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Agent-based modeling is a powerful simulation modeling tech-
nique that has seen a number of applications in the last few years,
including applications to real-world business problems. After the
basic principles of agent-based simulation are briefly introduced,
its four areas of application are discussed by using real-world
applications: flow simulation, organizational simulation, market
simulation, and diffusion simulation. For each category, one or
several business applications are described and analyzed.

In agent-based modeling (ABM), a system is modeled as a
collection of autonomous decision-making entities called agents.

Each agent individually assesses its situation and makes decisions on
the basis of a set of rules. Agents may execute various behaviors
appropriate for the system they represent—for example, producing,
consuming, or selling. Repetitive competitive interactions between
agents are a feature of agent-based modeling, which relies on the
power of computers to explore dynamics out of the reach of pure
mathematical methods (1, 2). At the simplest level, an agent-based
model consists of a system of agents and the relationships between
them. Even a simple agent-based model can exhibit complex
behavior patterns (3) and provide valuable information about the
dynamics of the real-world system that it emulates. In addition,
agents may be capable of evolving, allowing unanticipated behav-
iors to emerge. Sophisticated ABM sometimes incorporates neural
networks, evolutionary algorithms, or other learning techniques to
allow realistic learning and adaptation.

ABM is a mindset more than a technology. The ABM mindset
consists of describing a system from the perspective of its constit-
uent units. A number of researchers think that the alternative to
ABM is traditional differential equation modeling; this is wrong, as
a set of differential equations, each describing the dynamics of one
of the system’s constituent units, is an agent-based model. A
synonym of ABM would be microscopic modeling, and an alter-
native would be macroscopic modeling. As the ABM mindset is
starting to enjoy significant popularity, it is a good time to redefine
why it is useful and when ABM should be used. These are the
questions this paper addresses, first by reviewing and classifying the
benefits of ABM and then by providing a variety of examples in
which the benefits will be clearly described. What the reader will be
able to take home is a clear view of when and how to use ABM. One
of the reasons underlying ABM’s popularity is its ease of imple-
mentation: indeed, once one has heard about ABM, it is easy to
program an agent-based model. Because the technique is easy to
use, one may wrongly think the concepts are easy to master. But
although ABM is technically simple, it is also conceptually deep.
This unusual combination often leads to improper use of ABM.

Benefits of Agent-Based Modeling. The benefits of ABM over other
modeling techniques can be captured in three statements: (i)
ABM captures emergent phenomena; (ii) ABM provides a
natural description of a system; and (iii) ABM is flexible. It is
clear, however, that the ability of ABM to deal with emergent
phenomena is what drives the other benefits.

ABM captures emergent phenomena. Emergent phenomena
result from the interactions of individual entities. By definition, they
cannot be reduced to the system’s parts: the whole is more than the
sum of its parts because of the interactions between the parts. An
emergent phenomenon can have properties that are decoupled
from the properties of the part. For example, a traffic jam, which
results from the behavior of and interactions between individual
vehicle drivers, may be moving in the direction opposite that of the
cars that cause it. This characteristic of emergent phenomena makes
them difficult to understand and predict: emergent phenomena can
be counterintuitive. Numerous examples of counterintuitive emer-
gent phenomena will be described in the following sections. ABM
is, by its very nature, the canonical approach to modeling emergent
phenomena: in ABM, one models and simulates the behavior of the
system’s constituent units (the agents) and their interactions, cap-
turing emergence from the bottom up when the simulation is run.

Here is a simple example of an emergent phenomenon involving
humans. It is a game that is easy to play with a group of 10–40
people. One asks each member of the audience to randomly select
two individuals, person A and person B. One then asks them to
move so they always keep A between them and B so A is their
protector from B. Everyone in the room will mill about in a
seemingly random fashion and will soon begin to ask why they are
doing this. One then asks them to move so that they keep themselves
in between A and B (they are the Protector). The results are
striking: almost instantaneously the whole room will implode, with
everyone clustering in a tight knot. This example shows how simple
individual rules can lead to coherent group behavior, how small
changes in those rules can have a dramatic impact on the group
behavior, and how intuition can be a very poor guide to outcomes
beyond a very limited level of complexity. The group’s collective
behavior is an emergent phenomenon. By using a simple agent-
based simulation (available at www.icosystem.com�game.htm) in
which each person is modeled as an autonomous agent following
the rules, one can actually predict the emerging collective behavior.
Although this is a simple example, where individual behavior does
not change over time, ABM enables one to deal with more complex
individual behavior, including learning and adaptation.

One may want to use ABM when there is potential for
emergent phenomena, i.e., when:

Y Individual behavior is nonlinear and can be characterized by
thresholds, if-then rules, or nonlinear coupling. Describing
discontinuity in individual behavior is difficult with differen-
tial equations.
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Y Individual behavior exhibits memory, path-dependence, and
hysteresis, non-markovian behavior, or temporal correlations,
including learning and adaptation.

Y Agent interactions are heterogeneous and can generate net-
work effects. Aggregate flow equations usually assume global
homogeneous mixing, but the topology of the interaction
network can lead to significant deviations from predicted
aggregate behavior.

Y Averages will not work. Aggregate differential equations tend to
smooth out fluctuations, not ABM, which is important because
under certain conditions, fluctuations can be amplified: the
system is linearly stable but unstable to larger perturbations.

Interestingly, because ABM generates emergent phenomena
from the bottom up, it raises the issue of what constitutes an
explanation of such a phenomenon. The broader agenda of the
ABM community is to advocate a new way of approaching social
phenomena, not from a traditional modeling perspective but from
the perspective of redefining the scientific process entirely. Accord-
ing to Epstein and Axtell (1), ‘‘[ABM] may change the way we think
about explanation in the social sciences. What constitutes an
explanation of an observed social phenomenon? Perhaps one day
people will interpret the question, ‘Can you explain it?’ as asking
‘Can you grow it?’.’’

ABM provides a natural description of a system. In many cases,
ABM is most natural for describing and simulating a system
composed of ‘‘behavioral’’ entities. Whether one is attempting to
describe a traffic jam, the stock market, voters, or how an organi-
zation works, ABM makes the model seem closer to reality. For
example, it is more natural to describe how shoppers move in a
supermarket than to come up with the equations that govern the
dynamics of the density of shoppers. Because the density equations
result from the behavior of shoppers, the ABM approach will also
enable the user to study aggregate properties. ABM also makes it
possible to realize the full potential of the data a company may have
about its customers: panel data and customer surveys provide
information about what real people actually do. Knowing the actual
shopping basket of a customer makes it possible to create a virtual
agent with that shopping basket rather than a density of people with
a synthetic shopping basket computed from averaging over shop-
ping data.

The difference between business processes and activities
provides another example of how much more natural ABM is. A
business process is an abstraction, sometimes useful, which is
often difficult for people inside an organization to relate to.
ABM looks at the organization from the viewpoint not of
business processes but of activities, that is, what people inside the
organization actually do (Fig. 1).

The two descriptions must, of course, be mutually consistent.
The business process description actually provides the modeler
with a useful consistency check. However, when it comes to
populating, validating, and calibrating the model, people inside
the organization have an easier time answering questions about
their own activities: they can relate to the model because the
models describes their activities.

One may want to use ABM when describing the system from
the perspective of its constituent units’ activities is more natural,
i.e., when:

Y The behavior of individuals cannot be clearly defined through
aggregate transition rates.

Y Individual behavior is complex. Everything can be done with
equations, in principle, but the complexity of differential
equations increases exponentially as the complexity of behav-
ior increases. Describing complex individual behavior with
equations becomes intractable.

Y Activities are a more natural way of describing the system than
processes.

Y Validation and calibration of the model through expert judg-
ment is crucial. ABM is often the most appropriate way of
describing what is actually happening in the real world, and the
experts can easily ‘‘connect’’ to the model and have a feeling
of ‘‘ownership.’’

Y Stochasticity applies to the agents’ behavior. With ABM,
sources of randomness are applied to the right places as
opposed to a noise term added more or less arbitrarily to an
aggregate equation.

ABM is flexible. The flexibility of ABM can be observed along
multiple dimensions. For example, it is easy to add more agents to
an agent-based model. ABM also provides a natural framework for
tuning the complexity of the agents: behavior, degree of rationality,
ability to learn and evolve, and rules of interactions. Another
dimension of flexibility is the ability to change levels of description
and aggregation: one can easily play with aggregate agents, sub-
groups of agents, and single agents, with different levels of descrip-
tion coexisting in a given model. One may want to use ABM when
the appropriate level of description or complexity is not known
ahead of time and finding it requires some tinkering.

Areas of Application. Examples of emergent phenomena abound
in the social, political, and economic sciences. It has become
progressively accepted that some phenomena can be difficult to
predict and even counterintuitive. In a business context, situa-
tions of interest where emergent phenomena may arise can be
classified into four areas:

1. Flows: evacuation, traffic, and customer flow management.
2. Markets: stock market, shopbots and software agents, and

strategic simulation.
3. Organizations: operational risk and organizational design.
4. Diffusion: diffusion of innovation and adoption dynamics.

The rest of the article is organized around these areas of
application.

Flows
Evacuation. Crowd stampedes induced by panic often lead to
fatalities as people are crushed or trampled. Such phenomena may
be triggered in life-threatening situations such as fires in crowded
buildings or may arise from the rush for seats or sometimes
seemingly without causes. Recent examples include the panics in
Harare, Zimbabwe, and at the Roskilde rock concert in Denmark.
The frequency of such disasters seems to be increasing as growing
population densities combined with easier transportation lead to
greater mass events such as pop concerts, sporting events, and
demonstrations. Panicking people are obsessed by short-term per-Fig. 1. Illustration of the business process and agent views of a business.
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sonal interests uncontrolled by social and cultural constraints. The
reduced attention in situations of fear also causes such alternatives
as side exits to be mostly ignored. In addition, there is social
contagion, that is, a transition from individual to mass psychology,
in which individuals transfer control over their actions to others,
leading to conformity. Such irrational herding behavior often leads
to bad overall results such as dangerous overcrowding and slower
escape, increasing the fatalities or, more generally, the damage. In
agent terms, collective panic behavior is an emergent phenomenon
that results from relatively complex individual-level behavior and
interactions between individuals (hypnotic effect, mutual excitation
of a primordial instinct, circular reactions, and social facilitation).
ABM seems ideally suited to provide valuable insights into the
mechanisms of and preconditions for panic and jamming by in-
coordination. Simulation results (4, 5) suggest practical ways of
minimizing the harmful consequences of such events and the
existence of an optimal escape strategy. For example, let us consider
a fire escape situation in a confined space: a movie theatre or a
concert hall. Let us assume that there is one exit available. How can
one increase the outflow of people? Narrowing down the problem,
one could ask: what is the effect of putting a column (a pillar) just
before exit, slightly asymmetrically (for example, to the left of the
exit), about 1 m away from the exit? Intuitively, one might think the
column will slow down the outflow of people. However, ABM,
backed by real-world experiments, indicates that the column reg-
ulates the flow, leading to fewer injured people and a significant
increase in the flow, especially if one assumes that injured people
cannot move and impede the flow (4). This result is an example of
a counterintuitive consequence of an emergent phenomena: who
would think of putting a column in front of an emergency exit?
ABM captures that emergent phenomenon in a natural way (Fig. 2).

Flow Management. An obvious flow management application of
ABM is traffic. One of the most ambitious modeling projects in this
area has been under way at the Los Alamos National Laboratory
(LANL) for several years (transims.tsasa.lanl.gov). A team from
LANL’s Technology and Safety Assessment Division has developed
a traffic simulation software package to create products that can be
deployed to metropolitan planning agencies nationwide. The
TRansportation ANalysis SIMulation System (TRANSIMS) ABM
package provides planners with a synthetic population’s daily
activity patterns (such as travel to work, shop, and recreation, etc.),
simulates the movements of individual vehicles on a regional
transportation network, and estimates air pollution emissions gen-

erated by vehicle movements. Travel information is derived from
actual census and survey data for specific tracts in target cities,
providing a more accurate sense of the movements and daily
routines of real people as they negotiate a full day with various
transportation options available to them. TRANSIMS is based on
(and contributes to the further development of) advanced com-
puter simulation codes developed by Lawrence Livermore National
Laboratory for military applications. TRANSIMS models create a
virtual metropolitan region with a complete representation of the
region’s individuals, their activities, and the transportation infra-
structure. Trips are planned to satisfy the individuals’ activity
patterns. TRANSIMS then simulates the movement of individuals
across the transportation network, including their use of vehicles
such as cars or buses, on a second-by-second basis. This virtual
world of travelers mimics the traveling and driving behavior of real
people in the region. The interactions of individual vehicles produce
realistic traffic dynamics from which analysts using TRANSIMS
can estimate vehicle emissions and judge the overall performance
of the transportation system. Previous transportation planning
surveyed people about elements of their trips such as origins,
destinations, routes, timing, and forms of transportation used, or
modes. TRANSIMS starts with data about people’s activities and
the trips they take to carry out those activities, then builds a model
of household and activity demand. The model forecasts how
changes in transportation policy or infrastructure might affect those
activities and trips. TRANSIMS tries to capture every important
interaction between travel subsystems, such as an individual’s
activity plans and congestion on the transportation system. For
instance, when a trip takes too long, people find other routes,
change from car to bus or vice versa, leave at different times, or
decide not to engage in a certain activity at a given location. Also,
because TRANSIMS tracks individual travelers—locations, routes,
modes taken, and how well their travel plans are executed—it can
evaluate transportation alternatives and reliability to determine
who might benefit and who might be adversely affected by trans-
portation changes. In the initial case studies, a 25-square-mile
portion of the Dallas�Fort Worth region was used for demonstrat-
ing the first TRANSIMS version. Using existing Dallas�Fort Worth
production�attraction zonal data, activities, and plans for �3.5
million travelers were generated for the hours of 5:00–10:00 a.m. Of
these plans, those falling within a 25-square-mile study region were
used as input to the simulation module to compare two infrastruc-
ture changes with respect to how each helped alleviate congestion.
Although both alternatives improved congested conditions and
flow along the freeway, an unexpected result was that the alterna-
tive of improving local arterials was superior to the alternative of
adding lanes to the freeway from the perspective of network
reliability. Network reliability is a measure of day-to-day variability
in travel times experienced by travelers. In other words, if it takes
one anywhere from 10 to 30 min to drive to work, network reliability
is low; if it takes one between 10 and 12 min, network reliability is
high. The team has recently been simulating the metropolitan
region of Portland, OR, a model that requires 120,000 links and 1.5
million travelers, an order of magnitude larger than the Dallas�Fort
Worth simulation of 10,000 links and 200,000 travelers. The benefits
of the ABM approach are obvious: better and more efficient
infrastructure planning, including not only better throughput but
also compliance in terms of emissions, enabled by the ability of
ABM to capture and reproduce emergent traffic phenomena.

Another application of ABM to flow management is the simu-
lation of customer behavior in a theme park or supermarket. The
collective patterns generated by thousands of customers can be
extremely complex as customers interact: for example, how long one
waits at an attraction in a theme park depends on other people’s
choices. A major theme park resort company was thinking about
how to improve adaptability in labor scheduling, but knew that this
depended on knowing more about the optimal balance of capacity
and demand. Axtell and Epstein developed ResortScape (13), an

Fig. 2. Fire escape agent-based simulation (live simulation available at
www.helbing.org). People are represented by circles, green circles being
injured people. Simulations assume 200 people in a room. (a) No column. (b)
With column, after 10 s. (c) With column, after 20 s. In the absence of the
column, 44 people escape and 5 are injured after 45 s; with the column, 72
people escape and no one is injured after 45 s. After Helbing et al. (4).
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agent-based model of the park that provides an integrated picture
of the environment and all of the interacting elements that come
into play in such a resort. The model provides a fast in silico way for
managers to identify, adjust, and watch the impact of any number
of management levers such as:

Y When or whether to turn off a particular ride.
Y How to distribute rides per capita throughout the park space.
Y What is the tolerance level for wait times.
Y When to extend operating hours.

In the simulation, agents represent a realistic and changeable mix
of both supply (attractions, shops, food concessions) and demand
(visitors with different preferences) elements of a day at the
park. Leveraging existing resources and data, such as customer
surveys, segmentation studies, queue timers, people counters,
attendance estimates, and capacity figures, the model generates
information about guest f low. Users can design and run an
infinite number of scenarios to study the dynamics of the park
space, test the effectiveness of various management decisions,
and track visitor satisfaction throughout the day.

ABM is particularly useful in this context, because the mapping
between the agents’ preferences and behaviors on the one hand,
and the park’s performance (in terms of average waiting times,
number of attractions visited, total distance walked, etc.) on the
other is too complex to be dealt with by using mathematical
techniques and purely statistical analysis of the data. Why is the
mapping too complex? Because, for example, the time a given
customer has to wait at a given attraction depends on what other
customers are doing, how they respond to different park conditions,
what their wish list is, etc. The flow of customers in the park and
the money they spend are ‘‘emergent’’ properties of interactions
among and between customers and the spatial layout of the park.
Therefore, simulating the park’s operations with a given layout
seems to be the only solution. ABM is the most natural and easiest
way of describing the system, because the actors of this system are
customers (and attractions) with a behavior of their own. For
example, waiting times at a theme park attraction result from the
interactions of many behavioral units: the customers. Finally,
the data available to the modeler are naturally structured for ABM:
the available data are a description of the desires and behaviors of
a number of customers.

Along the same lines, Bilge, Venables, and Casti have developed
an agent-based model of a supermarket (www.simworld.co.uk) (6).
SIMSTORE is a model of a real British supermarket, the Sainsbury’s
store at South Ruislip in West London. The agents in SIMSTORE are
software shoppers armed with shopping lists. They make their way
around the silicon store, picking goods off the shelves according to
rules such as the nearest-neighbor principle: ‘‘Wherever you are
now, go to the location of the nearest item on your shopping list.’’
Using these rules, SIMSTORE generates the paths taken by custom-
ers, from which it can calculate customer densities at each location.

It is also possible to link all points visited by, say, at least 30%
of customers to form a most popular path. An optimization
algorithm can then change where in the supermarket different
goods are stacked and so minimize, or maximize, the length of
the average shopping path. Shoppers, of course, do not want to
waste time, so they want the shortest path. But the store manager
would like to have them pass by almost every shelf to encourage
impulse buying. So there is a dynamic tension between the
minimal and maximal shopping paths. This model was originally
aimed at helping Sainsbury’s to redesign its stores to generate
greater customer throughput, reduce inventories, and shorten
the time that products are on the shelves.

Macy’s is a department store chain using ABM (7). In 1997,
Macy’s East approached PricewaterhouseCoopers with the follow-
ing question: ‘‘How do we know when we have the right number of
salespeople on the selling floor?’’ According to industry veterans,

the retail business is a business of averages, where analysis is done
on a spreadsheet. It is a business that deals with sales volume per
hour as the determining factor in its allocation of salespeople, and
the number of salespeople placed on the selling floor is based on
the velocity in sales predicted for a specific day. And yet real
behavior is the result of interactions between individuals, not
averages. With ABM, Macy’s had the opportunity to use visual-
ization to review data in a way that becomes informational and
leads to solutions. Spreadsheet data averages can be used to
estimate distributions of individual behavior, so the individual
agents in the simulation are consistent with the available real-world
data. But because the agents represent individuals, the actual flow
of their behavior can be much more realistic and informative. So
instead of making estimates from the top down, Macy’s can observe
how volume really occurs from the bottom up. The virtual store can
be modified in terms of layout (shelves, cash register positions,
gates, etc.) and number of employees per department to see how
these changes influence the affective state of a large number of
agents. One can then explore the space of levers to maximize the
number of happy customers in the most cost-effective way. Results
from the model include the observation of ‘‘microbursts’’ of de-
mand, where customers may be doing ‘‘project shopping’’ (e.g.,
buying an outfit and then accessorizing it), the importance of
proximity to items (physical placement as well as brand-
relatedness), which helps drive impulse buying.

Markets
The dynamics of the stock market results from the behavior of many
interacting agents, leading to emergent phenomena that are best
understood by using a bottom-up approach—ABM. There has been
an upsurge of interest in agent-based models of markets in the last
few years, stimulated by the pioneering work of Arthur and
colleagues (8, 9). One commercial application has been developed
by Bios Group for the National Association of Security Dealers
Automated Quotation (NASDAQ) Stock Market (www.cbi.
cgey.com�journal�issue4�features�future�future.pdf). In 1997, the
NASDAQ Stock Market was about to implement a sequence of
apparently small changes: reduction in tick size, from 1�8th to
1�16th and so on down to pennies. NASDAQ considers changes in
trading policies very carefully: NASDAQ stands to lose a great deal
if a new rule provokes a negative network-wide response from
investors, market makers, and issuers. In the past, NASDAQ
executives have analyzed the financial marketplace through eco-
nomic studies, financial models, and feedback from market partic-
ipants. The Market Quality Committee establishes regulations
largely as a result of input from economists, lawyers, lobbyists, and
policy makers.

To evaluate the impact of tick-size reduction, NASDAQ has been
using an agent-based model that simulates the impact of regulatory
changes on the financial market under various conditions. The
model allows regulators to test and predict the effects of different
strategies, observe the behavior of agents in response to changes,
and monitor developments, providing advance warning of unin-
tended consequences of newly implemented regulations faster than
real time and without risking early tests in the real marketplace. In
the agent-based NASDAQ model, market maker and investor
agents (institutional investors, pension funds, day traders, and
casual investors) buy and sell shares by using various strategies. The
agents’ access to price and volume information approximates that
in the real-world market, and their behaviors range from very
simple to complicated learning strategies. Neural networks, rein-
forcement learning, and other artificial intelligence techniques were
used to generate strategies for agents. This creative element is
important because NASDAQ regulators are especially interested in
strategies that have not yet been discovered by players in the real
market, again to approach their goal of designing a regulatory
structure with as few loopholes as possible, to prevent abuses by
devious players.
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The model produced some unexpected results. Specifically, the
simulation suggests a reduction in the market’s tick size can reduce
the market’s ability to perform price discovery, leading to an
increase in the bid–ask spread. A spread increase in response to
tick-size reduction is counterintuitive because tick size is the lower
bound on the spread. Initially, it was believed that the implemen-
tation of decimalization would be conducive to tighter spread,
easing the discrepancy between bids and asking prices. Decimal-
ization, overall, was thought to be highly efficient and effective.
Among market professionals, the perceived wisdom is that provid-
ing greater granularity of price denomination is good for investors
because it promotes competition among buyers and sellers who can
negotiate in more precise terms, and thus it drives the market’s
spread down, which results in better prices for investors. This
wisdom is difficult to test empirically: the complexity of market
behavior makes isolating cause and effect highly problematic.
Without a computer simulation, rule makers are stuck with an
intuitive argument, and one that is poor in detail, judging market
interaction by only one measure: competition (and hence price).
Other dimensions of the problem go unaddressed: if better prices
are available, do only small investors benefit, or will large ones
benefit too? Will smaller tick sizes make the market more jittery and
volatile?

A spreadsheet model or even system dynamics (10) (a popular
business-modeling technique that uses sets of differential equa-
tions) would not have been able to generate the same deep insights
as ABM, because the behavior of the market emerges out of the
interactions of the players, who in turn may change their behavior
in response to changes in the market. The interactions between
investors, market makers, and the operating rules of the NASDAQ
Stock Market make the entire system’s dynamics quite hard to
understand. Predicting how it would change under a new set of
operating regulations cannot be based on intuition or on classical
modeling techniques, because they are not suited to describe the
complexities of the behavior of the stock market agents. For
example, the mapping between tick size and spread can be under-
stood only by taking into account details of the investors’ and
market makers’ behavior to model the process of price discovery.

Stock markets are not the only markets that can be better
understood by using ABM. For example, auctions can benefit from
the approach. Indeed, electronic double auctions using intelligent
agents have many applications today. eBay uses intelligent agents to
allow customers to automate the bidding process, but these could
be made much more sophisticated by using ABM to test a variety
of robot behaviors. Designing intelligent agents that have desired
aggregate properties could turn out to be the ‘‘killer app’’ that will
make the cyber world the preferred medium for economic trans-
actions. Shopbots are Internet agents that automatically search for
information that pertains to the price and quality of goods and
services. As the prevalence of shopbots in electronic commerce
increases, the resultant reduction in economic friction because of
decreased search costs could dramatically alter market behavior.
Some predict that intelligent agents eventually will transform our
world, which means they may trade information, gather informa-
tion, translate information, and perform all sorts of negotiations for
us in the future. Ultimately, transactions among economic software
agents will constitute an essential and perhaps even dominant
portion of the world economy. It is tempting to assume that the
same mechanisms can be applied successfully to software agents.
But one must be very careful about the introduction of agent
technology, as agents behave in a way that is still poorly understood.
For example, in an all-agent auction, prices tend to rise, reach a
peak, and then suddenly dip dramatically before the same process
begins again. IBM’s Kephart and his colleagues have been exploring
the potential impact of shopbots on market dynamics, by simulating
and analyzing an agent-based model of shopbot economics, which
incorporates software agent representations of buyers and sellers
(11). Their model is similar to some that are studied by economists

interested, for example, in the phenomenon of price dispersion,
with different underlying assumptions and methodology: here the
goal is to design economic software agents, rather than ‘‘just’’
explain human economic behavior. In particular, they have been
examining agent economies in which (i) search costs are nonlinear;
(ii) some portion of the buyer population makes no use of search
mechanisms; and (iii) shopbots are economically motivated, stra-
tegically pricing their information services so as to maximize their
own profits. Under these conditions, they have found that markets
can exhibit a variety of hitherto unobserved dynamical behaviors,
including complex limit cycles and the coexistence of multiple buyer
search strategies. A shopbot that charges buyers for price informa-
tion can manipulate markets to its own advantage, sometimes
inadvertently benefiting buyers and sellers.

The same ABM techniques that are used to study the stock
market or the collective behavior of shopbots can be applied to
situations where there are many agents playing economic games.
That is ‘‘game theory without the theory.’’ Game theory is a
great framework, but game theorists suffer from self-imposed
constraints: being able to prove theorems puts severe limitations
to what is possible. In particular, any realistic situation is likely
to lie beyond the grasp of theory. Axelrod (2) argues that
agent-based game theory is the only way forward.

A team at Icosystem Corporation has simulated the Internet
service provider (ISP) market with ABM (www.icosystem.com).
The agents are used to represent both the ISPs and their
customers. Each ISP is an agent and each customer is an agent.
The ISPs’ offerings are confronted with customers’ needs and
expectations; customers make decisions (to adopt, leave, or
switch) depending on the match between their profiles and the
ISPs’. One of the attributes of the ISPs, among may others, is how
much they charge monthly for their services. ISPs that do not
make enough money are eliminated following an ‘‘evolutionary’’
dynamics; those that are successful give rise to copycats (that is,
ISPs with similar business models) and also fine tune their own
business models. ABM produced two significant results: (i) It
discovered the free ISP business model (no monthly fee). (ii) It
predicted the instability of the free ISP business model: the first
free ISP that emerges in the simulation differentiates itself from
the pack by providing services without charging monthly fees and
making money on advertising. These two properties emerge out
of the interaction dynamics between the ISPs through the
marketplace. Because ISPs learn and evolve, it would have been
difficult to obtain this insight by using other simulation methods.

Organizations
One promising area of application for ABM is organizational
simulation (12). It is clearly possible to model the emergent
collective behavior of an organization or of a part of an
organization in a certain context or at a certain level of descrip-
tion. At the very least, the process of designing the simulation
produces valuable qualitative insights. But, in certain cases,
one is also able to generate semiquantitative insights. A good
illustration of this is an agent-based model of operational
risk (www.businessinnovation.ey.com�events�pubconf�
2000–04-28�ec5transcripts�BonabeauNivollet.pdf) (13).

A human organization is often subject to operational risk.
Consider financial institutions. Operational risk arises from the
potential that inadequate information systems, operational prob-
lems, breaches in internal controls, fraud, or unforeseen catastro-
phes will result in unexpected losses. According to the Basle
Committee on Banking, operational risk involves breakdowns in
internal controls and corporate governance that can lead to finan-
cial losses through error, fraud, or failure to perform in a timely
manner or cause the interests of the bank to be compromised in
some other way, for example, by its dealers, lending officers, or
other staff exceeding their authority or conducting business in an
unethical or risky manner. It is increasingly viewed as the most
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important risk that banks face. Examples of large operational losses
include Daiwa, Sumitomo, Barings, Salomon, Kidder Peabody,
Orange County, Jardine Fleming, and more recently NatWest
Markets, the Common Fund, or Yamaichi. Although most banks
have developed efficient and sometimes sophisticated ways of
dealing with market risk and to large extent credit risk, they are still
in the early stages of developing operational risk measurement and
monitoring. Unlike market and credit risk, operational risk factors
are largely internal to the organization, and a clear mathematical or
statistical link between individual risk factors and the size and
frequency of operational loss does not exist. Experience with large
losses is infrequent, and many banks lack a time series of historical
data on their own operational losses and their causes. Uncertainty
about which factors are important arises from the absence of a
direct relationship between the risk factors usually identified (mea-
sured through internal audit ratings, internal control self-
assessment based on such indicators as volume, turnover, error
rates, and income volatility) and the size and frequency of loss
events. This contrasts with market risk, where changes in prices have
an easily computed impact on the value of the bank’s trading
portfolio, and with credit risk, where changes in the borrower’s
credit quality are often associated with changes in the interest rate
spread of the borrower’s obligations over a risk-free rate. Given all
of the characteristics of operational risk, it is obviously difficult to
quantify. Operational historical data are so scarce that it is not
possible to allocate capital reliably and efficiently, and it is not
possible to obtain good VAR (value-at-risk) and RAROC (risk-
adjusted return on capital) estimates. Capital allocation is impor-
tant because it gives managers an incentive to keep operational risk
under control. Yet there is increasing pressure on financial insti-
tutions to quantify operational risk in a way that convinces both
investors (efficient allocation of capital) and regulatory entities (risk
under ‘‘control’’). More precisely, a financial institution must be
able to quantify operational risk within a reliable framework to be
able to keep risk under control, optimize economic capital alloca-
tion, and determine its insurance needs.

Given the characteristics of operational risk, bottom-up enter-
prise-wide simulation looks like a promising approach (to low-
frequency high-impact operational risk). What is needed is a
framework that includes the possibility of nonlinear effects because
of interactions among subunits and to cascading events. The
framework should be able to operate with scarce data. Hence the
idea to simulate operations from the bottom up to generate a large
artificial data set that includes large events. The artificially gener-
ated data can then be used to apply classical capital allocation
techniques. Bios and Cap Gemini Ernst & Young (13) have applied
ABM techniques to measuring and managing operational risk at
Société Générale Asset Management (SGAM). A simulation
model of the business unit’s activities was designed, starting with
business process modeling and workflow identification. By using the
business process model and the workflows the bank’s ‘‘agents’’ were
then identified, and their activities were modeled as well as their
interactions with other agents and the risk factors that could impact
their activities. To make the tool tractable in the end the activities
had to be modeled in enough detail to capture the ‘‘physics’’ of the
bank but not too much detail. The risk factors were connected to
the bank’s profit and loss through potentially complex pathways in
the organization, for example from a client’s order to the detection
of a trading error in the back office. Then the bank’s environment
was modeled—the markets, customers, regulators, etc. By running
the model, it is possible to generate artificial earnings distributions,
used to estimate potential losses and their likelihood. For example,
the bank can compute its ‘‘earnings-at-risk,’’ that is, the minimum
earnings that could be observed in one year at the bank with a 95%
level of confidence. The benefit to the bank: its allocation of
economic capital is backed by a simulation of how the organization
operates rather than based on some strange combination of indus-
try-wide historical data and accounting magic. If the model is good,

regulators accept it more easily and the bank does not have to put
aside 10 times the amount of economic capital it really needs. For
an asset management business, economic capital is a fraction of
assets under management. Reducing the fraction by just 0.01%
means millions of dollars. Measuring is just the first step, though.
An added benefit of simulation is that one can identify where losses
come from and test mitigation procedures.

When deciding to model a bank by using ABM, one is not
making an arbitrary modeling decision. One is modeling the
bank in a way that is natural to the practitioners, because one is
modeling the activities of the bank by looking at what every actor
does. If one is modeling the bank’s processes instead, it is more
difficult for people to understand the model because one
person’s activities span many processes. That has important
consequences when it comes to populating, validating, and
calibrating the model. If people ‘‘connect’’ to the simulation
model, in the sense that they recognize and understand what the
model is doing, they can improve it, more easily quantify what
needs to be quantified, etc. Because they have a deep under-
standing of the risk drivers related to their own activity, it is
easier to incorporate the relevant risk drivers into the model.
Once they have their activities and the corresponding risk drivers
in the model, they can suggest control and mitigation procedures
and test them by using the simulation tool. In other words, ABM
is not only a simulation tool; it is a naturally structured repository
for self-assessment and ideas for redesigning the organization.

ABM is perfect not just for operational risk in financial institu-
tion but for modeling risk in general. Modeling risk in an organi-
zation using ABM is THE right approach to modeling risk because
most often risk is a property of the actors in the organization: risk
events impact people’s activities, not processes. For example, it is
more natural to say that someone in accounting made a mistake
(sent the wrong invoice to a customer) than to say the receivables
process was impacted by an error event in the invoicing subprocess.
ABM will revolutionize business risk advisory services because it
constitutes a paradigm shift from spreadsheet-based and process-
oriented models. Populating, validating, and calibrating an agent-
based model of risk is an order of magnitude easier and makes much
more sense than other models. The agent-based model also makes
the formulation of mitigation strategies easier. Within 3–6 years,
ABM should be used routinely in audit.

What the Société Générale Asset Management example has
hinted at is the idea of using ABM to design better organizations
(12). Indeed, once one has a reliable model of an organization, it
is possible to play with it, change some of the organizational
parameters, and measure how the performance of the organization
varies in response to these changes. Performance measurements
can range from how fast information propagates in the organization
to how good the organization is at collectively performing its
task—inventing new products, selling, or managing receivables.

Diffusion
In the context of this section, ABM applies to cases where people
are influenced by their social context, that is, what others around
them do. Although a lot of academic attention has been given to the
subject, there are very few business applications, perhaps because
of the ‘‘soft’’ nature of the variables and the difficulty in measuring
parameters. Social simulation in business has not been very suc-
cessful so far, because the emphasis has been on using it as a
predictive tool rather than as a learning tool. For example, a
manager can understand her marketplace better by playing with an
agent-based model of it. Then, of course, quantifying the tangible
benefits of something intangible is difficult, and a manager cannot
claim to have saved $X million by playing with a simulation of her
customers. Still, there is a lot of value in using social simulation in
a business context. Farrell and his team developed a synthetic world
populated by virtual agents to try to predict how (and when) hits
happen (7). Working for Twentieth Century Fox, they modeled how
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such movies as ‘‘Titanic’’ or ‘‘The Blair Witch Project’’ could
become hits, but their model was not very successful. Predicting hits
might be the single most difficult thing to do; understanding how
hits happen is a better use of the model.

Let us examine a simple product adoption model to illustrate the
value of ABM in modeling diffusion on social networks. This
example will also show why and when ABM is needed and will
highlight the relationship between ABM and a more traditional
aggregate system dynamics model (10). Let us assume a new
product’s value V depends on the number of its users, N, in a total
population of NT potential adopters, according to the following
function

V�N� � V��� �
�1 � �d��d

�d � �d ,

where � is the fraction of the population that has adopted the
product, � is a characteristic value (here � � 0.4), and d is an
exponent that determines the steepness of the function (here d �
4). V(N) equals 0 when there is no user and is maximum (� 1) when
the entire population has adopted the product. Finally, � acts as a
threshold: when the user base approaches 40% of the population,
the value curve takes off. Let us assume for simplicity that the value
function is the same for all users. Let us further assume that the
adoption rate is given by an estimate of V by potential customers.
Indeed, customers may not know the exact number of people who
have adopted the technology in the population, but they can
estimate the fraction of users in their social neighborhood. If we
assume that each person is connected to n other people in the
population, we can define person k’s estimate of the fraction of
users in the entire population as �̂k � nk�n, where nk is the number

of k’s neighbors who have adopted the product. The value V̂k of the
product, as estimated by person k, is then given by

V̂k � V��̂k� �
�1 � �d��̂k

d

�̂k
d � �d .

If person k is connected to everyone else, V̂k is identical to V.
However, that is unlikely. A system dynamics approach to the
problem would model the flow of people from nonusers to users,
with every person in the population perceiving the same average
fraction of adopters � � N�NT and therefore the same perceived
value:

V��� �
�1 � �d��d

�d � �d .

The resulting differential equation is

�tN � V����NT � N�,

which is equivalent to

�t� � V����1 � ��.

We assume here that the time unit is 10 days. Fig. 3a shows how
� and V vary in time, when the initial number of users is equal
to 5% of the population.

Let us now consider how an agent-based approach would treat
this problem. The first transformation is from the master equation
(that is, the equation describing the dynamics of the total number
of users) to individual transition probabilities, where each agent has

Fig. 3. (a) Differential equation results. (b) Mean-field agent-based model. Fig. 4. (a) One hundred agents, 30 random neighbors. (b) One hundred
agents, clustered neighbors (two clusters, spread starting in one cluster).
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a transition probability given by the rate of the master equation. In
other words, for each agent who is not already a user, the probability
of becoming one is equal to V(�) per time unit. The meaning of this
model is that each agent acts individually but has perfect knowledge
of how many users there are in the population. Fig. 3b shows how
the fraction of users increases in time for a population of 100 agents.
This curve is almost indistinguishable on average from that ob-
tained with the system dynamics approach, except when the initial
population of users is very low, in which case the takeoff can be
significantly slower in the agent-based description in some simula-
tions because of significant fluctuations in the early part of the
simulation. These fluctuations reflect the individual decision-
making by agents as opposed to an average global flow. Yet, on
average, one obtains the same dynamics as the flow model. Things
become quite different, however, as soon as one starts assuming
that the agents estimate the fraction of users from the fraction of
their neighbors who are users. Let us assume that each person in the
population has exactly n � 30 neighbors. Let us now consider two
cases:

1. Those 30 neighbors are selected randomly in the population.
2. There is clustering in the topology of social interactions in

that a neighbor of a neighbor is likely to be a neighbor. For
definiteness, I will assume that the population is divided into
two subpopulations of equal size. The probability that two
individuals from the same subpopulation are neighbors is
equal to P � 0.5, and the probability that two individuals from
different subpopulations are neighbors is equal to 0.1. In a
population of 100 agents, the average total number of neigh-
bors of any given node is 0.5�50 � 0.1�50 � 30. We assume that
the initial 5% of users is within one of the subpopulations.

The second case introduces localization in the dynamics: a
person interacts only with her neighbors and there are few
long-range interactions and little global mixing. In the first case,
one might expect to observe a dynamics similar to the system
dynamics model, whereas the dynamics in the second case could
be quite different. It appears that even in the first case the
resulting dynamics is different from the mean-field dynamics
(Fig. 4a), but the second case leads to potentially dramatically
different results, as can be seen in Fig. 4b. Product adoption is
a lot faster with clustering, even when the initial user population
is located entirely within one cluster.

This simple example shows not only how useful ABM is when
dealing with inhomogeneous populations and interaction net-
works but also how to go from a differential equation model to
an agent-based model—usually it is the opposite transformation
that is used, where the differential equation model is the
analytically tractable (but deceivingly so) mean-field version of
the agent-based model. What is useful about this ‘‘reverse’’
transformation is that it clearly shows that an agent-based model
is increasingly necessary as the degree of inhomogeneity in-
creases in the modeled system.

Discussion
When Is ABM Useful? It should be clear from the examples
presented in this article that ABM can bring significant benefits

when applied to human systems. It is useful at this point to
summarize when it is best to use ABM:

Y When the interactions between the agents are complex,
nonlinear, discontinuous, or discrete (for example, when the
behavior of an agent can be altered dramatically, even dis-
continuously, by other agents). Example: all examples de-
scribed in this article.

Y When space is crucial and the agents’ positions are not fixed.
Example: fire escape, theme park, supermarket, traffic.

Y When the population is heterogeneous, when each individual
is (potentially) different. Example: virtually every example in
this article.

Y When the topology of the interactions is heterogeneous and
complex. Example: when interactions are homogeneous and
globally mixing, there is no need for agent-based simulation, but
social networks are rarely homogeneous, they are characterized
by clusters, leading to deviations from the average behavior.

Y When the agents exhibit complex behavior, including learning
and adaptation. Example: NASDAQ, ISPs.

Issues with ABM. There are some issues related to the application
of ABM to the social, political, and economic sciences. One issue
is common to all modeling techniques: a model has to serve a
purpose; a general-purpose model cannot work. The model has
to be built at the right level of description, with just the right
amount of detail to serve its purpose; this remains an art more
than a science.

Another issue has to do with the very nature of the systems one
is modeling with ABM in the social sciences: they most often
involve human agents, with potentially irrational behavior, subjec-
tive choices, and complex psychology—in other words, soft factors,
difficult to quantify, calibrate, and sometimes justify. Although this
may constitute a major source of problems in interpreting the
outcomes of simulations, it is fair to say that in most cases ABM is
simply the only game in town to deal with such situations. Having
said that, one must be careful, then, in how one uses ABM: for
example, one must not make decisions on the basis of the quanti-
tative outcome of a simulation that should be interpreted purely at
the qualitative level. Because of the varying degree of accuracy and
completeness in the input to the model (data, expertise, etc.), the
nature of the output is similarly varied, ranging from purely
qualitative insights all the way to quantitative results usable for
decision-making and implementation.

The last major issue in ABM is a practical issue that must not
be overlooked. By definition, ABM looks at a system not at the
aggregate level but at the level of its constituent units. Although
the aggregate level could perhaps be described with just a few
equations of motion, the lower-level description involves de-
scribing the individual behavior of potentially many constituent
units. Simulating the behavior of all of the units can be extremely
computation intensive and therefore time consuming. Although
computing power is still increasing at an impressive pace, the
high computational requirements of ABM remain a problem
when it comes to modeling large systems.

1. Epstein J. M. & Axtell R. L. (1996) Growing Artificial Societies: Social Science from
the Bottom Up (MIT Press, Cambridge, MA).

2. Axelrod, R. (1997) The Complexity of Cooperation: Agent-Based Models of Compe-
tition and Collaboration (Princeton Univ. Press, Princeton, NJ).

3. Reynolds, C. (1987) Comput. Graphics 21, 25–34.
4. Helbing, D., Farkas, I. & Vicsek, T. (2000) Nature (London) 407, 487–490.
5. Still, K. G. (1993) Fire 84, 40–41.
6. Casti, J. (1997) Would-Be Worlds: How Simulation Is Changing the World of Science

(Wiley, New York).
7. Farrell, W. (1998) How Hits Happen (HarperCollins, New York).
8. Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. G. & Tayler, P. (1997) in The

Economy as a Complex Evolving System II, Santa Fe Institute Studies in the Sciences

of Complexity, eds. Arthur, W. B., Durlauf, S. & Lane, D. (Addison–Wesley,
Reading, MA), Proceedings Vol. 27, pp. 15–42.

9. Palmer, R. G., Arthur, W. B., Holland, J. H., Le Baron, B. & Tayler, P. (1994) Physica
D 75, 264–274.

10. Sterman, J. D. (2000) Business Dynamics: Systems Thinking and Modeling for a
Complex World (Irwin Professional�McGraw–Hill, New York).

11. Kephart, J. O., Hanson, J. E. & Greenwald, A. R. (2000) Comput. Networks 32,
731–752.

12. Prietula, M., Gasser, L. & Carley, K., eds. (1998) Simulating Organizations: Compu-
tational Models of Institutions and Groups (MIT Press, Cambridge, MA).

13. Bonabeau, E. (2000) in Application of Simulation to Social Sciences, eds. Ballot, G.
& Weisbuch, G. (Hermès Sciences, Paris), pp. 451–461.

Bonabeau PNAS � May 14, 2002 � vol. 99 � suppl. 3 � 7287


