (1992) and others following have bred artificial agents against each other,
a process that Marks called “bootstrapping” and biologists term “co-evolution”.
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Against a static environment, progress of the artificial agents is readily revealed by
their improving fitness scores, but against a dynamic environment comprised of like
artificial agents, scores may not rise from generation to generation. Tw o questions: Do
highly co-evolved players become effete? Will a naïve outperform a sophisticate?

Apart from the growth in average weekly profits, there are at least two further ways
to demonstrate that the artificial natural selection has improved the agents’ performances.
In our earlier work we attempted to show the greater competence of our artificial agents
by pitting them against the historical histories of play of their opponents, but some
criticism has been made that this overstates the skills of the artificial agents and
understates the skills of the historical agents, who have no opportunity to respond to the
actions of the artificial agent: their plays are given, or open-loop.

Here we attempt to show how the artificial agents have learnt by taking agents after
2,500 trials (100 generations) and playing them against not the frozen moves of their
historical opponents, but the agents after only 200 trials (8 generations): a process we
have termed pitting a “sophisticated” agent against “naïve” agents. How to show that the
co-evolved agents are learning to respond better (are truly fitter)? Previously: we
considered the mean weekly profits. Now: in turn we replace the best naïve (at 8
generations) Folgers (respectively, Maxwell House, and CFON) string with the best
sophisticate (after 100 generations) Folgers (respectively, Maxwell House and CFON)
string.

The procedure followed was:

1. After 8 generations, identify the best string from each of the 3 or 4 populations.

2. Play these 3 or 4 against each other for a 50-week repeated game; note average
weekly profits.

3. Allow the 3 or 4 populations to continue co-evolving via the GA.

4. After 100 generations, identify the best strings from the 3 or 4 populations, play
them against each other as before; note average weekly profits. Table 6 shows
these results.

Experiment Folgers Maxwell CFON Hills Total
House Bros.

3 pop., 4 actions 1,053 793 534 n/a 2,380

3 pop., 8 actions 889 985 694 n/a 2,568

4 pop., 4 actions 915 729 835 164 2,479

4 pop., 8 actions 992 606 570 115 2,284

Av erage weekly profits computed from 50 Monte Carlo simulations and all combinations
of agents. Historical-action sets.

TABLE 6. Performance of Hundredth-Generation Agents Competing with Each Other

5. Replace the best Folgers string after 8 generations by the best Folgers string after
100 generations (i.e. replace the best primitive string by the best sophisticate).
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6. Play all combinations of 3 or 4 strategic brands, and consider string-by-string the
change in average weekly profits with the sophisticated player and without the
sophisticated player in one brand.

7. Repeat steps 5 and 6 for the remaining 2 or 3 strategic brands.

8. Repeat steps 1-7 50 times. Table 7 shows the performances.

Experiment Folgers Maxwell CFON Hills
House Bros.

Historical actions 188a 198a 69a ?

3 pop., 4 actions 410b, 468c 271, 329 107, 113

3 pop., 8 actions 523, 806 295, 514 104, 124

4 pop., 4 actions 430, 469 191, 286 103, 111 ?

4 pop., 8 actions 481, 944 262, 559 98, 110 12, 13
(60th gen.)

a. Average weekly profits computed from historical actions.

b. Average weekly profits computed from playing the best agents from 50 Monte

Carlo simulations against historical actions.

c. Single best performance observed.

Note: The profits derived from historical actions will not be the same as

single-period Casper results because of the demand-saturation constraint.

TABLE 7. Performance of Best Agents Competing with the Managers’ Histories

Table 8 shows the three combinations of results:

∆F ∆MH ∆CFON

Folgers −15.0 41.4 42.0
MH 2.0 −20.0 37.8
CFON 13.9 −29.0 82.3

TABLE 8. Mean Changes in Average Profits with the Best Sophisticates

We would have expected positive diagonals (i.e., that sophisticates do better), and
negative off-diagonals (i.e., that others’ profits fall). Instead, we see that the CFON
sophisticate is the only one to improve on the replaced naïve’s performance. In the cases
of Folgers and Maxwell House, the sophisticates did worse than did the naïves.

The results of Table 8 are unexpected. One possibility is genetic drift, a
phenomenon where lack of selective pressure on many alleles (sites) on the bit strings
(because of convergence of behaviour, generation after generation, which means that only
a small subset of possible states occur, and hence only a small subset of alleles (sites) are
triggered) means that those bits may, through chance and recombination, flip, which is
only obvious when, in the hurly-burly of rivalry against the naïves, these states are
encountered again, after many generations, and the perhaps effete sophisticates do not
always cut the mustard. We hav e dubbed this the Holyfield-Tyson effect after the
notorious championship bout between the two heavyweights, in which Tyson bit off part
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of Holyfield’s ear.9

Genetic drift is inversely proportional to the number of individuals in the
population. We increased the population size per brand from 25 strings to 250. This led
to very slow convergence, even with the short strings in the three-agent, four-action
simulations: not only was there a thousand-fold increase in the number of three-way
interactions per generation, but there was apparently lengthy spiralling towards
convergence of the GA — only a single run was performed, not a Monte Carlo. The GA
was still converging at 80 generations and the results after 160 generations were no better:
the GA had still not converged. We cannot confirm genetic drift as an explanation.

MANAGERIAL LEARNING

The eight-action sets per player of above were derived from historical actions and so
embodied prior learning What if we give the artificial agents a different repertoire of
actions — one developed without reference to the historical actions of managers? We
used a random experimental design, where the price per pound is stepped in ten-cent
increments between $1.60 and $2.80 and feature and display can take on the values of
either 0 or 100%.

Figure 6 shows three patterns that accounted for 39 of 50 Monte Carlo runs. Note
that average weekly profits are much higher than with historical, learned action sets. Note
too that in general the agents shun low-price promotions and maintain high prices
throughout most interactions. The levels of competition are much lower than with
historical-action sets — with these randomly chosen action sets the agents are engaging in
the sort of collusion that we’d expected to see in the first simulations above. But we
speculate that these results show that inter-chain competition is what our model (and
Casper) lacks — the demand curve for coffee from our supermarket chain must be kinked
when potential customers go elsewhere to avoid paying the high prices our artificial
agents would like to charge in implicit collusion.

Results of three-player, eight-possible-action simulations reveal two major patterns:
much higher average weekly profits, and almost no low, feature pricing, with profits
earned at very high pricing. This result is seen in Figure 7, which shows the patterns for
the four strategic players under the three regimes: historical frequencies of the brand
managers, co-evolved agents competing against each other, and the best co-evolved agents
competing against history. Notice that for Maxwell House and Hills Bros. the co-evolved
agents’ frequencies of actions are very similar to the historical brand managers’
frequencies of actions; and for Folgers and CFON the two patterns are similar, with a
slightly higher shelf price for the historical managers.

CONCLUSION

We can summarise our experiments on rivalry in a mature differentiated Bertrand
oligopoly in two ways: the average weekly profits of the agents, and the patterns of
actions. Table 6 summarises the average weekly profits of the four strategic brands under
the different combinations of strategic brands and four- or eight-action sets (all derived
from the historically observed actions of the brand managers). Figure 7 summarises the
frequencies of chosen actions (eight-action sets, derived from the historically observed

9. We should like to thank Bernhard Borges for this name.
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Pattern 1 (26/50 runs)

Folgers

$2,062

Maxwell House

$3,191

CFON

$1,175

Pattern 2 (9/50 runs)

Folgers

$2,184

Maxwell House

$3,022

CFON

$1,326

Pattern 3 (4/50 runs)

Folgers

$2,226

Maxwell House

$2,472

CFON

$1,113

p1 p2 p3 p4 p5 p6 p7 p8

Figure 6: Three Agents, Eight-Random-Action Sets — Hundredth Generation



Folgers

Historical frequencies

Agents competing

Agents against history

♦ ♦ ♦ ♦

♦ ♦ ♦ ♦

Maxwell House

Historical frequencies

Agents competing

Agents against history

♦ ♦ ♦

♦ ♦ ♦

Chock Full O Nuts

Historical frequencies

Agents competing

Agents against history

♦ ♦ ♦

♦ ♦ ♦

Hills Bros.

Historical frequencies

Agents competing

Agents against history

♦ ♦ ♦

♦ ♦ ♦

p1 p2 p3 p4 p5 p6 p7 p8

Figure 7: Comparison of Patterns



actions) under the three conditions of, first, historical actions (from Figure 1), second, co-
ev olved agents competing (from Figure 5), and, third, agents competing against history
(playing the 50 best agents per brand against the historical actions of their three
competitors). The competitive behaviour of one of our artificial brand managers (Hills
Bros.) is similar to the historical frequencies, but the other three artificial brands reveal
more strategic behaviour than the historical brands engaged in. For at least one brand, a
simple set of possible actions and one-week memory are sufficient to simulate historical
behaviour, suggesting a lack of sophistication on the part of historical brand managers.
Later work will explore this issue of “zero-intelligence” behaviour (or simple heuristics)
further.

Our experiments have rev ealed some restrictions on the historical brand managers
which were not immediately apparent, but, more significantly, we hav e shown that the
patterns of interaction among the brand managers were not as profitable as they might
have been, even if all strategic players in the oligopoly had been using strategies as finely
tuned as our agents had learnt to use, in the simulations learnt using the GA. We
hypothesise that the techniques used here could shed light on the behaviours in similar
asymmetric oligopolies, and on how the actors in those markets might have been able to
improve their profits in the past and perhaps in the future.

When John Holland (1975) invented the GA, his original term for it was an
“adaptive plan” which looked for “improvement” in complex systems, or “structures
which perform well.” Despite that, most research effort, particularly outside economics,
has been on its use as a function optimiser. But, starting with Axelrod (1987), the GA has
increasingly been used as an adaptive search procedure, and latterly as a model of human
learning in repeated situations (Duffy 2006). In the 1992 second edition of his 1975
monograph, Holland expressed the wish that the GA be seen more as a means of
improvement and less on its use as an optimiser. The work we report on here is an
example of the usefulness of the GA in a continuing research program about the
behaviour of sellers competing in an oligopoly, where the sellers are modelled as
automata responding to the past actions of all sellers.
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