
An Agent-Based Simulator
to Analyze Business Office Activities

Yukinao Kenjo
Tokyo Institute of Technology

Abstract

 This paper presents an agent-based simulation model to analyze office persons' activities. The objectives of
the model are 1) to provide managers with decision aids to improve the office work and 2) to develop scalable
methods to implement large scale agent-based simulation systems. As the first step of the research, in this
paper, we focus on managers' roles to improve the office performance. Experiments on the office activities
with and/or without managers' roles have been carried out.

1. Introduction
This paper is concerned with the development of an agent-based simulator, which aims at

analyzing office activities to uncover the characteristics of efficient and effective organizational
structures of a firm. In our simulator, office activities in the organization are modeled in a
bottom-up manner. This means that we define the roles of office persons, the places (spots) they
work, and the interaction among the agents and spots. In the simulation, we will focus on the
roles of managers' tasks and the different organizational structures: flat and/or hierarchical.
Before developing the simulator, we have monitored one week activities of a small office with half

dozen of office people and replicated them using an agent-based simulator written in SOARS
[Tanuma 2005]. Based on the results, the objectives of the paper are to analyze the characteristics
of flat and hierarchical organization under various managers; second, we will explore the
scalability of the previous model to real-scale large organizations. Based on this, in the following
sections, we will explain the model description and simulation results with managers in a
hierarchical structure and empowered personnel without managers in a flat organization.
Future work on the simulator is also reported in the concluding remarks.

2. Related Work
There have been several studies which analyze the organization activities by computer

simulation; Cyert and March [Cyert 1963] constructed an organizational behavior model in
FORTRAN language. The garbage can model is well known that they cope with contingent
decision making in an organization [Cohen 1972]. In addition, in the literature of computational
organization theory, Carley and Gasser [Carley 1995, 1999] claim that the information processing
model of Simon [Simon 1995] is enhanced in many ways and that systematic phenomena observed
in a model will help to describe the differences of the organizational effectiveness. An organization
is supposed to be operated, to be designed, and to be easily applied to the research and the practice
of actual organizational behaviors. Our research is based on such a context. However, the KISS
(Keep It Simple, Stupid!) principle by Axelrod [Axelrod 1997] is not sufficient to implement
analytical tools to cope with practical office activities. Therefore, we have decided to develop an
agent-based simulator for office activities.

3. Problem Description
3.1 Outline of the Model
We suppose an organization consisting of managers (defined by m) and staffs (defined by n). The

purpose of the organization is to handle the assigned work efficiently, and each constituent
member works his/her own best. All kinds of tasks are given to the organization every certain
period. These tasks are stacked on waiting-lists in the organization, and each agent tries to finish
one's duties to the full as a manager or a staff. Each task has its own volume and the deadline,
and is expected to be finished by its deadline. The performance of the organization is evaluated by
the number of finished and unfinished tasks when the simulation ends.

Table 1 Definition of Objects
Object Attribute

Id (int)
volume (int) Task
deadline (int)
waiting-list (List<Task>)
processing-tasks (Set<Task>)
finished-tasks (Set<Task>) Team

deadline-passed-tasks (Set<Task>)
ability (Map<Task.id，skill>)
busy (boolean)
vision (Set<Task>) Staff

decisionRule (Rule)
vision (Set<Task>) Manager allocationRule (Rule)

TaskPool pool (Set<Task>)

3.2 Objects
Table 1 describes the main objects and their attributes used in this model. Team object

represents the organization, and the objects, Staff and Manager, stand for staffs and managers
respectively. Task object is one of the various works that the organization processes, and it is
generated in TaskPool object.

• Task
Task object has three attributes, i.e. id, volume, and deadline, each of which stands for its id

variety, volume, and deadline.

• Team
Team object has four attributes, namely waiting-list, processing-tasks, finished-tasks and

deadline-passed-tasks, and each of which means Tasks are before process, Tasks are underway,
Tasks are safely finished, and Tasks are not finished by its deadline respectively.

• Staff
Staff object also has four attributes, ability, busy, vision, and decisionRule; Ability represents the

skill value to the kind of the Task, busy denotes that the agent is/is not working now, vision
maintains the Tasks in the waiting-list that the agent can confirm, and decisionRule makes
decisions of which Tasks in the vision attribute should be started.

• Manager
Manager object has two attributes, vision and allocationRule. The former is similar to the Staff's,

but Manager's can see more Tasks. While the latter decides to whom a Task is allocated. Details
will be described later.

• TaskPool
 TaskPool object has the attribute pool which generates arbitrary Tasks within the specified
period.

3.3 Definitions of Agent Rules

The following rules described in this section are commonly used to make the agents active in the
model.

• Processing Rule
Staff agent, handling a Task, tries to finish it by reducing the volume of the Task related to the

skill value for each step. The skill value of the agent is defined by his/her ability attribute, and a
unique value is given in advance according to the kind of the Task.

1. Staff agent, handling a Task, tries to finish it by reducing the volume of the Task related
to the skill value for each step. The skill value of the agent is defined by his/her ability
attribute, and a unique value is given in advance according to the kind of the Task.

2. Task, which is started once, is being kept processing by the time steps that its volume
becomes to zero or below.

3. “Cooperation processing’’ means that two or more Staffs may deal with one Task together.

• Stacking Rule
Tasks generated from TaskPool are given to the organization, and are stacked on the tail of one of

the waiting-lists in the organization. As shown in Figure 2, the number of waiting-lists is set to
three in this model.

• Confirmation Rule
In Manager's and Staff's confirming their own Tasks, the difference is given to the cognitive

ability (range of vision) of Tasks. This will enable us to give the level of discipline to Staff agents
with respect to acquisition of a Task. In this model, the cognitive ability of Staff agents is assumed
to be one-third of Manager's.

()σmanagerV : Manager can retain up to σ pieces of Task from the head among waiting-lists in his
vision attribute and confirm them anytime.

(3/)σstaffV : Staff agent can retain only up to 3/σ pieces of Task in the waiting-lists in his/her
vision attribute and confirm them anytime. In this literature, we assume that Staff agents can see
one of three waiting-lists.

• Decision Rule (Process-Beginning Rule)
In starting Task processing rules, there exists some differences in terms of the time cost. When a

Manager agent orders Staff agents to manage a Task, the time that hangs to transmission is
considered. In this model, the delay is set to 1-step. On the other hand, in an organization without
any Manager agent, each Staff agent can start handling his/her Task chosen in no time.

managerS : In the organization with Manager, he/she allocates Tasks, which he/she can confirm in

()σmanagerV , for all Staffs. The way to allocate is decided by Manager's allocationRule. Staff
allocated Task begins it from the next step.

staffS : In the organization without Manager, the Staff who is idle activity (busy==false), selects
one Task confirmable from vision attribute. The selection is decided autonomous by Staff's
decisionRule. Staff begins the selected Task at once.

• Beginning Rule
The Task underway is removed from waiting-list, and registered in processing-tasks of Team

object.

• Process-Ended Rule
The Task finished by Staff, which the volume becomes zero or less, is removed from

processing-tasks, and registered in the finished-tasks.

• Deadline Expiration Rule
The unfinished-task is registered in deadline-passed-tasks regardless of whether it is under

process or not, and is not treatable thereafter (exclusion from waiting-list or processing-tasks).

• Temporary Maintenance Rule
The Task temporarily reserved or interrupted by a Manager's judgment is moved from

processing-tasks to the head of waiting-list.

Table 2 Input files of Simulation Environment
FileMaker Attribute

size (int)
variety (int)
volumeMin (int)

TaskPool
FileMaker Task

volumeMax (int)
num (int)
type (String)
Task variety (int)

skillMin (int)

AgentAbility
FileMaker

Skill
skillMax (int)

• Generation Rule

(βα ,generateT): The meanings of this rule are that β pieces of Tasks are added to TaskPool every
_α period (step). These additional Tasks are chosen from the pool attribute of TaskPool at

random.

• Deadline Setting Rule
Deadline of a Task is set to the value arbitrary which is from one to twice as long as the span

when a Staff agent with an average skill can finish it. This means, the deadline is calculated using
the volume of the Task, the agent's ability for the Task, and the present time (now), namely

geskillAvera
volumerandnowdeadline ⋅+=)0.2,0.1(.

3.4 Simulation Environment
The results of our simulation model depend on both the pool attribute of TaskPool and Staff's

ability attribute. Therefore, when the simulation begins, these elements are needed to be given by
the file input. We can clearly observe the information requisite by using a common file among
different models. Each file is generated by the FileMaker shown in Table 2.
Variety is a domain of id value of the Task object, and corresponds to kind number of Tasks that

the organization processes.
The Task, whose attributes are defined in the followings, is described in the file that

TaskPool-FileMaker generates by just size (size of the TaskPool);
≤≤Ζ∈= xxxid 1,|{ variety , }

{ }volumeMaxyvolumeMinyyvolume ≤≤Ζ∈= ,| .
Likewise, the file generated by the AgentAbility-FileMaker contains the ability data of all Staff

agents for each of variety kinds of Tasks. The expression is the domain of skill value, namely,
{ }skillMaxzskillMinzzskill ≤≤Ζ∈= ,| .

Moreover, the decisionRule that the agent takes according to the type attribute is decided. This is
described in the next section.

3.5 Staff ’s Decision Making: decisionRule
In the Process-Beginning Rule , the Staff agent can select one of the following rules. staffS

D1 Staff agent begins a random-selected one among Tasks confirmed by the vision attribute.

D2 He/She selects one Task he/she is the best at among the confirmed Tasks and begins it.

D3 This rule gives him/her the Task which is waited for the longest among confirmed Task, and

he/she starts it.
D4 He/She selects one Task whose deadline is most likely to be expired among confirmed Tasks

and begins it.

3.6 Manager’s Decision Making: allocationRule
In the (Process-Beginning Rule), the Manager can select one of the flowing rules. managerS

A1 The Manager allocates a randomly selected Task among confirmed Tasks in his/her vision to

an idle Staff agent.

A2 He/She gives an idle Staff agent an unprocessed-task in his/her vision which he/she thinks

that the Staff agent is expected to be best at.

A3 He/She gives an idle Staff agent an unprocessed-task in his/her vision which is waited for the

longest among confirmed Tasks.

A4 He/She gives an idle Staff agent an unprocessed-task in his/her vision whose deadline is most

likely to be expired among confirmed Tasks.

4. Experiments and Discussions
4.1 Comparison of agent rules

First of all, in order to show a basic benchmark of this model, the performances of Staff agent's
decisionRule and Manager agent's allocationRule are compared.
• Parameter Settings
The simulation is executed with the parameters in Table 3. It is enabled that Manager confirms

all Tasks stacked on the waiting-list.

• Results
In this simulation, totally 71 Tasks (5 pieces arranged in the initial step are included) are

stacked on the waiting-list for the execution periods of 100 steps. The detail is shown in Table 4.
The values in Table 4 show the number of (finished / deadline-passed)-tasks by the deadline, and
those ratios (against the number of all Tasks) in parentheses. Moreover, all the figures are mean
values of 100 simulation runs.
 Figure 1 is the first simulation among these, plotted by the time series. The horizontal axis is a
time step, and the vertical axis is the number of completed Tasks. Figure 2 shows a snapshot of
the simulation.
 Both rules, A1 and D1, are random ones that both the agents begin an randomly selected Task,
and we can see that the results depend on the differences of how long it takes Staff agents to start
his/her Task. Due to the allocation time cost by the Manager, about 4% worth of Tasks are not
finished and not in time for the deadline. Oppositely, in cases of A2 and D2 rules, i.e. Staff agents
begin a good Task, the finished Tasks of A2 are larger than those of D2, not only because the
Manager agent can see more Tasks than the Staff agents but also because he knows everything
about the skills of all the Staff agents.
 On the other hand, when it comes to the Manager's allocation, we observed extremely bad
performance in cases of A3 or D3, and A4 or D4 rules. This is because the Staff agents concentrate
on only one Task to which each rule gives priority and due to an excessive human resource
allocation. The model considered this problem which will be shown in the next subsection.

4.2 Decision of talent distribution to Delivery date
To avoid an excessive human resource allocation, it is necessary to estimate whether one or more

of Staff agents has/have enough skill(s) to complete a Task by its deadline and to distribute it if
possible. This part of the section introduces the model in which the Manager agent is endowed
with such ability.

Table 3 Parameters
Simulation steps 100
Tgenerate(α,β) (α=3,β=2)
Vmanager(σ) σ=waiting-list.length

Vstaff(σ/3) σ/3
Task variety 5
volumeMin 30
volumeMax 80

Num 5
skillMin 1
skillMax 10

Table 4 Benchmark for Basic Rules (×100average)
A D task(All)

=71 finish deadline finish deadline

1
26

(0.37)
33

(0.47)
29

(0.41)
30

(0.42)

2
45

(0.63)
16

(0.23)
37

(0.52)
23

(0.32)

3
20

(0.28)
37

(0.52)
29

(0.41)
30

(0.42)

4
13

(0.18)
43

(0.61)
29

(0.41)
29

(0.41)

• Condition
In addition to the condition of the model in the previous subsection, the following rules are

considered:

deadlineestimateA (Task, Resource): The Manager allocates a Task which is expected to be finished by
the deadline to a Staff agent, by estimating his/her skill value. If a Task is judged not to be
completed by its deadline, even if all of the human resources, it is not allocated anymore.

• Results
 Table 5 shows the simulation results considering this rule. The problems of A3 or D3, and A4 or
D4 rules are improved by an effective allocation, and a higher performance is seen overall.

Figure 1 Performance Results of Basic Rules

Figure 2 Snapshot of the Simulation Execution

Table 5 In case of Estimating Deadlines

A task(All)
=71 Finish Deadline

1
43

(0.61)
17

(0.24)

2
45

(0.63)
14

(0.20)

3
43

(0.61)
17

(0.24)

4
47

(0.66)
12

(0.17)

5. Concluding Remarks
In this paper, we have reported on intermediate results of an agent-based simulator to aim at the

analysis of the office activities. Using the simulator, we will cope with management problems of
office work including task analyses, human resource management, and scheduling. Our future
work includes the function enhancement of the simulator, and scaling up the models.
In this paper, we have reported on intermediate results of an agent-based simulator to aim at the

analysis of the office activities. Using the simulator, we will cope with management problems of
office work including task analyses, human resource management, and scheduling. Our future
work includes the function enhancement of the simulator, and scaling up the models.

References
[Axelrod 1997] Axelrod, R.: The Complexity of Cooperation: Agent-Based Models of Competition and
 Collaboration. Princeton University Press, 1997.
[Carley 1995] Carley, K. M.: Computational and Mathematical Organization Theory: Perspective and
 Directions. Computational and Mathematical Organization Theory, Vol. 1, No. 1, pp. 39-56, 1995.
[Carley 1999] Carley, K. M., Gasser, L.: Computational Organization Theory .in Weiss, G. (ed.): Multiagent
 Systems - A Modern Approach to Distributed Artificial Intelligence. MIT Press, pp. 299-330, 1999.
[Cohen 1972] Cohen, M. D., J. G. March: A Garbage Can Model of Organizational Choice. Administrative
 Science Quarterly, Vol. 17, pp. 1-25, 1972.
[Cyert 1963] Cyert, R. M., March, J. G: A Behavioral Theory of the Firm. Prentice-Hall, 1963.
[Tanuma 2005] Tanuma, H., Deguchi, H., Shimizu, T.: SOARS: Spot Oriented Agent Role Simulator – Design
 and Implementation .in Terano, T., et al. (ed.): Agent-Based- Simulation, from Modeling Methodologies to
 Real- World Applications, Springer, pp.1-15, 2005.

