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ABSTRACT 

This paper outlines the design and implementation of Huang et al.‘s (2004) Cellular Automata with Social 

Mirror Identity Model (CASMIM), a small-world epidemiological model that accurately represents daily contact 

among individuals. The interactive capabilities of this epidemiological simulation tool are shown by describing 

the underlying network for a specific disease, giving a demonstration using a specific epidemic transmission 

example, and adding public health policy interventions to the model to assess their effects. Various simulation tool 

functions are described in detail. Source code is available via the author’s web site.  

1. INTRODUCTION 

The 2003 SARS outbreak triggered a number of efforts to create epidemic computer simulation models to 

help public policy makers and epidemiologists understand the dynamics of epidemic transmission and assess the 

effects of various public health policies[1-3]. Several researchers have recently attempted to simulate potential 

transmission scenarios for flu viruses (especially for avian flu) involving geographic-social contact networks[4, 5]. 

Some are using differential equations and compartmental models to derive R0 (a re-transmission parameter)[6, 7], 

while others prefer simulating disease transmission via large geographic information systems that monitor human 

movement and daily contacts[4, 5].  

Although compartmental models can be implemented quickly, they cannot be used to clarify the effects of 

interactions between individuals. In contrast, large geographic information systems can show accurate epidemic 

transmission details, but they require significant time and effort to develop—especially systems that monitor daily 

human movements on a geographic plane. I established the CASMIM system published by Huang C.Y., Sun C.T., 

Hsieh J.L., and Lin H[2], to strike a balance between model accuracy and development complexity, while still 

maintaining robustness and broad coverage.  

Details of several “what-if” experiments will provide to demonstrate CASMIM’s functions and interactive 

capabilities for examining factors that affect epidemic transmission. These experiments are examples of a 

Problem-Based Learning (PBL) approach that was developed for medical education in the early 1970s and is 

currently used in over sixty medical schools [8]. Two characteristics make PBL compatible with what-if epidemic 

simulation system experiments: a) the epidemiological simulation tool can help users gain a sense of engagement 

with real-world epidemic transmission, and b) interaction flexibility allows for the use of simulation tools to show 

how complex systems work under different circumstances—for instance, the execution of various public health 

policy suites [9]. Epidemic transmissions are usually complex, and single answers often do not exist. Users can 

model realistic situations via the repeated interactive manipulation of parameters. 



2. BACKGROUND 

The spread of a contagious disease reflects a close relationship between social networks and individuals 

who come into contact with each other[2]. A random interaction hypothesis makes it easier for epidemiologists 

and public health specialists to construct SIR models that represent ranges of possible transmission dynamics for 

epidemic outbreaks, infectious origins, and disease parameters based on data collected during previous outbreaks 

of contagious diseases. 

However, modern transportation modes and changes in lifestyles have rendered the traditional SIR model 

incapable of accurately reflecting the transmission dynamics of contagious diseases. Recent statistical analyses 

and computational simulations of social networks have shown that the global topological characteristics of social 

networks exert considerable influence on the overall behavior of easily transmitted diseases[11, 12].  

Huang et al.’s CASMIM is a small-world computation simulation model that conceptualizes individuals as 

elements and their most frequently visited places as logically abstracted mirror identities—for example, homes, 

train stations, workplaces, and restaurants. The mirror identity concept utilizes simple social networks to a) 

preserve the properties of elements that interact with their neighbors within two-dimensional lattices, and b) 

reflect such activities as long-distance movement and daily visits to fixed locations[2]. For this reason, the mirror 

identity concept in CASMIM is suitable for describing epidemics in modern societies. The model has clustering 

and small-world properties that allow it to simulate epidemic transmission dynamics. 

3. SYSTEM IMPLEMENTATION 

The simulation tool implements CASMIM by using Borland C++ Builder to encode the underlying social 

network, disease status transition process, public health policies, and user interface.  

3.1. Underlying Social Network 

This network is a two-dimensional lattice in which each cell contains a mirror identity belonging to one 

individual. The entire population is represented by a one-dimensional list. A brief description of individuals and 

their mirror identities is given in Tables 1-2. 

Table 1. Individual class and its attributes. 

Name Type Description 
ID Number A unique number used to identify the individual. 
Disease_Status Character The individual’s disease status. 
Attributes Class Useful epidemiological information about and personal 

properties of the individual. 
Mirror_Identities Object Array A list of the individual’s mirror identities. 

Table 2. Mirror identity class and its attributes. 

Name Type Description 
ID Number A unique number used to identify a mirror identity. 
(X, Y) Location Mirror identity location on a 2D lattice. 
Home, Hospital Boolean Used to identify a mirror identity staying at home or in 

hospital isolation. 

Three steps for initializing underlying social network constructed by individuals and their mirror identities 

are a) using a normal distribution to pre-determine the number of mirror identities belonging to each individual 

according to a pre-defined average number of mirror identities; b) locating the mirror identities on a 2D lattice; 



and c) building relationships among individuals according to adjacent relationships between mirror identities.  

3.2. Personal Disease Status Transition 

Integration of the SIR disease status system proposed by Kermack and McKendrick makes it possible for 

CASMIM to simulate an epidemic [10]. According to the CASMIM approach, every individual has an 

epidemiological status (S, I, or R) and a geographic mobility status (normal, quarantined, or isolated). Status 

transitions are determined through a combination of links with adjacent neighbors and probabilistic causes (e.g., 

infection rate and detection rates for such symptoms as fever). Basic personal disease status transition 

mechanisms are shown in the left Gray-part of Figure 1. When a patient or susceptible individual goes to a hospital 

to seek medical treatment, the infection rate increases according to the number of sick neighbors. 
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Figure 1. The left Gray-part is natural disease status transition with normal medical system using the SARS 

example. The right part is full social interventions, all of which lead to changes in social mobility. 

3.3. Intervention of Social Events 

One advantage of CASMIM is its use of the mirror identity concept to reflect individual geographic mobility 

in special areas. This characteristic is particularly useful for analyzing public health policies, which not only 

influence infection and contact rates, but also change an individual’s social mobility potential. Using health 

policies executed by the Singaporean government during the SARS outbreak as an example, mask wearing and 

reduced contact policies decreased the probability of becoming infected and the home quarantine, hospital 

visitation ban, and body temperature-taking policies restricted social mobility. Figure 1 illustrates the intervention 

of a contact tracing mechanism that forced potentially infected individuals to stay at home and the detection 

mechanism used to identify patients with symptoms and consequently send them to local hospitals. 

3.4. User Interface 

The user interface can be broken down into several parts. The first is designed to help users build an 

underlying social network by inputting such parameters as population size and average number of mirror identities 



(Fig. 2 Part A). The second consists of pre-defined epidemiological parameters related to individual disease status 

transition. These parameters are set according to recommendations made by epidemiologists. The third consists of 

imported cases that are input with their epidemiological properties and options for day-by-day simulations (Fig. 2 

Part B). The epidemic transmission dynamic is shown via macro- and micro-view windows that allow for 

observations of detailed transmission along the two-dimensional lattice (Fig. 2 Part C). The health policy input 

dialogue allows for activating or disabling health policies day-by-day. Users can manipulate participation rate and 

policy efficiency values as needed (Fig. 2 Part D). Simulation results are shown as daily reported, accumulated, 

and home quarantine curves. Statistical curves can be updated as day-by-day simulations are run (such as figures 

4-6). At the bottom of the simulator is a system information watcher that provides simulation data (Fig. 2 Part E). 

 

Figure 2. User Interface of CASMIM. 

4. EXAMPLE EXPERIMENTS 

4.1. The small-world properties of CASMIM 

The first experiment was conducted to examine the effect of average degree of separation between people 

who visit three fixed locations on a daily basis. The number of an individual’s mirror identities represents the 

number of fixed places that are visited every day. The focus of this experiment was on the relationship between 

population size and degree of separation, which highlights how people and their mirror identities in a simulated 

society are tied together in short-distance relationships. According to the results shown in Figure 3, an increase in 

total agent population was accompanied by a slow, logarithmic increase in average degree of separation for the 

entire underlying contact network. The average degree of separation remained sufficiently low to characterize the 

underlying network as a small-world social network model. 



 

Figure 3. Increase in total population is accompanied by a slow logarithmic increase in degree of separation. 

4.2. Epidemic Simulation Capability  

Epidemic computer simulation tools allow for quick and repeated interactive manipulation to assist in 

understanding real-world epidemic transmission using “what-if” experiments. I used the Singapore dataset from 

Huang et al.’s paper to run the simulation. Imported cases, disease characteristics, and health policy execution 

were inputted manually on a day-by-day basis according to a timeline published by the Singaporean health 

authority. Policy efficiency and public participation rates were set up according to suggestions from public health 

experts. 

4.2.1. Disease spread without any control measures.  

This experiment can lead to quick insights into whether a medical system can meet the challenges of a new 

epidemic. Using the SARS simulation as an example, the severity of such symptoms as high fever and heavy 

coughing meant that almost all patients had to go to a hospital for medical treatment; based on the situation in 

Singapore, I assumed the operation of a normal medical system. This what-if experiment was easily run using the 

basic disease transmission rule mentioned in Section 3.2 and Figure 1; results are shown in Figure 4. Based on a 

SARS reproduction number (R0) of 2.56, the results indicate an exponential increase in this scenario. 
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Figure 4. SARS simulation result and original Singapore epidemic curve. 



4.3. Effects of public health policy interventions. 

Since public health policy execution is a tradeoff between individual health and social cost, a repeatable and 

flexible computer simulation tool can help in the simultaneous assessment of public health policy efficacy and 

social cost. Once again I used public health policy interventions from the Singaporean simulation of imported 

cases from Huang et al.’s research as the trigger and executed health policies day-by-day. I tested three scenarios. 

4.3.1. Effects of the removal of a single health policy 

Real-world analyses of the influence of a single policy on an epidemic outbreak are very difficult, but 

simulations allow for the disabling of individual policies in order to measure their effectiveness. According to the 

results shown in Figure 5, a) a larger number of individuals would have become infected if the general public had 

maintained its normal rate of contact with neighbors, and b) disease propagation would have been more difficult to 

control if most people did not follow the mask-wearing policy. 
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Figure 5. Comparison of scenarios in which individual health policies are disabled. 

4.3.2. Effect of early health policy execution 

Certain health policies are less effective when they are implemented too slowly, therefore health policy 

makers and researchers are interested in determining what might have happened had such policies been executed 

more quickly. I ran a simulation of the Singapore situation with a body temperature measuring policy enacted on 

3/23 and compared the results with actual data from executing the policy on 4/22. According to the results shown 

in Figure 6, earlier enactment triggered a sudden increase in reported cases on 3/24. I therefore concluded that 

earlier execution of this policy would have been very effective in detecting infected SARS patients and reducing 

disease propagation. 
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Figure 6. Simulation results of original Singapore simulation and a possible scenario in which a body temperature 

measurement policy is quickly enacted. 

5. CONCLUSION 

I used this paper to introduce a simulation tool named CASMIM that implements a social network-based 

epidemiological simulation model for studying emerging infectious diseases. The model can help users to a) gain 

a sense of engagement with real-world epidemic transmission and b) review the effects of health policies by 

manipulating efficiency and time parameters associated with various health policies. The flexibility and 

extensibility of the mirror identity concept in CASMIM allows for successful simulations of multiple geographic 

health policies (e.g., home quarantine, hospital isolation, and the presence of super-spreaders). I offered several 

“what-if” experiment examples to show users how they can manipulate my proposed tool to perform epidemic 

simulations. I plan on expanding CASMIM for simulating scenarios for flu—a standard type of air transmission 

epidemic. Those interested can download a copy of this simulation tool (including C++ source code, executable 

application, sample experiment, instruction manual) from http://www.cis.nctu.edu.tw/~gis93813/SARSTool/.  
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