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Abstract

This chapter explores the state of the emerging practice of
designing markets by the use of agent-based modeling, with special
reference to electricity markets and computerized (on-line) markets,
perhaps including real-life electronic agents as well as human traders.
The paper first reviews the use of evolutionary and agent-based
techniques of analyzing market behaviors and market mechanisms,
and economic models of learning, comparing genetic algorithms with
reinforcement learning. Ideal design would be direct optimization of
an objective function, but in practice the complexity of markets and
traders’ behavior prevents this, except in special circumstances.
Instead, iterative analysis, subject to design criteria trade-offs, using
autonomous self-interested agents, mimics the bottom-up evolution of
historical market mechanisms by trial and error. The chapter
highlights ten papers that exemplify recent progress in agent-based
evolutionary analysis and design of markets in silico, using electricity
markets and on-line double auctions as illustrations. A monopoly
sealed-bid auction is examined in the tenth paper, and a new auction
mechanism is evolved and analyzed. The chapter concludes that, as
modeling the learning and behavior of traders improves, and as the
software and hardware available for modeling and analysis improves,
the techniques will provide ever greater insights into improving the
designs of existing markets, and facilitating the design of new
markets.

Keywords: market analysis design auctions learning electricity on-line

JEL codes: D440, D490, C150, C630, C790
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1 Introduction

Institutional arrangements for exchange — markets — have emerged and
evolved over the millennia since — and perhaps as a consequence of —
specialization of labor, which can be intensive (making something “better”
than others do, absolutely or relatively) or extensive (taking the risk of
fetching an item, not locally available, from afar). “Trade” first meant
exchange of foreign-produced goods for domestic goods, a form of barter,
which is made more efficient with the emergence of money — numeraire,
store of wealth, and medium of exchange, in the textbooks’ trio.

Many different market institutions have evolved, well described in John
McMillan’s book, Reinventing the Bazaar (2002). The development of
economics, in one view, has been the outcome of reflecting on, describing,
and analyzing various markets, from the market-town’s weekly bazaar to
the complex financial markets for exchanging risk. One form of market
institution is the auction, and only over the past forty-odd years, with the
development of the tools of game theory, has formal analysis of auctions
begun.

1.1 Designer Markets

As engineers say, after analysis comes synthesis — design. Designing
markets is a new discipline. At least five examples of designed market can
be identified: simulated stock markets; emission markets; auctions for
electro-magnetic spectrum; electricity markets; and on-line, e-commerce
markets:

1. First, the markets for new financial instruments, derivatives, that
were created and traded after Black, Scholes, and Merton solved the
seventy-year-old problem of pricing options. Previously, financial
traders understood that options were valuable, but not how to value
them exactly. More recently, there has been research into the rules
and micro-structure of stock markets, continuous double-auction
trading, through the use of simulated markets. See LeBaron (2005)
for further discussion of this research.

2. Second, the markets for pollution emissions, usually sulphur dioxide
and carbon dioxide. The realization that the emissions from
industrial processes in particular, and the emission of anthropogenic
chemicals into the environment in general, were, at least potentially,
altering the biosphere for the worse was followed only after a lag with
the awareness by policy makers that market mechanisms could be
harnessed to control such emissions, generally more efficiently than
could other mechanisms.
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3. Third, the auctions for electro-magnetic spectrum. The simultaneous
ascending-bid auctions that have recently been designed for selling
bands of local spectrum to be used for new communications
technologies did not arise without some hiccups. Perhaps as an
offshoot of the privatization of government assets and activities in
the 1980s in many countries, the use of auctions to choose the new
owners and to value these assets slowly replaced so-called “beauty
contests,” in which subject to certain technical requirements licenses
were virtually given away. But these new auction mechanisms at first
did not allow for the complementary nature of bands in different
localities. Only after intensive efforts by economists advising, first,
governments, and, second, bidding companies did the successful “3G”
auctions occur [Milgrom (2004)].

4. Fourth, the markets for the exchange of electricity. Again, as a
consequence of the twin political aims of privatizing
government-owned electricity utilities and of improving the efficiency
of electricity generation and distribution systems (perhaps by
separating ownership of generators and distributors), while reducing
the bureaucratic weight of regulation even on privately owned
utilities, there has in many jurisdictions been a move away from
centralized engineering-dominated means of allocating electricity load
across generators and distribution networks to using market
mechanisms of various kinds. Electricity cannot (easily or cheaply)
be stored, a characteristic which, with some engineering issues, has
meant that previously existing market mechanisms were not
appropriate. Instead, several types of new market mechanisms have
been introduced.1

5. Fifth, on-line markets. With the growth of the use and extent of the
Internet over the past eight years, and the dot-com boom, with
buying and selling on-line, opportunities for designing on-line
markets de novo, as opposed to trying to emulate existing face-to-face
markets, have arisen. In the last few years these opportunities have
given rise to much work by computer scientists, as well as
economists. Indeed, there is a productive research intersection of the
two disciplines, as revealed in some of the papers discussed below.

1Despite the debacle of the California blackouts of 2000, it is increasingly clear that it
was not the underlying market design per se at fault, rather it was its implementation
and the consequences of lobbying by vested interests: the retail price was regulated,
while the unregulated wholesale price sky-rocketed as a consequence of market
manipulation, which had the effect of squeezing the retail electricity companies, such as
Pacific Gas & Electricity [Sweeney (2002)].
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The use of game theoretic methods to analyze market design is related to
the use of these techniques to analyze another kind of interaction, those
governed by contracts. Contract design is another area where agent-based
modeling might be used, but negotiation and design of contracts by use of
computer simulation and agent-based modeling is only now emerging from
its infancy.2

As examples of the use of agent-based models in market design, this
chapter will examine the use of such models in designing the fourth type of
market, that for electricity, and the fifth, for on-line trading, which is also
examined in MacKie-Mason and Wellman (2005). The first, for emissions
abatement, is covered by Janssen and Ostrom (2005).3 The second is
covered by the chapter by LeBaron (2005), and referred to further below.
The chapter by Duffy (2005) provides evidence of validation of artificial
(“designed”) agents and the behavior of human subjects in experiments, as
discussed below.

Before reviewing the use of agent-based simulation models in market
design, we contrast analysis with design, closed-form calculations with
simulation in both analysis and design, non-agent-based simulation with
agent-based simulation of analysis and design, and finally different models
of learning and adaptation in agent-based simulation models.

2 Analysis, Design, and Simulation

Before design must come analysis. Simulation allows analysis of systems
that are too complex to analyze using traditional, closed-form techniques.
Once we understand through analysis how the elements of the phenomenon
of concern work together, we can ask the question of how to improve its
operation: how better to design it.

2.1 Analysis

In the world of analytical, closed-form solutions, there is a certain logic to
the progress of research. A phenomenon is observed; a need for
explanation and understanding is identified; a model is built, incorporating
simplifying assumptions; the model is manipulated to obtain necessary and
sufficient results, traditionally concerned with existence, uniqueness, and
stability of an equilibrium, and perhaps possible improvement in the
operation of the system is identified, if it is a human-made system. The

2A good starting point is Jennings et al. (2001).
3Agent-based models have also been used in other environmental settings: Hailu and

Schilizzi (2004).

6



former part of the progress is analysis, the latter synthesis, or design, to
improve some characteristic of the system or its operation. Successful
analyses are published, indexed, and referenced, to be used and modified
by future analysts and designers.

A common understanding of this process in general, but particularly the
process of model-building and deducing the system’s behavior and
outcomes, means that, by and large, later researchers can stand on the
shoulders of earlier researchers. With today’s on-line indexing services, it
is even easier to find antecedent papers, to relax an assumption or two,
and to attempt to solve the ensuing model, which might (or might not) be
a closer approximation to reality, or result in a better design.

This process, I believe, is driven in particular directions by the
mathematical tractability of particular types of model, and the relative
intractability of others. (If this reminds us of the joke about the economist
searching for his car keys under the street-light, instead of in the darkness
around his car, it might not be coincidental.)

2.2 Simulation and Analysis

The advantage of using simulation techniques is that they provide us with
light where the analytical techniques cast little or none, in our
metaphorical search, so we are no longer restricted to working with models
which we hope will prove tractable to our analytical tools. As computing
tools (both hardware and software) have grown more powerful and
user-friendly, research using simulation techniques has blossomed. Analysis
of observed phenomena has not been a driving motivation of the research
of computer scientists — yet they have a fifty-year history of design and
invention, which continues apace (although they have from time to time
looked for analogies to the natural world, neural nets mimic in some sense
the brain, and Genetic Algorithms (GA) were inspired by natural selection
with sexual reproduction). Over thirty year ago it was possible for Donald
Knuth to write an encyclopedic study of The Art of Computer
Programming in three volumes, but such a task would be daunting now.4

Moreover, as they attempt to implement automated on-line markets,
computer scientists have discovered economists’ work on auctions, spurred
by applications of game theory to study these traditional market
institutions, and to develop new, designer markets, given the opportunities
of the modern technology.

The focus in this section will be on analysis, rather than design. This is
because, as we discuss in section 3.1 below, direct design or optimization

4Apparently, Knuth has been undertaking a fourth volume, since TeX and
METAFONT were put to bed [Knuth (1979)].
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requires a degree of understanding of the mapping from the design space to
the performance space which has not yet been developed. Indeed, given
the complexity of market phenomena, direct design might never be
possible, as Edmonds and Bryson (2003) remind us. Instead, searching the
design space will be an iterative process of analyzing the performance of a
specific model, modifying the model in the light of this analysis, and
analyzing the modified model, until the designer is happy with the
performance of the multi-modified model against various criteria.

2.3 Evolutionary Simulation Techniques

To the evolutionary biologist, the design is the genotype, and the
performance is the phenotype. Evolution can be characterized as a
dynamic search in a population for genotypes that result in better
phenotypes, where that mapping too is ill-defined. It might not be
surprising, therefore, that the development of agent-based methods of
optimization and simulation began with techniques that mimic aspects of
natural selection. Holland’s Genetic Algorithm (GA) (1976, 1992) was used
as a new kind of optimizing tool for problems intractable to calculus-based
tools. The GA tests and scores individual solutions in a population of
possible solutions, and, based on the “fitness” score of each, selects pairs of
“parents” for a new “offspring” generation of possible solutions. This
artificial reproduction uses the genetic operations of “crossover” and
“mutation” (analogous to mimicry of existing solutions and to exploration
of new regimes of the solution space) on the parents. Testing, selection,
and generation of a new population results in the emergence of never-worse
best solutions. GA has been widely used as an optimizer, a directed form
of trial and error that obviates exhaustive testing of all possibilities.

But using the GA as an optimizer in this way — focusing on the single
best solution (an individual) — throws away the population’s emerged
characteristics qua population. A line of research then began with
Axelrod’s (1987) simulation of individuals playing the Iterated Prisoner’s
Dilemma (IPD). It used the population of individuals — stimulus–response
automata, where the stimulus was the state of the interaction, and the
response was the next action of the player — to consider not only the
emergence of new strategic automata, but also to examine the stability of
the population against “invasion” by a new strategy.

Axelrod, a political scientist, was interested in combinations of strategies
that exhibited the emergence of cooperation [see Axelrod (2005)], a
manifestation of the Folk Theorem of repeated games [Fudenberg and
Maskin (1986)]. But since the IPD can be thought of as a simple model of
a repeated Bertrand duopoly, his work soon gained the attention of
economists, who had found the analytical characterizations of equilibria in
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oligopolistic competition incomplete, not least in the paucity of
out-of-equilibrium characterizations of the dynamics of the interaction.
That is, the intermediate behavior of a dynamic interaction, a game, might
be more important than its asymptotic properties.5

When the players face identical payoff sets and choose from identical action
sets, a single population is satisfactory, since the GA processes (selection,
crossover, and mutation) which model learning among the individuals and
between generations of the population are focused on the same end: faced
with the same state of the interaction, either of the players would behave
identically, and fitness is average (or discounted) profit.

But when modeling oligopolistic players who have distinct payoff sets
(because of distinct costs, facing distinct demands, and perhaps with
distinct action sets), a single population of agents means that the GA
processes are faced with a fitness “landscape” [Kauffman (1995)] that is
not only possibly rugged, but also shifting (as each agent wears a distinct
sellers hat, as it were). In this case, separate populations of sellers makes
sense.

The GA was developed and pioneered by computer scientists and engineers
who were intent on solving optimization problems exhibiting rugged
landscapes. Although it was at first used only where these were static,
where the landscape did not change as the process of genetic “learning”
took place, it also turned out to be well suited to simulating and solving
problems where the environment was changing. When the individual
agents modeled by the GA are competing against each other, the GA is
modeling the process of co-evolution.6 GAs were originally used as means
of seeking optimal solutions to static problems; Marks (1989) and others
adapted them to seek solutions of co-evolutionary strategic problems, such
as the IPD and oligopolies with asymmetric players, where the fitness of an
agent depends on the state of the whole population of agents:
state-dependent fitness [Riechmann (2001)]. Sargent (1993) surveys studies
using adaptive algorithms (including the GA) to model macro-economic
phenomena with learning agents, but not explicitly agent-based models.

Chattoe (1998) argues that GA applications in economics confuse the role
of the GA as instrumental in searching the solution space and its role as a
description of firms’ decision-making and individual learning. Dawid
(1999) has argued that, despite its foundation in computer science, the GA
is good at modeling the ways in which populations of economic actors can
learn. Indeed, Curzon Price (1997) spoke of the GA as providing a stream

5Just how to characterize out-of-equilibrium behavior (or bounded rationality, for
that matter) remains an open question. See Arthur (2005).

6This process was mistakenly called boot-strapping by Marks (1989), in the first
published research into co-evolution of rivals’ strategies in oligopolies.
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of hypothetical scenarios within the firm, even if not all are acted upon.
Duffy (2005) provides an extensive review of the descriptive role of GAs in
economic models, and concludes that the findings from many studies
“provide some support for the reasonableness of GAs as models of adaptive
learning by populations of heterogeneous agents.”

When applied to economic systems, the GA operators have been
interpreted several ways. Each individual string can represent either an
individual agent or one possible decision of a single agent. The selection
operator ensures that past performance is reflected in future choices: well
(badly) performing decisions are more (less) likely to be chosen in the
future. Each new generations of strings might be new individual
decision-makers, or it might be new ideas or heuristics among long-lived
players.

With few exceptions, the models of analysis and design that we discuss
below are evolutionary in nature — “dynamic models in which successful
agents and activities gradually increase their share of the economy at the
expense of less successful agents and activities” [Conlisk (1996)] —
whether explicitly so (as with GAs) or implicitly.

2.4 Learning

The populations in the first applications of GAs were seen as trial
solutions to arguments that would optimize the function in question
(usually highly non-linear and discontinuous). Later applications, however,
treated the populations as comprised of agents rather than numbers.
Individual agents were immutable, but in each generation the population
of agents would change, under selective pressure. This is implicit learning
and adaptation.7 Just how learning and adaptation are modeled can
clearly affect the model’s behavior.

Agent-based modeling has since modeled learning as explicit. Arthur
(1991, 1993) was the first economist to support modeling agent behavior
using reinforcement-learning (RL) algorithms and to calibrate the
parameters of such learning models using data from human-subject
experiments.8 In RL models, how an actor chooses to behave later is a
function of the outcomes he has experienced earlier, in part as a
consequence of his earlier choices [the Thorndike effect, Thorndike

7“Implicit” in that the individual agents do not change at all, but succeeding
populations embody improvements (“learning”) in the manner of response. Wood (2005)
points out that psychological experiments have shown that for human subjects learning
can be adaptive, but that adaptation does not necessarily imply learning, the long-term
rewriting of memory.

8Brenner (2005, Section 2.1) recounts how Arthur generalized the Bush and Mosteller
(1955) model, also used by Cross (1973, 1983).
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(1911)].9 At first, Arthur was interested in calibrating individual learning
to experimental data, but later he and his associates [Arthur et al., (1997)]
“model calibrations that yield aggregate data that are similar to relevant
field data” [Duffy (2005)].

Roth and Erev (1995) and Erev and Roth (1998) ask how well RL
algorithms track experimental data across various multi-player games.
Their general RL model, which improves the fit of the model to
human-subject experimental data, includes Arthur’s earlier model as a
subset, as seen below.

The general Roth-Erev model of reinforcement learning can be
characterized as follows: Suppose there are N actions/pure strategies. In
round t player i has a propensity qij(t) to play the jth pure strategy, where
propensities are equivalent to strengths in Arthur’s model. Initial
propensities are equal, qij(1) = qik(1) for all available strategies j, k, and
∑

j qij(1) = Si(1), where Si(1) is an initial strength parameter, equal to a
constant that is the same for all players, Si(1) = S(1); the rate of
learning is proportional to the size of S(1):

∑

j

qij(1) = Si(1) = S(1) for all i.(1)

The probability that agent i plays strategy j in period t is made according
to the linear choice rule:

pij(t) =
qij(t)

∑N
k=1 qik(t)

(2)

Suppose that, in round t, player i plays strategy k and receives payoff of x.
Let R(x) = x − xmin, where xmin is the smallest possible payoff. Then
player i updates his propensity to play action j according to the rule:

qij(t + 1) = (1 − φ)qij(t) + Ek(j,R(x)),(3)

where Ek(j,R(x)) =

{

(1 − ε)R(x), if j = k;
ε

N−1
R(x), otherwise.

(4)

This is a three-parameter model, where the parameters are: the
initial-strength parameter, S(1); a recency parameter φ that gradually
reduces the power of past experiences to influence future actions; and an

9Recent psychological research is questioning Thorndike’s Law of Effect: the more
specific and immediate the feedback, the greater the effect on learning. The Law is a
reasonable description of human behavior in a simple world (of decision-making), but is
not so good in a complex, stochastic world (of exploration and problem-solving) [Wood
(2005)].
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experimentation parameter ε, which can be localized for similar strategies,
or be made more intrepid.

If φ = ε = 0 then the model becomes a version of Arthur’s model, but
without re-normalization of the sum of propensities in every period. The
model without re-normalization reflects a learning curve that flattens with
experience over time.

Duffy (2005) and Brenner (2005) discuss, among others, four types of RL
models: the Arthur-Roth-Erev model mentioned above; Q-learning, which
optimizes long-term payoffs, rather than immediate payoffs [Watkins and
Dayan (1992)]; multi-agent Q-learning [Hu and Wellman (1998)]; and
Adaptive Play [Young (1998)]. Below we discuss several papers that use
these models, including a useful modification of the Roth-Erev model
summarized above in equations (1) through (4).

Selten [Selten and Stoecker (1986), Selten (1998)] has devised a much
simpler learning mechanism, directed learning. This is based on the notion
that ex-post rationality is the strongest influence in adaptive behavior. It
requires an ordering over the set of possible actions, and models players
learning to do better by probabilistically altering their actions in the
direction that would have led to higher payoffs had these actions been
chosen earlier, and never altering their actions in a direction that would
have lowered their payoffs [Brenner (2005)]. For instance, Hailu and
Schilizzi (2004) model bidders’ learning in auctions: if a bidder won the
previous auction, then choose an equi-probable mixed action of the same
bid or one ten percent higher for the next auction; if the bidder did not
win in the previous auction, then choose an equi-probable mixed action of
the same bid or one ten percent lower, with prior upper and lower limits to
legitimate bids. They find that the efficiency benefits of one-shot auctions
dissipate with repetition and learning.

Vriend (2000) draws the distinction between the social learning of the GA
(whereby the individuals in the population have learned from their
parents, through selection and crossover, and so there is the possibility of
good “genes” spreading through society over several populations) and the
individual learning of non-GA agent-based models (with explicit learning
incorporated into the structures of the artificial, adaptive agents).10 Both
sorts of models, and both sorts of learning, have been termed
“agent-based” models.

The learning in reinforcement-based models and in the extant GA models
is inductive: that is, future actions are based on past experience, with no
attempt to anticipate and reason back, in a truly deductive, strategic
fashion. Belief-based learning, however, incorporates recognition by the

10Strictly speaking, individual learning can also be modeled using classifier systems,
closely related to the GA [Holland (1992)].
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players that they are interacting with other players. They thus form beliefs
about the likely actions of these other players. “Their choice of strategy is
then a best response to their beliefs”, [Duffy (2005), Section 3.2]. “By
contrast, reinforcement learners do not form beliefs about other players,
and need not even realize that they are playing a game or participating in
a market with others.” Almost all the research we review models inductive
learning, but two papers which use anticipatory, belief-based learning are
reviewed in Section 3.4 below.

2.5 From Analysis to Design

As remarked by Roth (1991) in an earlier paper on market design, three
approaches are suitable for the iterative process of market design: first,
traditional closed-form game-theoretic analysis, as discussed above; second,
human-subject experiments; and, third, computational exploration of
different designs. Indeed, if the design criteria are clearly defined, some of
the recent techniques of simulation and optimization developed by
computer scientists and computational economists can be used to search
for optimal market designs, directly and indirectly.

Market performance may depend on the degree of “intelligence” or
“rationality” of the agents buying and selling, which has led to computer
experiments in which trading occurs between artificial agents of limited or
bounded rationality, as discussed further below. As Walia et al. (2003)
remark, if a market design with agents of low degree of “intelligence” is
found to be sufficient for a specific level of market performance, then we
might expect that agents with a higher level of intelligence, or agents
whose rationality is less bounded, will, through their decisions to buy and
sell, inadvertently create for themselves a market that is working efficiently.

But this is not necessarily the case: for instance, a market design could
have a loophole — obscure to stupid agents — that makes it completely
degenerate. Even without loopholes, smarter agents might find strategic
ploys that reduce efficiency, or might spend more effort (wasted, from a
social efficiency perspective) on counter-speculation.11 This is confirmed
by Arifovic (2001), who finds that more complicated agents do not
necessarily do better in her simulated market environment.

Of course, historical market institutions have in general not simply been
imposed from above (so-called top-down design) but have also emerged
from the bottom up as a consequence of a multitude of actions and
interactions of the myriad traders [McMillan (2002)]. Although the
omnipotent programmer can experiment with different market forms and
different kinds of boundedly rational agents to discover sufficient

11I thank an anonymous referee for pointing this out.
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combinations of each for specific behavior of the market, evolutionary
computation raises the possibility of bottom-up design, or emergence of
market design through simulation.

This in turn raises the issue of whether agent-based experiments are being
used as a model of human behavior (where analysis is followed by design,
given the behavior of the agents and the emergent aggregate outcomes) —
in which case it is an empirical question as to how boundedly rational the
agents should be to best model human agents [Duffy (2005)] — or whether
the agent-based experiments are an end in themselves, because on-line it is
possible to use agents (“buy-bots, sell-bots”) to buy and sell, without the
errors that human agents are heir to.

These alternatives raise two issues [Tesfatsion (2002, p. 19)]: First, to
what extent are the learning processes of human participants in real-world
markets mal-adapted to market institutions? Perhaps the use of
agent-based optimization tools could improve human market behavior, as
is already seen, for instance, in eBay auctions, when bidders use software
to enhance their chances of being the high bidder at the deadline.

Second, to what extent have existing market protocols (or market designs)
evolved or been designed to avoid the need for any great rationality on the
part of market participants? Gode and Sunder (1993) and others seek to
answer this question for financial markets, but their results may, under
certain conditions, be valid for other markets. These issues are explored at
greater length in the chapters by LeBaron (2005) and Duffy (2005).

When there are several criteria by which the desirability of a designer
market might be judged, trade-offs are necessary, and in the case of the
GA, which needs one measure of each agent’s fitness, such trade-offs must
be explicit beforehand. See Section 3.2 below.

3 Market Design

Design is a process of building directed by the pre-specified design
objectives, if not by an explicit how-to plan. Unfortunately, specifying
objectives does not always immediately delineate exactly how the model
building should occur: these objectives are specified in a performance
space (or behavior space) and the building occurs in a design space. The
mapping from the designed structure to the desired performance may not
be clear.

In the case of evolution, the design would occur in the genome space, while
the behavior or performance occurs in the phenome space. In the case of
designer markets, policy-makers have been using theory, experiments with
human subjects, and computer simulations (experiments) to reduce the
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risk that the mapping from design (structure and rules) to behavior of the
economic actors (the performance of the system) is incompletely
understood, and so that there are fewer surprises.

Where the mapping is sufficiently well understood, and where closed-form
analytic solution is tractable, it should be possible to describe not only
sufficiency — if the market has this structure, and the rules of trading are
such and such and the traders are given this information, then this
performance and behavior will follow, at least in general form — but also
necessity — if you want this performance and behavior, then this is the
only set (or sets) of designs (combinations of structure and rules) that will
produce it.

Without a closed-form analytical solution, but instead with human
experiments or with computer simulations, necessity is in general out of
reach, and we must make do with sufficiency. (Note that this is not always
the case: James Watson and Francis Crick (1953) used a form of
simulation to determine the structure of DNA, with their metal rods and
brass atoms, but the experimental results from the work of others had so
constrained the degrees of freedom in the space of possible structures that
they knew when they had simulated the structure correctly.
Model-building (“stereo-chemical arguments” in Watson and Crick’s 1953
phrase) could not clinch the structure until greater congruence between the
model and the observed structure of the actual molecule was shown to
exist, as the future Nobel laureates emphasized in their 1953 paper. And
any negative results would have meant returning to the drawing board, or
in this case the brass rods and sheet metal. See Marks (2003) for further
discussion of this pioneering simulation.)

MacKie-Mason and Wellman (2005) present a Marketplace Design
Framework, which delineates the three fundamental steps that constitute a
transaction: first, the connection (searching for and discovering the
opportunity to engage in a market interaction); second, the deal
(negotiating and agreeing to terms); and, third, the exchange (executing a
transaction). They define a “marketplace system” as consisting of agents
and the market mechanism through which they interact, all embedded in
an environment of social institutions (language, laws, etc.). Their market
mechanism is the set of “rules, practices, and social structures of a social
choice process, specifying, first, permissible actions” (including messages),
and, second, market-based exchange transactions as outcomes of a function
of agent messages. If there is some entity, apart from the participating
agents, that manages any inter-agent communication and implements the
mechanism rules, then the market mechanism is mediated.

MacKie-Mason and Wellman note that, as a consequence of this
characterization of a marketplace, there are at least two design decisions:
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first, the design of the market mechanism, which might be decomposed
into the design of mechanisms for, successively, the connection, the deal,
and the exchange phases of a transaction; and, second, design of agents to
interact with the market mechanism, whether existing or newly designed.
They define an agent as an “autonomous decision-making locus in a
system of multiple decision-making entities”; an agent has “type”
attributes, such as preferences, beliefs, intentions, and capabilities. There
will be a form of consistency between the agents’ behavior, beliefs, and
preferences, consistent with some principle of rationality. In this chapter,
the focus is on design of MacKie-Mason and Wellman’s market mechanism,
specifically, the deal negotiation task. As with most of the existing
literature, this chapter focuses on market mechanisms that govern the
settlement from allowable actions.

Mechanisms specify, first, the agents’ concerns that are recognized, and,
second, rules mapping actions into allocation outcomes. A rule might
specify which actions are permissible, or the procedure for choosing a
settlement of agents’ concerns based on observable actions. For instance,
auctions, MacKie-Mason and Wellman point out, include rules governing
allowable actions, and rules governing settlement.

To be effective, design of the market mechanism must be measured, and
will usually consist of a constrained optimization, even if not explicitly or
directly. “No external subsidies” or “maintain horizontal equity” are two
possible constraints given by MacKie-Mason and Wellman. We explore
others below.

The general design problem has become designing a market mechanism
that includes defining a set of concerns over which agents can interact,
specifying rules of permissible actions, and rules for mapping from actions
to settlement and outcomes.

3.1 Complexity of Design

Edmonds and Bryson (2003) speak of the syntactic complexity of design.
This is the lack of a clear mapping from design to behavior: the only way
to know the system’s outcomes is to run the system and observe the
emerging performance. Analysis is not able to predict the outcome. They
are speaking of multi-agent computer systems, but could be speaking of
standard double auctions in continuous time, which have not yet been
solved analytically. Simon (1981) put it this way: “... it is typical of many
kinds of design problems that the inner system consists of components
whose fundamental laws of behavior ... are well known. The difficulty of
the design problem often resides in predicting how an assemblage of such
components will behave.”
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One reason why analytical methods of analysis might fail is that the
mapping from initial conditions of structure and rules to behavior and
performance is not smooth or continuous, and, as such, is not amenable to
calculus-based tools. The rugged nature of this landscape is its complexity,
a complexity that is multiplied if it too is changing, perhaps as a function
of the strategic complexity that occurs if the design has also to account for
the interacting agents’ patterns of behavior changing as a result: the
biologist’s co-evolution.

It is partly because of these complexities that direct design of markets is
hardly ever attempted. Another reason is the possibility of conflicts among
several design trade-offs.

3.2 Design Trade-offs

Where there are several design criteria, the possibility arises of trade-offs
between the criteria. For instance, if a firm has market power, it can
maximize its seller revenue, but at the cost of market efficiency, as
measured by the sum of seller (or producer) surplus and buyer (or
consumer) surplus. Or it might be possible to improve the fairness of a
market outcome, but at the cost of market efficiency. As we shall see
below, to use computer simulation such trade-offs must be explicit. It
might be possible to use a version of Simon’s (1981) satisficing, whereby so
long as the other criteria are met (above some target level), the remaining
criterion is used to rank designs. Or different criteria could be weighted to
derive a single, scalar maximand.

Possible criteria for judging the design of a single-auction market might
include [Phelps et al. (2002a), (2005)]: first, maximizing seller revenue:
this has been one of the main criteria in the design of the spectrum
auctions, most famously the 3G auctions [Milgrom (2004)]; second,
maximizing market allocative efficiency: from a policy viewpoint and not a
seller viewpoint this is a desirable attribute of a marketplace system; third,
discouraging collusion, as a means to attaining the first and second
criteria; fourth, discouraging predatory behavior, which will also help to
maximize efficiency; fifth, discouraging entry-deterring behavior, again as a
means of maximizing seller revenue (in a single (selling) auction the
greater the number of potential bidders, the greater the seller revenue);
sixth, budget balance: no third-party payments or subsidies for a deal to
be reached; seventh, individual rationality: the expected net benefit to
each participant from the market mechanism should be no less than the
best alternative; and eighth, strategy-proofness: participants should not be
able to gain from non-truth-telling behavior.

Myerson and Satterthwaite (1983) derived an impossibility result that
demonstrates that no double-sided auction mechanism with discriminatory
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pricing12 can be simultaneously efficient, budget-balanced, and individually
rational.

Talukdar (2002) emphasizes that before the market can be designed
(solved), the design problem must be well posed, that is, complete, feasible
(all constraints can be satisfied), and rich (allows for innovative and
desirable solutions). To be complete, the design problem must contain:
first, the attributes to be used in characterizing behavior of the market;
second, the decision variables to be used to characterize the structure;
third, the goals to be attained (desired behaviors, laws, regulations); and,
fourth, a computable mapping of decision variables into goals (does each
point in decision space meet the goals?). This fourth requirement is
achieved for complex design problems by iterative analysis, which can be
achieved using agent-based simulation tools and agent-based verification
tools, since such tools are open and modular.

LeBaron (2005), in examining the use of agent-based models of financial
markets, discusses seven basic design questions for his models, which
translate across to more general models. First, the economic environment
itself needs to be resolved: What will be traded? Second, how are agents’
preferences to be modeled? What particular functional forms will be used,
such as mean–variance, constant absolute risk aversion, myopic or
inter-temporal? Or will specific behavioral rules simply be evaluated
directly? Third, market clearing and price formation need to be modeled.
Fourth, the fitness of the model must be evaluated. For example, should
wealth or utility be used? And should the evolving behavioral rules to
which fitness measures are applied be forecasts, demands, or some other
type of action? Fifth, how is information to be processed and revealed?
Sixth, how does learning occur? Is it social or is it individual? Seventh,
how is benchmarking to be undertaken? While these questions relate to
the models used to design markets, they may also reflect on the design
criteria for the final designer markets.

3.3 Moving from Closed-Form Equilibria

Traditionally for the last sixty years, economists have sought closed-form
solutions to understanding the performance of economic institutions.
Economic actors have been assumed to be perfectly rational, with the
means to solve for equilibria outcomes in complex situations. Economists
have sought to characterize the equilibria of economic interactions in terms
of their existence, uniqueness, and stability, under this assumption. When

12In discriminatory-price auctions (sometimes known as “pay-as-bid” auctions),
distinct trades in the same auction round occur at distinct prices; in uniform-price
auctions, all trades in any given auction round occur at the same price.
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the interactions among economic actors are strategic, the equilibria
become Nash equilibria.

But in an operating, real-time actual market, it turns out that we are not
interested just in equilibrium characterization: continual shocks might
never allow the system to approach, let alone reach, the equilibrium. And,
moreover, it turns out in a repeated interaction that almost any
individually rational outcome for each player can be supported as an
equilibrium (the Folk Theorem of repeated games). This is particularly so
for interactions which have the general character of the IPD.

Consequently, there are at least two reasons why market design has moved
away from traditional closed-form solutions: first, because of tractability:
it has been very difficult, despite advances made in recent years, to obtain
solutions to the design of some markets, such as continuous double
auctions (CDAs); and, second, we should like to characterize
out-of-equilibrium behavior, and especially the dynamic behavior of an
operating market with fluctuating demand, and perhaps varying numbers
of sellers, with unpredictable, varying costs.

A third reason for considering other techniques of analysis is that the
assumption of perfect rationality and unlimited computational ability on
the part of human traders is unrealistic, and not borne out by laboratory
experiments with human subjects. Instead, using computer models of
trading agents, we should like to model economic actors in markets as
“boundedly rational.” This might mean bounded computational ability, or
bounded memory, or bounded perception [Marks (1998)].13

There is a fourth reason for wanting to move from closed-form solutions,
even where they are available: to model learning. There are two reasons to
include learning in any models used to design markets: First, individuals
and organizations learn. Human players learn (perhaps with the added
incentive of the prospect of bankruptcy if they do not learn from their
mistakes), which means that a model without learning is not as realistic as
one incorporating learning. Bunn and Oliveira (2003) note that many
researchers [including Erev and Roth (1998)] have shown that learning
models predict people’s behavior better than do Nash equilibria.

Moreover, learning can help to eliminate many otherwise legitimate Nash
equilibria from further contention. Indeed, evolutionary (or learning) game
theory has been seen as a solution to the multiplicity of Nash equilibria
that occur in closed-form game-theoretic solutions: a priori, all are

13Rubinstein (1998) elaborates on some of these bounds. Conlisk (1996) gives four
reasons for incorporating bounded rationality into economic models: empirical evidence
of limits to human cognition; successful performance of economic models embodying
bounded rationality (including some surveyed here); sometimes unconvincing arguments
in favor of unbounded rationality; and the costs of deliberation.
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possible, but to see which are likely in reality, see how players learn and
choose amongst them.

3.4 Explicit Use of Agents

It is possible to design without the use of agents: given a market with
demand and supply schedules, economic efficiency is maximized at the
output level where marginal value equals the marginal unit cost, no matter
how the social surplus is divided between buyers and sellers. But such
direct design (optimization) requires a well defined problem. With several
design trade-offs and the possible emergence of unforeseen performance in
the system, agent-based analysis and design, in which the market system
can be modeled as “evolving systems of autonomous, interacting agents
with learning capabilities” [Koesrindartoto and Tesfatsion (2004)], is
increasingly employed.

LeBaron (2005) places some weight on how actual trading occurs: the
institutions under which trading is executed. He argues that agent-based
models are well suited to examining market design and micro-structure
questions because, first, they can produce a large amount of data, and,
second, they allow testing of market design in a heterogeneous, adaptive
environment.

Audet et al. (2002) report an agent-based study of micro-structure (order
books v. dealers), while Bottazzi et al. (2003) examine tick sizes (and
unexpectedly determines that smaller tick sizes do not necessarily improve
the market’s efficiency). Chan and Shelton (2001) examine how a model
behaves with different RL mechanisms, all of which enable the optimum
policy function for a market-making broker to be found.

Belief-based learning has been used to study market design: Gjerstad and
Dickhaut (1998) propose heuristic rules by which buyers and sellers in a
double auction will assess and update their probabilities that their bids
(offers to buy) and asks (offers to sell) will be accepted, given market
history. “Using these beliefs together with private information on
valuations and costs, individual buyers or sellers propose bids or asks that
maximize their (myopic) expected surplus” [Duffy (2005)]. The main
parameter of their model is the length of memory that players use in
calculating probabilities. Their model, with stricter convergence criteria
than Gode and Sunder (1993) adopt, more reliably converges to
competitive equilibrium, and the anticipatory, belief-based learning model
provides a better fit to aggregate human-subject data as well. Gjerstad
(2004) coins the phrase “heuristic belief learning” to describe this version
of belief learning, and shows that what he calls “pace,” the timing of the
bid, is pivotal.
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GA strings can be used to encode decisions that agents make (e.g., how
much to consume, what price to charge, etc.) and the GA works to find
the optimal decision, given feasibility and other constraints. This is how
Marks et al. (1995), Arifovic (1994), Midgley et al. (1997) modeled the
interactions. Duffy (2005) calls this learning-how-to-optimize.

An alternative is to use the strings as encoding beliefs about how prices will
change from period to period. This learning-how-to-forecast model [Duffy
(2005)] was first used by Bullard and Duffy (1999). It was introduced in
order to calibrate the GA model with human-subject experiments of
overlapping-generation decision models. Duffy (2005) explains that
subjects found it easier to forecast future prices than to decide on
inter-temporal consumption/saving decisions. Given the price forecasts,
the GA algorithm solved that individual’s optimal consumption/savings
allocations and determined the market-clearing prices at future dates.

3.5 The Design Economist

Recently, software engineers have been designing systems of exchange, of
markets. Their designs — of distributed computing systems, and on-line
trading in real time — have begun to borrow from economists’ insights
into how traditional face-to-face markets have evolved to operate. They
have also [Phelps et al. (2002a)] begun to realize that the equilibrium
characterizations of mathematical economics do not always provide the
answers they need in designing their on-line markets, which will be in
disequilibrium almost always if trading in real time. That is, the
adjustments of the operation of the markets to the current equilibrium (or
attractor) will almost never happen fast enough to reach equilibrium,
especially when the location of the attractor is continuously changing.

The shortcomings of these results from equilibrium analyses of economic
mechanisms have been underlined by Roth (2000, 2002) in two papers that
begin to point the way forward for market design, with the economist as
engineer. Indeed, Roth makes the point that, as engineers have learned to
borrow from the insights of physics, the design economist can use insights
not only from equilibrium mathematical economics, but also from
computer science.

When, however, these insights are curtailed, perhaps by the tractability of
closed-form analytical methods, both economists and software engineers
have been using simulation in analysis, to obtain sufficient, but rarely
necessary, conditions. Simulation has occurred using GAs, numerical
solutions, and explicit agent-based models. Iterative analysis has been
used as a means of designing systems.

LeBaron (2005), in his conclusion, lists some criticisms of the agent-based
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approach to modeling financial markets. Some (such as too few assets
considered, questions of timing ignored) are more specific to the models he
examines, but several are relevant to more general market models: too
many parameters; questions about the stability of trading to the
introduction of new trading strategies; sensitivity to the number of agents
trading; over-reliance on inductive models of agents, which respond to past
rules and forecasts; and not enough on deductive models which might learn
commonly held beliefs about how markets work. These are issues that
have been addressed in the two areas of market design that we now
consider: electricity markets and automated markets.

4 Electricity Market Design

In 1998 the U.S. Federal Energy Regulatory Commission (FERC)
Chairman, James Hoecker (1998), said: “Arguably, a well-constructed
computer model could improve the accuracy of our competitive analysis in
at least two ways: by explicitly representing economic interactions between
suppliers and loads at various locations on the transmission network; and
by accounting for the actual transmission flows that result from power
transactions.” He warned, however, that: “Consistency of data sources and
consistent application of those data is an attraction, but such techniques
require time, education, and consistent refinement. Moreover, adequate
data may not be available. I hope the benefits will be worth our trouble
and investment. Our economists are trying to get a handle on precisely
that equation.”

Other economists, engineers, and computer scientists had already been at
work on this issue for some years, when Mr Hoecker spoke. Applications of
agent-based modeling to electricity market analysis and design occurred
independently in several research centers. The application of genetic
algorithms to, first, oligopolies [Marks (1989)], and then to macro-economic
models [Arifovic (1994)], has more recently been followed by its use in
analyzing the behavior of new markets for electricity generation and
transmission, most recently as a means of designing electricity markets.

4.1 Electricity Market Design Trade-offs

As a consequence of the California blackouts of 2000, market efficiency has
been joined by several other criteria for the design of electricity markets.
The FERC (2003) White Paper discusses four primary objectives for
wholesale electricity market design: reliable service (no blackouts or
brownouts); fair and open access to the transmission grid at reasonable
prices; effective price signals to provide incentives for appropriate

22



investment in generation and transmission capacity; and effective
procedures for market oversight and mitigation of exercise of market
power.14 Koesrindartoto and Tesfatsion (2004) speak of “efficient, orderly,
and fair” market outcomes.

Cramton (2003) discusses issues of electricity market design, in general,
and the mitigation of market power in particular. He also emphasizes that
the market designer must understand the preferences and constraints of
the market participants, in order to keep the design as simple as possible,
but not too simple.15 The greater the number of dimensions for measuring
the performance of market designs, the greater the relative attractiveness
of simulation as a design tool: as discussed above, closed-form analysis —
with its promise of the derivation of necessary conditions — becomes ever
more elusive.

4.2 Academic Engineers

In 1992, a pioneering paper by Verkama et al. (1992) at the Helsinki
University of Technology argued that the two disparate areas of oligopoly
theory and distributed artificial intelligence (DAI) could learn from each
other, since each was concerned with modeling the interaction of
autonomous, self-interested, interacting agents. Using object-oriented
programming, they had developed a test-bed for examining agents’
interactions under various initial conditions. They acknowledged that
“very general results are difficult to come by with simulations and
computer experiments” (p. 157), but argued that such approaches allow
the exploration of market evolution, with entry and exit, learning, and
reputation effects. They even suggested that the market itself could be
modeled as an agent, the first suggestion in the literature that the design
of markets could be modeled and analyzed, necessary antecedents for
market design using agents.

Verkama et al. (1992) do not cite any works in evolutionary computation,
but two years later, after presentation at a workshop in computational
organization theory, they [Verkama et al. (1994)] cited Arthur (1991,
1993), Holland and Miller (1991), and Lane (1993a, 1993b). The linkages
between two previously independent lines of research had been made.16 In

14Nicolaisen et al. (2001) distinguish the exercise of structural market power that
occurs when the buyers and sellers ask and bid their true reservation values, from the
exercise of strategic market power that occurs when opportunistic bids or asks are made.

15Wilson (2002) surveys the experiences of electricity market designs in the U.S. and
beyond at a much greater level of detail than has yet been seen even in simulation
studies.

16In a private communication Hämäläinen (2004) explains: “The origins of my interest
go very far back. We had been working on game theory, coordination and resource
economics, and to me as an engineer it was a natural idea to see what could be achieved
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the 1994 paper, as well as object-oriented programming, they mention inter
alia genetic algorithms and learning automata, and the need for agents to
mimic human behavior in simulation models of strategic interaction (their
“reactive behavior”). The test-bed itself had evolved: in their Multi-Agent
Reactions Testbed agents can inherit properties from previous generations
and add new features, in order to explore the interactions of different
decision rules, and the market structure and rules of engagement.

In 1994 Räsänen et al. (1994) introduced an object-oriented model of
electricity demand-side load, the first application of such techniques to
electricity market modeling, although the use of inherited characteristics
was not to allow the objects to evolve or learn, but rather to aid the
programmer in modeling changed load. A year later, however, Hämäläinen
and Parantainen (1995) introduced a new “agent-based modeling
framework” for analyzing electricity markets by using agents to model the
demand-side load.

4.2.1 Hämäläinen et al. (1997) model both sides of the market.

Two years later Hämäläinen et al. (1997) went much further, with agents
representing both sides of the electricity market — consumers and
producers — with bounded reasoning capabilities and bounded reactions.
Specifically, they use a two-hierarchy, multi-agent system to model a von
Stackelberg market, where the leader (the seller) anticipates and reasons
back to set a price for electricity which maximizes the overall market
efficiency, given the responses of the followers (the buyers, who use
electricity for space-heating). Agents can be modeled as: sufficiently
rational to determine their best response dynamics; or as boundedly
rational (and so not always succeeding in determining the best response,
perhaps because of limited comparisons of possible actions); or as
constrained in their reactions from one period to the next; or with
asynchronous reactions.

The electricity price can vary hourly, and the electricity producer,
announcing prices 24 hours ahead, can attempt to control consumption in
order to smoothly costly load peaks. Each consumer takes account of the
heat-storage capacity of its dwelling and the outside temperature. The
consumer’s payoff is the difference between the utility from consumption

by a computational analysis of economic systems. One of the first computational
analyses was [a 1978] paper on the role of information in decentralized macro-economic
stabilization. Later, coordination ideas grew in my head when I was working on fishery
models [in 1986 and 1990]. This was followed by incentive and coordination work:
Verkama et al. (1992). At the time of the emergence of our interest in energy economics
the Finnish market had not yet been deregulated, but this took place during our
research project on real-time pricing of electricity. For a period this kind of research was
not considered interesting as markets were the hot topic.”
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and the cost of the energy. The producer’s cost function reflects the
increasing (quadratic) marginal cost of production.

Using their Power Agents software for simulation of electricity markets, the
authors gain insight into a market in which consumers could have their
homes heated by a computerized agent-based heating system which would
respond to changing electricity tariffs in order to maximize the system
goals. It is not clear which form of bounded rationality they use. They
have not adopted GAs or other computer science techniques referred to in
the 1994 paper. This has been left to others.

Meanwhile, at Carnegie Mellon University, Talukdar and Ramesh (1992)
suggested software to manage electricity generation when the operating
environment (market) could change rapidly. Their asynchronous and
autonomous agents represent one of the first examples of a multi-agent
system in the electricity literature. Krishna and Ramesh (1998) extend the
idea to developing “intelligent software agents” to help generators to
negotiate with potential coalition partners; they point to the possibility of
such agents replacing human players in computerized electricity exchanges.

4.2.2 Talukdar (2002) models customers holding down the
wholesale price.

Talukdar (2002) continues to use artificial agents as members of his
asynchronous teams, sometimes borrowing from the GA models, most
recently to simulate and verify the trades that occur in repeated markets,
such as electricity markets, as part of the market design process. His focus
is on centralized auctions, without electricity storage facilities, where
sellers have multiple blocks of energy to sell, and customers can adjust
their demands and can automatically learn. He asks: What structures
(load-adjustment facilities) do customers need so they can use automatic
learning to hold the monopolistic price to reasonable levels?

His agents are simple: they are not intended to simulate human behavior;
rather, the dynamics of the repeated markets are probed using the
emergent behaviors (which can be quite complex) of simple agents. He
finds that sellers with multiple generating units can learn which units to
withhold and that total profits rise by a fifth over a thousand periods, with
prices and profits almost at centralized (monopolistic) levels, under several
(static) demand characterizations. He then allows buyers to learn too.
They aim, first, to minimize cost, and, second, to minimize energy
deviation. Over 1400 periods they learn to reduce the price to less than a
third of the monopolistic price. But with the same quantity sold, the
sellers’ profits fall below 30% of the monopolist’s profits.

Meanwhile, at Iowa State University, a group of electrical engineers led by
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Gerald Sheblé had started in 1994 to examine the operation and design of
electricity markets. Maifeld and Sheblé (1996) use a GA for solving the
unit-commitment scheduling problem in electricity markets.17 They
referred to no earlier work by economists, but Richter and Sheblé (1998)
referred to unpublished work by LeBaron and by Tesfatsion, and used a
GA to learn (evolve) bidding strategies in an electricity market as
generators and distributors buy and sell power via double auctions.
Amongst other things things this model can be used to explore how
bidding behavior affects overall market performance. Richter et al. (1999)
extended their previous work on bidding strategies in double auctions for
trading electricity competitively. They used adaptive automaton
strategies: tested in an auction simulator, the automata learn using a GA.
The paper examined high-profit strategies and also modeled certain types
of trading behaviors.

4.2.3 Lane et al. (2000) use GAs for double auctions.

Lane et al. (2000) broadened the scope of the research: they modeled the
traders in an electricity market as adaptive agents learning with the help
of a GA in a discriminatory-price k-double auction [Satterthwaite and
Williams (1989, 1993)], and, perhaps influenced by Tesfatsion’s economics
research, calculated the degrees of market power for various combinations
of relative capacity and production costs.

They use the EPRI18 Market Simulator, which simulates a double auction
between buyers and sellers on a graph, where the edges are the
capacity-constrained transmission lines and the buyers and sellers are at
the nodes. The auction is performed in rounds or generations; buyers and
sellers are matched in each round and the price of their contract is given
by kb + (1 − k)a, where bid b ≥ ask a, and 0 ≤ k ≤ 1; here k = 0.5.
Learning is via a GA with binary strings. The GA treats buyers and sellers
separately, and takes the risk-neutral traders’ profits as their fitnesses.

The benchmarking simulation assumes price-taking agents. The buyers’
profits and sellers’ profits in a competitive equilibrium and in the auction
simulation are determined (respectively, PBCE, PSCE, PBA, PSA), and
an index of market power (MPI) is calculated:

MPI =
(PBA + PSA) − (PBCE + PSCE)

PBCE + PSCE
.(5)

The simulated market has three sellers and three buyers (homogeneous,
and unconstrained in their total demand, in order to allow sellers to play

17Unit commitment is the problem of determining the optimal set of generating units
within a power system to be used up to a week ahead.

18The Electric Power Research Institute, Palo Alto, CA.
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strategically). There are three scenarios for capacity constraints on sellers,
increasingly unequal, and three scenarios for relative costs of the largest
producer. Will this market converge to a near-competitive equilibrium?
Will the largest seller exhibit price leadership and the exercise of market
power?

Analysis of MPI averaged over 100 runs for each of the 3 × 3 treatments
indicates that neither marginal cost nor market share has a significant
effect on the large seller’s exercise of market power, and on average total
available surplus is evenly distributed among buyers and sellers. The
authors identify an anomaly: relatively more expensive sellers gain market
power, the opposite of what theory would suggest.

Why? The authors suggest four aspects of their model: limited numbers of
buyers and sellers; the GA allows indirect exchange of information among
sellers and among buyers through the genetic operators; a seller’s (buyer’s)
ask (offer) price is its marginal cost (revenue) plus (minus) a real number
derived from its bit-string; and calculation of profits in the auction
(relative the averaged transaction price) is different from such calculation
in competitive equilibrium (relative to the uniform market price). There is
a rapid loss of genetic diversity, and each of the three sellers (buyers) will
be tacitly working to solve the same maximization problem.

The authors argue that a GA is inappropriate when there are few agents,
and conclude that another search method which incorporates memory and
self-learning would be better. They do not mention the possibility of a GA
with separate populations for the six distinct agents. Would such a model
give results closer to those suggested by theory? I believe so.

With the increased use of markets to help allocate the generation and
distribution of electricity in several countries, this concern with using
models of electricity markets to examine the exercise of market power is an
obvious extension of the simulations, and reflects the shift from analysis of
the traders’ actions to analysis of the markets’ performance, a necessary
step for market design.

4.2.4 MacGill and Kaye (1999) simulate for system efficiency.

Meanwhile, engineers at the University of New South Wales [MacGill and
Kaye (1999), MacGill (2004)] were exploring a decentralized coordination
framework to maximize the market efficiency of the power-system
operation, not through the operation of Smith’s invisible hand as each
resource competes to maximize its own return, but via a decentralized
framework in which each resource is operated to achieve overall system
objectives. The authors use a a so-called “dual evolutionary approach,”
which uses a (non-binary coding) version of the GA, but not explicitly
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with autonomous, self-interested agents. Their model contained explicit
intertemporal links for actions and payoffs (such as energy storage in, for
example, pumped storage dams) across periods, and the dual evolutionary
programming model, rather than optimizing on trajectories (the “primal”
approach), uses as its variables the incremental benefit-to-go functions (the
“dual”), which means that detailed knowledge of the resources models is
not required.

They are able to solve for two-storage networks, with ramp rates, leakage,
and stochastic supply (with photo-voltaics and hydro). A surprising result,
when they allow strategic actions by players, is that the surplus of the sole
strategic player is lower than its surplus without strategic actions. Is this a
consequence of their modeling agents’ fitness not as their individual
surpluses but as the system’s goals? They also find that the total system
surplus falls with strategic actions, and the surplus on the load side falls
most, as one might expect from theory.

Cau and Anderson (2002) used GAs to examine co-evolutionary behavior
of agents in markets for electricity, where such agents were modeled as
autonomous, self-interested players [see also Cau (2003)]. In particular they
were interested in exploring the conditions of the players and of the market
under which tacit collusion occurred. Since collusion leads to inefficiencies,
from a policy-maker’s viewpoint a market structure which discourages the
emergence of learned tacit collusion is a good design, even if discouraging
the exercise of market power is not an explicit goal of market design.

The number of engineering studies of electricity supply and distribution
networks that employ agent-based (or “multi-agent”) simulations of some
sort or other continues to grow, as reflected in published papers in the
IEEE journals, transactions, and proceedings.

4.3 Economists

4.3.1 Curzon Price (1997) models electricity markets.

In 1997 an economist at University College London, Curzon Price (1997),
presented simulation models of simple electricity pools, in which he used
the GA as a means of simulating the repetition of two rival sellers. He saw
competition in electricity markets, often across jurisdictional borders, as a
field in which the “underlying economic models are often quite simple,”
but the real-world phenomena “complicated and richly detailed in
important ways” (1997, p. 220), and hence suitable for simulation.

Curzon Price derived two models, both a simplification of the England and
Wales electricity market, where the pool price is equal to the bid of the
last producer required to satisfy demand, a uniform-price auction. The
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first model assumes that neither producer can supply the whole market,
but that together their capacity exceeds demand. With price as the only
choice variable, this model has two pure- and one mixed-strategy Nash
equilibria. He was able to derive the pure-strategy equilibria, but not
clearly the mixed-strategy equilibrium, even when he set the initial
population proportions to the mixed-strategy proportions. For levels of
GA crossover above 6% he found that the equilibrium mix could not be
sustained. He concluded that, with an underlying situation of residual
monopoly, the electricity pool rules would not lead to competitive prices, a
finding of great significance to the market design.

His second model included the two producers’ choice of capacities as well
as prices. The first model was modified: if either producer could satisfy the
entire market, then the lowest bid would be chosen. Players offered both
price and quantity bids, the quantity offered incurring a cost whether or
not the capacity was used. His analysis yielded three regimes: one where
the high bidder is a residual monopolist; one where the low bidder can
satisfy the demand; and one where there is excess demand because the
higher bid is too high. The equilibrium strategies found by the GA can be
characterized as similar to the first model without capacity as a strategic
variable: one producer offering the lowest capacity possible and bidding it
at the maximum price, and the other producer offering the highest residual
quantity at a low price. The firms evolve their capacities to avoid Bertrand
(marginal cost) outcomes.

Curzon Price’s work was directly descended from Axelrod’s (1987) work
with GAs and IPDs, Marks’ (1992) work on oligopolistic behavior, and
other economists’ use of GAs, such as Andreoni and Miller’s (1995)
exploration of auctions using the GA to model the co-evolution of artificial
adaptive agents. Andreoni and Miller found that their model of adaptive
learning was consistent with the main results from laboratory experiments,
and that — significantly for the purpose at hand — various auction
designs (“institutions”) display very different adaptive dynamics. Curzon
Price suggested that plausible behavioral elements could be included in the
simulations.

Iowa State University has been a fertile place for cross-disciplinary
research in agent-based modeling of electricity markets. As well as Sheblé
in engineering, it is home to Tesfatsion in economics. Two of the most
widely cited papers on the application have emerged from her research
group. These we now discuss.
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4.3.2 Nicolaisen et al. (2000) search for market power.

Nicolaisen et al. (2000) used a GA agent-based model of a
discriminatory-price clearinghouse19 k-double auction electricity market
[Klemperer (2002)] to examine the exercise of market power (as deviations
from competitive equilibrium values of prices and quantities). They used
the EPRI Power Market [see Lane et al. (2000), above], where each agent
simultaneously submitted a single price-quantity bid or ask. Buyers and
sellers are matched to maximize total profit, using k = 0.5 again. Each
agent’s fitness is proportional to its profit in the last round: only the last
round’s bid or ask is remembered. The linear revenue and cost functions
ensures that bids and asks are at the capacity quantities. Bids (asks) are
bound between [marginal revenue – $40, marginal revenue] (marginal cost).
Two definitions: first, the relative concentration of sellers NS to buyers
NB, RCON = NS

NB
; and, second, the relative capacity of buyers to sellers,

RCAP = NB
NS

×
CB
CS

, where CB (CS) is the maximum quantity of electrical
energy that each buyer (seller) can resell (generate) in a retail market. Six
buyers and six sellers compete, with 3 × 3 treatments of three values of
RCON and three values of RCAP .

The authors derived sellers’ market power, MPS = PSA−PSCE
PSCE

, and
buyers’ market power, MPB = PBA−PBCE

PBCE
. They found no evidence that

MPB is negatively related to RCAP , or that MPS is positively related to
RCAP , either in aggregate or individually, contrary to expectations from
theory.

How could this be explained? As Tesfatsion (2005) notes, the measures of
concentration and capacity (RCON and RCAP ) are structural
characteristics of the market. As is standard in the industrial organization
literature, they are calculated before any experiments have been run, and
hence before the analyst knows which traders are inframarginal (and so
will actually engage in trade) and which are extramarginal (and so will not
engage in any trades). Because they do not trade, the bids/asks of
extramarginal traders will have no affect on market power outcomes. As a
result, by varying the numbers and capacities of the extramarginal traders,
the concentration and capacity measures can be made arbitrarily large or
small while keeping the market power measure constant. Consequently, so
long as the extramarginal/inframarginal decision for each trader is
endogenous [as in Nicolaisen et al. (2000)], no systematic relationship
among RCON , RCAP , and market power outcomes will be seen.

In Nicolaisen et al. (2000), trading agents were quite boundedly rational,
with only one round of memory. Moreover, the GA was given only two

19A clearinghouse (or call) market is one in which all traders place offers before the
market is cleared; they can have discriminatory or uniform prices. A continuous market
is one in which trades are executed as new offers arrive; prices are thus discriminatory.
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populations (one for buyers and one for sellers), whereas the treatments
meant that agents with different marginal costs and revenues faced
different concentrations and capacities: the GA was not modeling this
heterogeneity. Furthermore, the social learning process (mimicry of other
buyers or other sellers) of the GA meant that any comparative advantages
in strategies (as a consequence of different firm structures) soon spread to
the rest of the population of players and became dissipated, as Vriend
(2000) discussed. Moreover, social learning means that firms that would
rightly decline to trade (the extramarginals) may now engage in
opportunistic trades (and become inframarginal), thus potentially lowering
market efficiency. The paper cites earlier work by Lane and by Richter,
both at Iowa State.

4.3.3 Nicolaisen, Petrov, and Tesfatsion (2001) use
reinforcement learning.

Following from their 2000 study (see above), Nicolaisen et al. (2001),
henceforth referred to as NPT, altered their model by using a form of
learning that, unlike the GA, did not impose strategic homogeneity on
structurally distinct buyers and sellers. As well as mimicry, individual
learning would be permitted. The model used the EPRI Power Model
again, suitably modified, with the same 3 × 3 treatments of RCON and
RCAP , the same six buyers and sellers, as characterized by their (private)
marginal revenues and costs, respectively.

But in an attempt to obtain results on market power that were closer to
those from standard theory, NPT used reinforcement learning [a
modification of Erev and Roth (1998)] instead of GA learning to allow
individual learning and to prevent any comparative advantage in strategies
being dissipated among the artificial agents. They point out that there are
two shortcomings of the Roth-Erev model (see equations (1)–(4) above).
First, there might be degeneracy of its parameters: when the
experimentation parameter ε = N−1

N
, there is no updating of the choice

parameter. Second, if there are zero profits, then the choice probabilities
are not upgraded, because a trader’s current propensity values are reduced
proportionately. Lack of probability updating in response to zero profits
can result in a substantial loss of market efficiency as traders struggle to
learn how to make profitable price offers.

NPT present a simple modification of the Roth-Erev RL algorithm that
addresses both of these issues while maintaining consistency with the
learning principles in the original formulation. The update function E(.) in
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equation (4) was replaced by the following modified function:

Ek(j,R(x)) =

{

(1 − ε)R(x), if j = k;
ε

N−1
qjk, otherwise.

(6)

In effect, this modification introduces a differentiated value for the recency
parameter φ for selected versus non-selected actions, while also omitting
the profit term in the updating equation for propensities corresponding to
non-selected actions. The recency parameter for non-selected actions falls
from φ to φ∗ = φ – ε

N−1
. As NPT put it, “The choice probabilities

corresponding to action choices resulting in zero-profit outcomes tend to
decrease relative to other choice probabilities while the choice probabilities
corresponding to action choices resulting in positive profit outcomes tend
to increase.” Otherwise the paper’s model was similar to the earlier work
[Nicolaisen et al. (2000)]: a clearinghouse k-double auction with
discriminatory pricing, and k = 0.5.

The nine treatments were each tested three times, using different settings
for the three parameters of the modified Roth-Erev (MRE) model of
equations (1)–(3) and (6): the scaling parameter S(1), a recency parameter
φ, and an experimentation parameter ε. For the first two tests, the
parameter values were chosen to facilitate the emergence for each trader of
a dominant price offer with a relatively large choice probability, by the
final auction round in each run. The third test used the parameter values
obtained by Erev and Roth (1998) by best overall fit of their RL algorithm
(equations 1–4) to experimental data from twelve distinct types of games
run with human subjects: S(1) = 9.00, φ = 0.10, ε = 0.20.

Under all treatments, the presence of active buyers and sellers reduces the
ability of structurally disadvantaged traders to exercise strategic market
power, that is, to use strategic pricing to overcome the structural
market-power biases inherent in the discriminatory-pricing protocol.
Moreover, traders’ ability to exercise strategic market power is further
limited by the threat of entry of extramarginal traders, as discussed in
Section 4.3.2 above.

NPT (2001) obtained generally high market efficiency (defined as EA =
PBA+PSA

PBCE+PSCE
) under all treatments. Notably, as seen in the earlier study

(above) by Nicolaisen et al. (2000), market efficiency was relatively low
when the traders used the inappropriate form of social mimicry embodied
in GA learning. The later results from NPT (2001) suggest that the
market efficiency of double auctions operating under a discriminatory
pricing rule is reliably high when buyers and sellers refrain from
inappropriate learning behavior or bad judgment [Tesfatsion (2005)].
These results confirm Vriend’s (2000) argument that market efficiency is
not robust with respect to a switch from individual learning (here MRE)
to social learning (here GA).
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In asking whether the market design ensured efficient, fair, and orderly
market outcomes over time despite repeated attempts by traders to game
the design for their own personal advantage, NPT were clearly focused on
market design. The paper cited Bower and Bunn (2001) and Lane et al.
(2000).

One of the most successful academic economists to use agent-based
techniques to analyze electricity markets is Bunn with his associates at the
London Business School. As well as publishing in the economics literature,
he has also published in the energy and regulatory literature, and his
models have been calibrated against historical data. In Bunn and Oliveira
(2001), we read: “The development of a detailed simulation platform
representing the agents, the markets, and the market-clearing mechanisms,
together with reinforcement learning to facilitate profit-seeking behavior
by the agents, can, in principle, provide a computational framework to
overcome the limitations of the analytical approaches.” That is, such a
platform could be used to design a market.20

Following the deregulation and privatization of the electricity generation
sector in Britain, Bunn and Day (1998) proposed using agent-based
simulation of electricity power pools to analyze the short- and longer-term
behavior of the generators, as they learned, partly to see whether high
prices might be the result of implicit collusion.

Bower and Bunn (2000, 2001) developed a simulation model of the
wholesale electricity market in England and Wales as a means of
systematically testing the potential impact of alternative trading
arrangements on market prices, specifically uniform- versus
discriminatory-price auctions, thus undertaking a form of market design.
Generators were represented as autonomous, adaptive, computer-generated
agents, which progressively learned better profit-maximizing bidding
behavior, by developing their own trading strategies, in order to explore
and exploit the capacity and technical constraints of plant, market
demand, and different market-clearing and settlement arrangements. Their
agents used simple internal decision rules that allowed them to discover
and learn strategic solutions which satisfied their profit and market-share
objectives over time. These rules constituted what is essentially a näıve RL
algorithm, and the behavior of the simulated market is thus almost
entirely emergent. The agents knew everything about their own portfolio
of plants, bids, output levels, and profits, but nothing about other agents

20In a private communication, Bunn (2004) remembered that his interest in using
agent-based models followed from a new Ph.D. candidate with a computer science
background who suggested using Object-Oriented Programming [Gamma et al. (1995)],
such as Java, as a better platform for simulating the electricity market than Systems
Dynamics [Forrester (1961)]. As we see below, OOP leads to agent-based models
relatively easily.
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or the state of the market. Their ability to capture and retain data was
limited, they had no powers of strategic reasoning, and hence they
exhibited a high degree of bounded rationality. The agents were modeled
as data arrays in Excel 97 and manipulated with Visual Basic. Bower and
Bun concluded that the discriminatory auction results in higher market
prices than does the uniform-price auction. The papers did not cite any
earlier work on agent-based modeling.

This research did not capture the interaction between the bilateral trading
and the balancing market, nor did it incorporate any sophistication in the
agents’ learning abilities. Bunn and Oliveira (2001), however, describe a
model with agents whose learning was inspired by the fitness function and
selection mechanisms used in GAs. They argue that, by keeping the
probabilities of exploration and exploitation independent of the expected
reward from following a particular bidding strategy, their GA model
should be trapped at local equilibria less often than would agents using a
näıve RL algorithm, such as Erev and Roth (1998), especially in
non-stationary environments. Their new simulation platform was a much
more detailed representation: it actively modeled the demand side and the
interactions between two different markets, as well as the settlement
process; and it took into accounts the daily dynamic constraints and
different marginal costs for each generation technology. It referenced two
earlier works from the GA simulation literature: LeBaron et al. (1999) and
Nicolaisen et al. (2000).

Bower et al. (2001) applied a similar agent-based model to the German
electricity market, specifically examining the effects on peak prices of
consolidation, and the potential for the exercise of market power by the
dominant generators. The references in this paper include Hämäläinen
(1996) and Curzon Price (1997).

4.3.4 Bunn and Oliveira (2003) help design a new wholesale
market.

Bunn and Oliveira (2003) use agent-based simulation in a coordination
game to analyze the possibility of market power abuse in a competitive
electricity market. The model builds on the work in Bunn and Oliveira
(2001), but does not allow the agents to learn as they did in the earlier,
GA-based model, in order to retain more transparency in understanding
their actions. Instead, the model uses reinforcement learning. The aims of
the authors were not to evaluate the market structure but rather to see
whether market conditions were sufficient to allow the exercise of market
power by a certain player. The paper referenced NPT (2001).

The authors used agent-based simulation in a coordination game to
analyze the possibility of market power (structural or strategic, as
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measured by higher prices and profitability than competitive outcomes)
being exercised in a competitive electricity market: the policy issue was to
help answer the question of whether two specific generators could influence
wholesale electricity prices.

They extended Bun and Oliveira’s (2001) New Electricity Trading
Arrangements simulation platform. Their agents can be modeled as having
the capacity to learn, and represented generating companies (possibly
owning several plants with different generation philosophies) and buyers in
the wholesale market who then supply end-use consumers. Agents use a
RL algorithm to improve their performance: each agent evaluates the
profit earned, and then derives new policies to bid or offer, given its
strategic objectives of profit maximization and market exposure.

The authors were not interested in whether a particular market design, or
structure, resulted in a competitive equilibrium; rather, whether a
particular player, by its conduct, finds it profitable to act (choosing its
offer price and strategically withholding capacity) in order to increase
wholesale electricity prices.

They derive a simplified analytical model of the market: two generators in
a stylized discriminatory-price Bertrand game with capacity constraints,
from which they derive several propositions, which are then tested in the
simulation of a more realistic model of the electricity industry. They used
the eight largest generators in the England and Wales electricity market in
2000, splitting each generator’s capacity into three categories, based on the
degree of flexibility and running times of each technology (nuclear, large
coal and combined-cycle gas turbines, and the rest). The simulated
industry had 80 gensets, owned by 24 generators, who sell power to 13
suppliers. Four daily demand profiles were used. After initial learning by
the agents, they found that the evolution of prices settled by about 50
iterations (trading days), and results were averaged over the last 10 days
(of 50).

They simulated six different strategies for one and (or) both of the
generators whose behavior was under scrutiny, under six different
scenarios, each of which was repeated twice, with small differences.
Average prices of the six strategies (under the 12 simulations) were higher
than the marginal costs (even with full capacity available). This indicated
structural market power caused by the industry structure, exacerbated by
strategic market power (such as deliberately withholding capacity).

In order to evaluate the capacity of the two generators to manipulate
market prices through capacity withholding, they compared different
simulations using t-statistics (for pooled samples), a result of the
complexities introduced by multiple equilibria and the effects of agents’
learning. The two can act as price makers, but only when they both
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simultaneously withdraw capacity from the market can they profit from
price manipulation.

They argued that the agent-based simulation technique enabled substantial
insights to be gained before the new wholesale electricity market was
introduced, and enabled the modeling of complex adaptive behavior in an
environment with possible multiple equilibria, with heterogeneous agents
and price uncertainty.

4.4 Recent Non-Academic Research Centers

It is the mark of a successful research method that its use has spread
beyond the academy into government agencies (as foreshadowed seven
years ago by the head of the FERC) and commercial research
organizations and companies. The agent-based analysis and design of
electricity markets is a successful research method. We briefly mention the
latest centers of research into electricity market design using agent-based
models: EPRI and the Lawrence Berkeley National Laboratory; Argonne
National Laboratory; and Hewlett-Packard. [Koesrindartoto and
Tesfatsion (2004) discuss other centers.]

The Argonne National Laboratory has developed the Electricity Markets
Complex Adaptive Systems (EMCAS) model, which incorporates agent
learning and adaptation based on performance and changing conditions
[North et al. (2001, 2002)]. There are user-specified market rules affecting
the behavior of individual agents as well as the system. Earlier work at
Argonne [North (2000)] was based on the SWARM agent-based modeling
platform [Burkhart et al. (2000)]. Although EMCAS is based on the
RePast open-source agent-based simulation platform [Collier and Sallach
(2001)] and uses GA learning for certain agents, it is a proprietary system.
EMCAS is designed to determine the state or states to which the market
will gravitate, and the transients involved in getting there. Customer
agents represent electricity users and company agents represent electricity
suppliers. In EMCAS, each company agent seeks to maximize its
individual corporate utility, not overall social utility, as it interacts with
other agents and with the Independent System Operator (ISO) or Regional
Transmission Organization (RTO) agent. EMCAS operates at six
interdependent time scales: from real-time dispatch; to planning
day-ahead; week-ahead; month-ahead; year-ahead; and in the
medium-to-long term (2–10 years). The authors are aware that as well as
allowing alternative company strategies to be simulated, EMCAS allows
market rules to be tested: iterative market design.

Meanwhile, Harp et al. (2000) developed a proof-of-concept software tool,
SEPIA (simulator for electric power industry agents), an agent-based
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simulation platform for modeling and exploring a complex adaptive system,
the electric power industry. It used two kinds of learning algorithms:
Q-learning [Watkins and Dayan (1992)], a version of reinforcement
learning; and genetic classifier systems. SEPIA was hosted at Honeywell,
and was under-written by EPRI. [See Amin (2002) for further discussion.]

EPRI has used agent-based models to explore market design: Entriken and
Wan (2005) describe experiments using computer-based agents to simulate
the impact of the California Independent System Operator’s proposed
Automatic Mitigation Procedure (AMP) on market behavior. These
computer agents play the role of market participants seeking to maximize
their profits as they formulate bids under a number of scenarios over a
simple, two-node market at various levels of demand and transfer
capability, with and without the AMP in force. The study demonstrates
that agent-based simulation is a useful tool for analyzing existing and
proposed design features of electricity markets. One aim was to eliminate
the need for human laboratory subjects, and they configured the computer
agents in an attempt to eliminate experimental bias. The researchers
modeled demand players as price takers: they always bid their
willingness-to-pay. Suppliers used an identical strategy of aggressive profit
maximization. By comparing their bid prices with the market-clearing
price, suppliers could determine whether they were marginal, in which case
they used a very simple näıve rule for rent capture: they tested the margin
by raising their bid prices. Agents were given the opportunity to learn,
although the exact learning algorithm is not described.

5 Computer Trading and On-Line Markets

As mentioned above, inspired by natural phenomena, computer scientists
invented various forms of evolutionary programs, such as as Holland’s GA.
They had for some time also been interested in DAI and object-oriented
programs, which allow parallel processing to speed solution of the
simulation models. This use of multi-agent systems resulted in a special
issue of the Journal of Artificial Intelligence, edited by Boutilier et al.
(1997), on the Economic principles of multi-agent systems, which
attempted to introduce computer scientists to the work of economists and
game theorists in modeling the interactions of few and many economic
actors in markets.

Note that, as they design computerized trading systems, computer
scientists have also become interested in the means by which explicit
communication between agents might facilitate the operation of these
virtual markets. Economists analyzing oligopolistic markets and auctions
using agent-based models have denied their agents the possibility of
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explicit communication: under the various antitrust regimes such
communication would probably be illegal. Instead, any communication
must be arm’s-length signaling by means of prices chosen in previous
rounds, if common knowledge.

As well as developing algorithms to pursue simulations of market
interactions, computer scientists have also been pioneers in the task of
parameterizing auction design space [Wurman et al. (2001)]. This achieves
two things: it allows a standard way to describe auction rules, for human
beings or for software agents; and, more importantly for the purpose at
hand, parameterization of the design space of auctions is necessary to
allow direct agent-based design of markets in general and auctions in
particular to proceed. A further motivation is to aid the development of
auctioneer programs, perhaps on-line.

At IBM, Walsh et al. (2002) used replicator dynamics [Weibull (1995)] to
model learning in a multi-agent system to analyze the dynamics and
equilibria of two market types for which a full game-theoretic analysis is
intractable: automated dynamic pricing, where sellers compete; and
automated bidding in the CDA. Unlike GA learning, replicator dynamics
cannot generate new strategies or rules: it can only alter the likelihoods of
strategies and rules existing at the start of the simulation [Duffy (2005)].
The authors are explicit about the need to obtain clear understanding of
the workings of such mechanisms through analysis before design is
possible: efficiency and stability are two design criteria mentioned.

5.0.1 “Evolutionary mechanism design” at Liverpool.

A group at the University of Liverpool have been developing techniques of
what they dub “evolutionary mechanism design” to examine not just buyer
and seller behavior, but auctioneer behavior too, that is, how the
transaction price is (or might be) derived in double auctions. Specifically,
they took the wholesale electricity market of NPT (2001) almost intact,
with one change: they moved from a clearinghouse double auction to a
CDA, using the open-source “4-heap” algorithm [Wurman et al. (1998)].
As a CDA, there was discriminatory pricing, and Myerson and
Satterthwaite’s (1983) impossibility theorem holds.

In the first of a series of papers, Phelps et al. (2002a) sought to co-evolve
the buyers, the sellers, and the auctioneer. That is, they viewed the
market as the outcome of some evolutionary process involving these three
types of actors. They identified two possible techniques for computer-aided
auction design based on evolutionary computing: Koza’s (1993) genetic
programming (GP) and the MRE RL algorithm as formalized in equations
(1)–(3) and (6) above.
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The authors first used the same best-fit MRE parameters and the same 3
× 3 treatment of RCON and RCAP as in NPT (2001). They were able to
replicate NPT’s results for market power and for mean market efficiency
(close to 100%). But market efficiency was more volatile than in NPT
(2001), perhaps because of the change from clearinghouse to CDA.

The authors then switched to assuming that each trader used GP instead
of MRE reinforcement learning to search for a pricing strategy. Each
agent’s fitness was a function of its profits. Separate populations allowed
the emergence of collusive strategies between self-interested traders. Could
high-efficiency outcomes be sustained in this model? The answer was no:
After 2000 generations, market efficiency stabilized at the relatively low
level of 74%.

The final section of the paper added a seventh population, that of
auctioneers, again using GP to search a space of pricing rules that included
both uniform-pricing and discriminatory-pricing versions of the k-double
auction. The auctioneer’s fitness was proportional to the total profits
earned in the market.

The simulation results showed that the adaptive auction was able to
significantly improve its mean EA: to 94.5% and stability after only 500
generations, with the same 3 × 3 treatment of RCON and RCAP as
above. In each of the 9 cases the evolved pricing rule was a linear function
of either b or a, the two prices, but not both. When NS = NB, the price
is determined by a, suggesting that sellers control the market whatever the
values of RCAP . They cited Curzon Price (1997).

In a succeeding paper, Phelps et al. (2002b) use an objective function
which is a weighted sum of MPB, MPS, and EA, each suitably
normalized. They restrict search of the mechanism design space to the
question: What is the best k-double-auction rule? Are there alternatives
that perform as well or better when agents play strategies derived from a
cognitive model of strategic interacting: the MRE?

They first simulated the same wholesale electricity market for a range of k

values, using stochastic sampling, and found that k ≈ 0.5 gave good
performances. Then they used GP to search the larger space of arbitrary
pricing rules, from b and a prices in the CDA. They derived several pages
of “completely impenetrable” Lisp-based arithmetical expressions, which
only became clear when plotted: effectively the discriminatory-price
k-CDA with k = 0.5, apart from a small variation when a is small, or a =
b. So k = 0.5 is reasonable.

A third paper [Phelps et al. (2003)] extended the earlier work to examine
the strategy-proofness of k. It found that k = 0.5 is close to strategy-proof.
A fourth paper [Phelps et al. (2005)] uses a “heuristic-strategy” approach
and replicator dynamics [Duffy (2005)] to compare the clearinghouse
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double auction with the CDA, in terms of strategy-proofness and EA

efficiency. It concluded that although the CDA is, on average, slightly less
efficient, it can handle higher flows of transactions.

To summarize the significance of these papers: Agent-based market models
have used two kinds of learning: social evolutionary learning algorithms,
such as Holland’s GAs or Koza’s GP; and versions of individual
reinforcement learning, such as the Roth-Erev model and modifications.
On the one hand, NPT (2001) argue that the social learning implicit in the
GA together with the endogenous extramarginal/inframarginal decision
militates against the emergence high market efficiency in agent-based
models, while a version of Roth-Erev is sufficient for its emergence. On the
other hand, Phelps et al. (2002a) believe that a GP model of learning in
electricity markets is a better model in which to design the auction by
including the auction rules in the search space of the GP algorithm, as well
as including the buyers’ and sellers’ strategies. It remains a challenge to
reconcile the power of evolutionary algorithms in searching a complex
design space for agents’ strategies and auction rules with the greater
realism (but less effective exploration and exploitation of the design space)
of models using individual reinforcement learning.

Design of markets might occur with simultaneous “design” of trading
agents, a line of research pursued with GA learning at Hewlett-Packard by
Cliff21 (2001, 2002a, 2002b, 2003a) on CDAs and by Byde (2002) on
sealed-bid auctions. Two weakness of Cliff (2001) are that, one, it uses a
single population for many heterogeneous agents, and, two, the fitness
function selects only for globally desirable outcomes, not individually
desirable ones. This might be of interest when the designer market will not
be a venue for human traders (or their organizations), but rather will be a
venue for the designer trading agents (the “buy-bots” and “sell-bots”).
This situation has become a possibility with the growth of the Internet.
The use of artificial trading agents in business-to-business wholesale
trading and in allocations internal to the company or organization is where
one might expect such agents to appear most naturally.

21On his web page, Cliff (2003b) explains how he came to develop computer traders —
his ZIP (Zero Intelligence Plus) traders — that researchers at IBM found outperformed
human traders [Das et al. (2001)]. “The wonderful results in the IBM paper, and the
success of using the GA to get better ZIPs, led me to think about using a GA to design
new marketplaces that are specialized for trading agents.” [See Cliff (2002a), et seq.] See
the chapter by Duffy (2005) for an extensive discussion of Zero-Intelligence traders.
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5.0.2 Byde (2002) evolves a new form of sealed-bid single
auction.

The emphasis of the mechanism-design research in this chapter has been
almost exclusively on double auctions. Yet, the single (or monopolist)
auction is also of great interest, especially the new, spectrum auction.
Byde (2002) examines the design of the sealed-bid single auction, using
automated agents as bidders. The agents learn via a GA, and the objective
is to maximize seller revenue, while not ignoring buyers’
von-Neumann-Morgenstern utilities under different designs. Each bidding
agent’s valuation of the item for sale is some function of the signals
received by all bidders.

Byde defines a w-price auction as a generalization of first- and second-price
auctions: let w = (w1, w2, ..., wn) be a vector of n non-negative real
numbers. A w-price auction is a sealed-bid auction in which the highest
bidder wins the item, and pays

∑N
j=1 wjbidj
∑N

j=1 wj

,(7)

where N is the minimum of n and the number of bidders, and bid1, bid2, ...

are the bids ordered from highest to lowest. Byde used the GA to examine
a one-dimensional sub-space of w-price auctions: those of the type where
the vector w = (1 − w2, w2). When w2 = 0, this is a standard first-price
auction; when w2 = 1, this is a second-price (Vickrey) auction; and when
0 < w2 < 1, the payout is (1 − w2)bid1 + w2bid2, a non-standard sealed-bid
auction.

The space of agent preferences and environmental variables searched
allowed Byde to examine exceptions to the Revenue Equivalence Theorem
[Milgrom (2004)]: variable numbers of bidders, risk preferences, correlated
signals, and degrees of commonality of values. Using a GA, he simulated a
population of bidding agents which bid as a function of the signal each
received, and played the game many times with stochastic sampling. He
noted that each agent’s fitness is relative to other agents (although, with a
single population, he was not strictly co-evolving agents), which can lead
to strategic behavior, such as bidding above one’s signal if low, in order to
reduce the winner’s surplus. The game was repeated, not once-off,
modeling bidders who come to know each others’ behaviors.

With risk-neutral bidders, independent signals, and a fixed number of
bidders, Byde benchmarked the Revenue Equivalence Theorem: there is no
seller revenue advantage to any particular w2. With risk-averse agents cet.
par., first-price (w2 = 0) gave highest seller revenue; with correlated signals
cet, par., second-price (w2 = 1) gave highest. He then found that “under
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several classes of non-pathological conditions (e.g. bidders were risk-averse,
and unaware of how many players they would face in a given auction),
there existed sealed-bid mechanisms expected to return significantly higher
revenue to the auctioneer than either the first- or second-price sealed-bid
mechanisms,” specifically a payout where w2 = 0.3, or = 0.7 under other
conditions. He noted that since agents’ average expected utility seems
insensitive to w2, sellers could design sealed-bid auctions to maximize their
revenue without much buyer resistance. Byde’s paper directs the market
engineer to a new family of designs for sealed-bid auctions, and a new way
to examine their performance in silico, before committing to real-world
construction.

6 Conclusion

The practical design of markets — mechanism design — using the tool of
agent-based simulation is emerging from its infancy. On the one hand,
there are mechanisms, such as monopoly auctions, that have been in use
since antiquity [McMillan (2002, p. 69)] without much self-conscious
design effort. On the other, recent advances in theory and computation
have allowed analysis and design to derive new or better mechanisms. The
iterative analysis of electricity markets with agent-based models is now
just ten years old, and the work on automated markets is even more
recent. Only recently have there been attempts to use such models, after
parameterizations of auctions, to directly design markets, including
electricity markets, as we have seen. Indeed, direct market-design
modeling attempts have only occurred in the last several years. Clearly, we
have further to travel down this road, as Roth’s (2002) notion of the design
economist emerges from the work of many modelers, in economics,
engineering, and computer science.

In this chapter, we have discussed the meaning of market design, its
challenges, and the use of agent-based simulation models to achieve it,
examining in detail published research in two of the five designer markets
we introduced in Section 1 above, as examples of design by simulation.

We have discussed, first, analyzing electricity markets; second, attempting
to design such markets directly; and, third, designing new markets for
on-line and automated transactions. We have also mentioned in passing
design issues in financial markets. It has been impractical to mention all or
even most modeling efforts in the literature, and we have focused on the
pioneering efforts and the most successful efforts so far. Nonetheless, the
future development of the field of agent-based market design will flourish,
as evidenced by the large numbers of researchers in different disciplines
across the Internet now involved in advancing our knowledge and
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understanding.
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