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Abstract

A computational laboratory is a “place” where we can: ask a question about an organization and its processes,
build a computational experiment, design and conduct an experiment, and answer or comment on the question.
The questions can be: what is, what might be, and what should be.

Validation is a fundamental concern in science; the validity of a laboratory and model depends upon the question
being addressed. A laboratory for a descriptive what is question may not be valid for a what should be design
question.

Docking—the alignment of two models—goes beyond validity. Docking juxtaposes two models to investigate
whether they proceed in like manner or yield similar results. I argue that docking provides a guide in the use of
different laboratories to address organization questions; and, further computational and non computational models
can be docked to deepen and broaden our understanding of organization science.

Keywords: computational laboratories, organizational models, docking, validation, computational experiments,
simulation, organization science

Introduction

When we have the real world to observe and lots of data, do we need computational labora-
tories in our research efforts? We have many different kinds of laboratories for organization
science—including computational laboratories. Even so, data from the real world are lim-
ited in what we can see and interpret; we cannot address all questions. One interpretation is
that the real world is a “big” computational laboratory where we essentially have a single
run observation—a stream of data over time, which we cannot re-run. With field studies,
we take a sample of smaller pieces of data, frequently assume independence, create an
experiment and analyze our observations as if it were a real experiment with manipulation.
Many of the statistical methods used in organization science research are based upon this
experimental model. In short, we create many observations from one long stream and then
proceed as if we had a real experiment. It is a powerful approach and has served organiza-
tion science and social science well. Perhaps its biggest limitation is lack of experimental
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manipulation; our experiment is limited by what has happened and what we can see. Ex-
cept by experimental design, extrapolation, extension and inference, it does not permit us
to move beyond what happened in the past. Computational laboratories permit us greater
experimental variety to complement other approaches used in organization science. With
computational experiments, we can manipulate experimental parameters of interest and
observe outcomes—creating direct causal links.

There is a long history of contributions using computational laboratories and models to
organization science: Cyert and March’s (1963) behavioral theory of the firm, a new view
of the firm which has been investigated further in many field studies; Cohen et al. (1972)
garbage can model of organizational decision-making which complemented their observa-
tions of university administration; March’s (1991) exploration—exploitation balance model
which provided a new view of corporate strategy; Carley’s (1992) learning model which pro-
vided a process view of learning; Cohen and Bacdayan’s (1994) learning model as routines;
Levinthal’s (1997) rugged landscape complexity model which gave us a different notion of
environment and some implications for modeling it; Harrison and Carroll’s (1991) cultural
transfer model which yielded insights on development of organizational culture; among
many others. All of these computational models were complementary to other research
approaches. Computational laboratories and models with well designed experiments can be
used to explore new ideas, provide process explanations for observed relations, confirm and
validate existing explanations and hypotheses, and generally complement other approaches.

In this paper, I argue that computational laboratories provide a place to address the broad
array of organizational questions of what is, what might be, and what should be. They com-
plement other laboratories as human subject laboratories and experimental studies which
use the real world as a laboratory for data. Organization science questions can and should
be studied in multiple places using different approaches. Each laboratory has its advantages
and limitations (McGrath et al., 1982; Plott, 1982). A computational laboratory can be
quite efficient in the application of resources for process mechanisms to develop sufficient
explanations for real observations. Further, we can investigate what might be questions in
computational laboratories—questions that would require real world manipulations that are
not possible in real world contexts. For what should be questions, we investigate issues of
organizational efficiency, effectiveness and viability before implementing the solution in
actual practice. We can plan and design better solutions as well as prevent mistakes that we
observe in practice.

Validation is a fundamental concern in science, and organizational laboratories are no
different. The validity of a laboratory and model depends upon the question being addressed.
A laboratory for a sufficiency explanation for a what is question may not be valid for a design
recommendation for a what should be question. The what is question may require only a very
simple model of explanation, but would not indicate how to intervene in the organization
in a normative manner.

Docking—the alignment of two models—certainly enhances validity, but goes beyond;
docking juxtaposes two models to investigate whether they proceed in like manner or yield
similar results. I argue that docking can guide us in the use of different laboratories to
address organization questions; and, further computational and non computational models
can be docked to deepen and broaden our understanding of organizations.
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Next, I define a computational laboratory followed by a categorization of organization
questions as: what is, what might be and what should be. Computational validity is examined
in terms of the research question for which the laboratory is used. Finally, I explore the
concept of docking and how it can enhance the study of organizations.

Computational Laboratories

In organization science, we have many questions about: the behavior of individuals, the
nature of organizational processes, the implications of alternative organizational structures,
and the influences of context of the organization, among others. We investigate the nature
of the organization in many venues: observation and description of the world around us,
analytical modeling, controlled experiments involving humans as agents, and computational
laboratory experiments.

For an organization, a computational laboratory is a “place” where one can:

– Ask a question about: the behavior of individual agents or teams, the information pro-
cessing of the agents and communications in an organization, the outcomes of various
organizational processes, the implications of alternative structures, the influence of the
organizational context and environment; where each question can be stated in specific
terms.

– Build a computational model that relates to the question.
– Design and conduct an experiment that yields outcomes that can be used to address the

question.
– And, then answer, or at least comment on the question.

I begin with the question of how to represent the phenomenon and describe behavior, propose
a process and test a hypothesis, explore beyond what we know, test and offer advice on new
ways to meet goals, and generate new theory by offering and investigating new plausible
explanations. The different questions may require different laboratories and models; no one
model can answer all questions; no one model can answer any given question definitively.
For any given laboratory, there must be a balance among: the question, the model, the
experiment, and the analysis to address the question. Earlier, Burton and Obel (1995) argued
that balanced simple models and parsimonious explanations are preferred to complicated
models, provided simple models address the question. Computational laboratories need not
be—indeed should not be—exact replica of reality; the match of the question with the model
indicates the nature of the model. The central issue is to help us learn about the world and
to act upon it in a good manner.

There are many computational laboratories that are representations of the organization
and how it works. The laboratories can be categorized as:

• Procedural models of the time order of events, e.g., Cohen et al.’s (1972) garbage can
model and Van Alstyne’s (2003) Indigo,

• Agent based models of individuals in teams and organizations, e.g., Levitt’s (Jin and
Levitt, 1996) VDT/SimVision, Prietula’s (2002) TrustMe, Burton and Obel’s (1980)
organizational decomposition models and Lenox’s (2002) rent producing resources model,
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• Equation based models of organizational processes without closed form solutions, e.g.,
Harrison and Carroll’s (1991, 2002) culture transfer models,

• Rule based models, e.g., if-then rules or heuristics which state processes or characteristics
of the organization, e.g., Burton and Obel’s (1998) OrgCon diagnosis and design model,
and Cohen and Bacdayan’s (1994) routines model,

• Intelligent agents who follow a program or a procedure to do something for someone,
e.g., Prietula and Carley’s (1998) webbots.

Most of these laboratories were devised to address specific questions about organizations
and the individuals in them. Cohen et al.’s garbage can model depicts decision making pro-
cesses in universities; Levitt’s VDT/SimVision model aims to improve project management;
Harrison and Carroll explore the meaning of organizational culture and its management;
Burton and Obel diagnose fit/misfit relations for design; and, Prietula and Carley’s Webbots
are computer generated “critters” which help people with tasks.

Earlier, Cohen and Cyert (1965, p. 308) categorized computational models as: descriptive
computational studies, quasi-realistic studies, normative computational studies for design-
ing organizations, and man-machine computational studies for training. Each model type
addresses a different question and the validity of the model depends upon the question.
Carley (1995) suggests four categories: organizational design, organizational learning, or-
ganizations and information technology, and organizational evolution and change. Again,
each model type addresses particular questions.

In their new book, Lin and Carley (2003, pp. 30–31) discuss the multiple advantages of
computational methods:

(1) Using simulation, we can more fully explore ranges of stress, organizational design,
and task environment and their effect on performance (Masuch and LaPortin, 1989). (2)
We can conduct balanced simulation experiments, and control certain factors to examine
the effect of other factors, while imposing no damage to the existing environment. (3) We
can consider both successful and failed firms. Thus results will not be biased by looking
only at successes. (4) Simulated organizational have been shown to resemble the real world
organizations in an idealized way (Carley and Lin, 1997). The performance characteristics
of simulated organizations are under certain conditions comparable to the performance
characteristics observed in the real world (Lin and Carley, 2001). (5) Researchers have also
shown that organizational performance is affected by factors such as organizational design
(Lawrence and Lorsch, 1967; Houskisson and Galbraith, 1985), task environment (Drazin
and Van de Ven, 1985), and stress (Anderson, 1977). Hence, simultaneous examination
of these factors on organizations can help address the issue of what really constitutes
organizational performance. By using simulation, we can get insight into these important
factors with less cost than conducting human experiments or field studies. Once the dominant
factors are examined, human experiments or field studies can be done to test the theoretical
results.1

They see computational modeling as a precursor for other approaches and as a comple-
ment to experiments and field studies.

Human subject laboratories are conceptually close to agent based computational labora-
tories. Human subject laboratories permit us to vary conditions within limits to test the effect
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of these manipulations on the behavior of individuals in the laboratory. We have greater
understanding of the conditions and what has been changed to permit inferences about cause
and effect relations. In essence, the computer agent, as in agent based models, is replaced by
an individual who plays the role of the human agent. Burton and Obel, (1980) confirmed the
M-form hypothesis using a multi-agent model without invoking opportunism. Later, they
(1988) tested the M-form hypothesis where potentially opportunistic individuals replaced
some of the agents. They had the advantage of the experimental control as well as the actions
of complex individuals. We can only infer the underlying processes which generated the
outcome—albeit, it is usually the question of interest. To obtain clearer inferences, we
replicate the experiment to affirm the results under related conditions. Nonetheless, it is a
continuing concern whether individuals in the laboratory behave as they do in their natural
environment, or whether agents, human subjects or computational, capture the relevant
procedural complexity to address the question

Any particular computational laboratory is limited in the questions and issues that it can
address well. As with any laboratory, no one laboratory can address all questions well; yet,
many computational laboratories can be used to address more than one question (McGrath
et al., 1982). There are tradeoffs—advantages and disadvantages in the matching of the
question with the laboratory and model. And, no one question can be completely addressed
within one laboratory. Later, I will argue that docking, or model alignment (Axtell et al.,
1995) permits us to use the laboratories in concert to pursue the science both in greater
depth and breadth.

Computational laboratories have the advantage of more complete specification of con-
ditions and the processes which yield the outcome. (We will discuss this more detail later
in a comparison of the forward and backward problem.) It is a misnomer to call these ex-
periments virtual experiments; they are quite real. To the contrary, created experiments of
real world observation are artificial—created by the observation method itself. Nonethe-
less, computational laboratories have limitations of external validity and correspondence
or closeness with the real world. How close is close enough? In brief, it depends upon the
question, the unit of analysis and the nature of the answer we want (Burton and Obel, 1995).
It may take a very different laboratory to confirm a hypothesis than a laboratory to offer
advice on a specific managerial question. Questions drive organizational science; some
questions can be addressed well in computational laboratories—others, not so well. In the
next section, we examine three kinds of questions and their implications for computational
laboratories: what is, what might be and what should be.

Types of Questions We Study

Organizational questions can be categorized as positive science or normative science—what
is or what should be. We add explicitly the question of what might be. Here, we want to
examine the implications of these three different, but related questions for computational
laboratories. I begin with “what is,” then examine “what might be,” and finally “what
should be.” Scientists are usually more interested in what is questions; practitioners are
more interested in what should be.
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What is

The question of what is is basic in positive science. We use laboratories to describe and
understand the world around us. Whether the laboratory is computational, human subject,
or field, we create an image of the world where we attempt to mimic, replicate, reflect and
in general, attempt to see the world as it is—ever through the glass darkly. Each answer
generates a new question—a need for a better description. But we want to go beyond
description to explanation and a deeper understanding of why the world works the way
it does. If we propose a theoretical model, we want to test it. If we observe a particular
behavior, then we want to explain why it obtains. The traditional method is to infer the
reason why—we make guesses, hopefully good ones, about why.

Our usual positive science approach is to examine what we know and what we do not
know—the question. We then create hypotheses as potential answers to our question. Using
the real world as the computational laboratory and model for the experiment, we observe
and collect appropriate data, and analyze these data to answer the question. If we confirm the
hypotheses, we have a sufficient explanation. That is, we have a single explanation that fits
the question and explains the results. We work hard to eliminate alternative explanations, or
other plausible sufficient explanations. Rarely do we ever have a necessary explanation to
the question. But we have greater confidence in our understanding if we have one sufficient
explanation, and can eliminate a number of other explanations, which might be true, but are
not. Further, no question can be definitively answered in one laboratory or with one model.
We have greater confidence in the answer if we can triangulate and confirm the answer in
multiple laboratories—for example, the real world laboratory, human subject laboratories
and computational laboratories.

Let’s examine some of the challenges to make computational laboratories good labora-
tories for what is questions. Computational laboratories for what is questions need to be
close to the real world and have external validity, but how close depends upon the question.
The model need not be an exact replica of the real world; it should be very close on the
dimensions directly related to the question, less close on others which create the context
and can be completely silent on issues beyond the boundary of the question. Cohen and
Cyert (1965) posit:

...even though the assumptions of a model may not literally be exact and complete repre-
sentation of reality, if they are realistic enough for the purposes of our analysis, we may
be able to draw conclusions which can be shown to apply to the world.

The research question tells us what is “realistic enough for the purpose.” At a first level, we
examine how well the model duplicates the phenomenon of interest, i.e., can it mimic the
behavior in the real world or can we show an equivalency of the model with the real world
phenomenon; if it can, then we have validated the model. But no model mimics, replicates,
mirrors or describes the real world totally; that is, it mimics a small part imperfectly. It
is important to understand what is included and what is ignored, or in other words, the
boundary of the model.

Then, what can we learn about what is from computational laboratories? Computa-
tional laboratories can add a good deal of to our understanding of organizations. Lomi and
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Larsen (2001) contrast two kinds of research methods: the forward problem, “given a set
of assumptions about individual decision rules and problem-solving procedures, can we
determine (predict) the aggregate properties of a system generated by the repeated inter-
action among individual units adopting these rules and procedures?” (p. 4), and backward
(inverse) problem, “given the observable regularities in the behavior of a composite system
(e.g., an organizational field or a market) can we specify a set of rules or procedures that—if
adopted by all the elementary units—induce and sustain these regularities?” (p. 5). In an
earlier discussion, Gutowitz (1990) focusing on cellular automaton stated:

The forward problem is: Given a cellular automaton rule, determine (predict) its proper-
ties. The inverse problem is: Given a description of some properties, find a rule, or set of
rules, which have these properties. These problems are obviously strongly interrelated
(p. vii). On the experimental side, the forward problem amounts to the design of good
simulations which adequately reveal the behaviors under investigation (p. ix). (for the
inverse problem), to develop a set of techniques which allow one to find a rule, or set
of rules, which quantitatively reproduce some set of observations of the physical system
(p. x).

Briefly, for forward problems in organizational studies, we specify the rule, the process or
the mechanism and then observe the outcomes; for backward problems, we observe the
behavior or the outcome and infer the process or mechanism. “These two are obviously
related” (Gurtowitz, 1990). For the last century, social science and organization science
in particular has been dominated by the backward (inverse) approach; we observe the real
world and infer the mechanism which generated it, which is usually stated as propositions or
hypotheses concerning behavior. We have elaborate techniques on observation and analysis
for confirmation.

Many, if not most computational models investigate the forward problem. The earlier list
of procedural, agent, equation, rule based and intelligent agents: all are forward models.
An organizational process model specifies how the organization will work; it is run and
outcomes are observed. The forward model process is then a sufficient explanation for the
results. From this perspective, computational laboratories are complements to real world
observations; the computational model yields process data, just as the real world yields
process data. The inverse problem is to infer the nature of the process. Beginning with a
backward approach to a real world observation, we can then use the forward approach in
a computational laboratory to replicate a process or build a plausible process model. But
more importantly, we can also confirm that alternative processes or explanations do not
yield the outcomes, thus eliminating them as possible explanations. And, further we can
propose new explanations or new theories about the outcomes and examine whether they
are feasible explanations or not; theory generation, if you will. Here we are going beyond
what is to what might be.

What Might be

What might be questions go beyond what is to examine what we have not observed. In
organization science, what is questions have been our focus. And, careful researchers are
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restrained not to go beyond the limits of their data and speculate on “what might be.”
There is good reason for this caution. Usually, we venture into “what might be” by simple
extrapolation, which has grand underlying assumptions. Thus, we limit our “what might be”
to be close in variations on “what is”—not unlike the neighborhood of partial derivatives
in a Hilbert vector space.

Computational laboratories with a specification of the underlying procedural rules, or
processes permit us to go beyond the nearby linear extrapolation to investigate “what might
be” in the extremes. We can manipulate conditions and parameters widely within the model
which may be nonlinear and observe the outcomes. The “what might be” space is larger
(but contains the what is), and we can investigate a broad array of alternative explanations
and alternative theories.

Levitt (Jin and Levitt, 1996) and his associates in their investigation of the implications of
time crunching large scale projects using the virtual design team (VDT) laboratory found two
important outcomes: first, the managers themselves were quite good at local extrapolation,
i.e., reducing project time by 3 percent, but their intuition was quite limited about the ensuing
difficulties created by crunching the project time to one half; and second, the VDT laboratory
and the project model predicted correctly the actual problems encountered in reducing the
project time by one half. In brief, the managers were quite good at the “nearby,” but were
not very good at predicting the implications of major changes. They confirmed that we are
rightly cautious in extrapolating without an understanding of the underlying processes.

The real world has an obvious success bias, and rightly so; we would like to understand
what is successful. But a more complete understanding demands that we understand what
is likely to be unsuccessful and why. Computational laboratories can be crash laboratories
for organizations—similar to flight simulators for airplanes. We are not only free to crash
at very low cost, we can learn a good deal by creating failure. We can utilize computational
laboratories to test new ideas, i.e., hypothetical organizations that we have yet to observe,
but can be specified in sufficient detail to construct a model of how it might work. For
example, we can construct a model of an organization where all members can talk with
each other on any topic at any time, and then observe how it will behave. Further, we
can test the implications of adding new members to the organization. It is lower cost than
“just experimenting” and see what happens; and, we are likely to observe problems in the
laboratory before we experience them in a trial run of the organization. We want to crash
in the laboratory—not in the real world.

What Should be

Design, or what should be goes beyond what is or what might be to incorporate what is
“good.” What should be is the combination of what might be and what is “good”—or, more
correctly what is “better” as we frequently make relative comparisons. In positive science,
we are reluctant to say what is good, or what should be; in normative science, it is the
question of interest.

Simon (1981, p. 133) stated the what should be or the design issue well:

Design, on the other hand, is concerned with how thing ought to be, with devising artifacts
to attain goals. We might question whether the forms of reasoning that are appropriate to
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natural science are suitable also for design. One might well suppose that introduction of
the verb ‘should’ may require additional rules of inference, or modification of the rules
already imbedded in declarative logic.

The question of what is good can be examined on many levels. Usually, we operate at the
utilitarian level or preferences on efficiency within moral constraints. For agriculture, more
corn is good; for engineering, a stronger and lighter standing bridge is good; in business,
more profits are good; in public policy, more open democratic processes are preferred—even
if less efficient. But the problem is more involved. Most outcomes are multi-dimensional
involving incommensurable tradeoffs. Frequently, there are many stakeholders in an issue,
and it is well known that individual preferences do not simply add up. One approach is to
test the implications of different preferences for the design to obtain a better understanding
of the tradeoffs—gains and losses among various stakeholders. Computational laboratories
are particularly adept at generating the implications of the various alternative preference
functions and indicating what is gained and loss, and by whom. But that is only at the first
level of relative good, not absolute—a more destructive atom bomb is not necessarily a
good thing.

What should be questions are more difficult and may require different laboratories. First,
there is the technical issue of understanding whether the new design of what might be
is feasible or possible. Second, the question of what should be may require a different
laboratory where what should be can be explored, i.e., the what should be question suggests
that the artifact or design model should be valid—a different validity than for a what is
question. Third, experts on what is are not necessarily experts on what might be. It can fall
outside the boundaries of what they understand. Fourth, what should be requires a judgment
on what is good. Physicists who know how to make an atom bomb are not necessarily experts
on whether it should be built. Today, we are confronting such issues on genetics and ethics
in corporate behavior.

Computational Laboratory Validity and the Research Question

As argued above, we begin with the question: what is, what might be or what should be.
Earlier, Burton and Obel (1995) argued that the validity of a computational laboratory
depends upon the purpose—a matching of the question, the computational model and the
experimental design. Their research question categories become: what is, or descriptive of
behavior, hypothesis testing and alternative explanations of behavior; what might be, or
exploration and theory generation; and what should be, or normative model, advice and
training. The correspondence of the laboratory or model with the phenomenon, or the level
of realism depends upon the question.

What is questions require a degree of realism. But realism does not mean complete cor-
respondence; simple models can address focused questions with insight. Axelrod’s (Axtell
et al., 1995) cultural model applies rather simple mechanisms of neighbor “touching” to
give us insight into community integration—or, lack thereof. For his purpose, it is important
to strip away the complexity of the real world to obtain insight and a parsimonious explana-
tion. In real world experiments, we have observations where community integration occurs



100 BURTON

and where it does not, but sorting out cause and effect is very difficult; it is much clearer
in the computational laboratory experiment where confounding realism is stripped away.
In this computational laboratory, we have one sufficient and parsimonious explanation for
the observations–a test of a hypothesis about the mechanism of community integration;
there may be others as well. And, we understand more by examining the question in other
laboratories–applying triangulation (McGrath et al., 1982) to the question.

Other what is purposes suggest a closer correspondence with the real world phenomenon.
Levitt and his associates (Jin and Levitt, 1996) validated VDT against what is criteria by
comparing the computational model with actual projects retrospectively, i.e., comparing
the model results and processes with actual projects. (In personal correspondence, Ray
Levitt suggested that Walt Disney called this “hindcasting.”) For projects that are incom-
plete, they validate the model both retrospectively and also prospectively by predicting
what will occur and comparing the predictions with what occurs. The combination gives a
good deal of confidence that the VDT computational model incorporates a high degree of
realism—both outcomes and processes. More generally, process models and in particular
agent based models contain a trace of what occurred and it can be reviewed for validity and
understanding.

For what might be questions, validity requires a confirmation that the laboratory and
model make sense in this larger world of possibility: exploration, idea generation, alternative
explanations, and testing. I argued above that a simple linear extrapolation is limited; but,
an understanding of more fundamental mechanisms is more likely to tell us what might be
possible in this larger space. Computational models which incorporate the organizational
processes, or explain relations and connections among the variables and parameters are
more likely to be valid in a larger space than models which explain a point observation of
the past. Again, Levitt’s VDT model for projects has a high level of realism in a rocket
development study (personal correspondence); it yielded better insight into what might be
than the manager’s intuition based upon experience. That is, it is both valid for what is
and for what might be. Burton and Obel’s (1998) OrgCon model of relationships among
organizational characteristics and properties provides insight into what will work well, and
what is likely to lead to a performance diminishing misfit.

The validity for what should be laboratory adds the dimension that preference choices
can be revealed among design alternatives and realized by the design solution and its
implementation. We want to go beyond the feasibility of what might be and illustrate the
desirability of what should be. For advice or design, we need to demonstrate the efficiency
or effectiveness or higher profits for the proposed organizational solution. In Levitt’s VDT
model, the project outcomes are time, cost and project quality. First, the project activities
and implementation process must be mapped onto these outcomes. Second, these outcomes
must be relevant as goals for the decision-maker, i.e., time and quality are meaningful goals
to choose among. Thomsen et al. (1999) developed a trajectory approach to a dynamic
validation of VDT and more generally what should be models to assure confidence in the
normative recommendations.

It is important to note that a valid model for one purpose may not be a valid model
for another. The validity of the model needs to be established anew for each purpose
or question. Levitt’s VDT model is valid (Thomsen et al., 1999) for many purposes as
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suggested above. However, Cyert and March’s (1963, pp. 128–148) department store
model is valid for what is but it is not clear whether it is valid for what might be or what
should be.

The validity of a laboratory depends upon the question. No one laboratory can address all
questions; further, no one laboratory can completely answer one question. Any one question
must be addressed in numerous ways to obtain insight and understanding. Thus, we need to
investigate a question in multiple laboratories which can be related, or docked. As developed
below, the docking of two or more laboratories or models enhances the validity of each; we
know more about the capabilities and limitations of each laboratory to address a question;
but more importantly, we have deeper understanding of the science.

Docking

Axtell et al. (1995), define docking—a metaphor borrowed from the docking of two dis-
similar spaceships—as the “alignment of computational models.” They docked Axelrod’s
cultural model (ACM) and Epstein and Axtell’s (1996) Sugarscape by showing a distri-
butional equivalency, i.e., the two models can produce the same results—a tough test of
alignment. They defined two levels of equivalency: distributional and relational. Distri-
bution equivalency requires the same (numerical) results; relational equivalency requires
equivalent internal relation results. ACM and Sugarscape are similar in that both are mod-
els of a community and how it works—albeit at different levels of abstraction. The two
models are similar in that both have agents who use relatively simple rules of behavior
and a geographical space for action. Both are forward models addressing what is questions
to explain the community behavior from relatively simple micro behaviors. They are dif-
ferent in that ACM is relatively focused and small; where the Sugarscape model is very
complex and large with a rather complete description of a community. The purpose for
the ACM is to posit simple behaviors of individuals which explain the community inte-
gration result—a parsimonious explanation; the purpose for Sugarscape is the creation of
a broad set of relatively simple behaviors for a community that replicate a complex soci-
ety. The docking experiment investigated whether the two models could yield equivalent
distributional results with respect to the integration of the community. The equivalency
between the two models provides a validation for each model—what questions can be
answered well, and, those questions which cannot be answered well. We have a better
understanding of what each model captures and what each model ignores. Docking gives
us a much richer understanding of each model and the touch points between the two. It
can be thought of as validating the models beyond the validation of each model sepa-
rately. It yields greater insight into the phenomenon, and most importantly, it enhances the
science.

In this broader sense, docking is not new. Cyert and March (1963, pp. 128–148), in
their store buyer behavior study used the distributional equivalency criterion in comparing
their model and the real world data. They docked their computational model with the real
world—two what is models. The equivalency yielded validity to the computational model
where the purpose was to show that the computational model could be used to suggest real
world decision-making processes and outcomes. In a similar fashion, the garbage can model
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(Cohen et al., 1972) was docked with their observations of university administration pro-
cesses. Nelson and Winter (1982) replicated history using routines as the organizational
processes.

Science progresses by building upon the work of others. The research question comes
from what we know or think we know, and what we do not know, but would like to know.
Our confidence in what we know is based upon the scientific process of investigation—and,
the validity of the laboratory. Docking reveals the scientific process and makes it more
explicitly integrated so that we can build upon the research of others.

Axtell et al. took a restrained view of docking as the equivalency of models. We want to
generalize the concept to incorporate others forms of docking. In thinking about docking
possibilities, there are several dimensions:

Laboratories, databases, field studies, human subject, and computational;
what is, what might be, and what should be; and,
forward and backward models.

The number of combinations is too numerous to investigate in total; we need an organiz-
ing criterion for what to dock. Again, the driver for any docking study is the question we
want to answer: validation of the models, explanations, confirmation of results, mimic the
processes as well as the results, testing alternative sufficiency explanations, disconfirming
a plausible sufficient explanation for a phenomenon, developing insights about the organi-
zational processes, and any question where the comparison of two or more models deepens
our understanding of the science.

Informal Docking

Informal docking of two or more what is models is well known and widely practiced; in fact,
it is the norm in organization science. Journal articles are filled with informal docking. The
usual approach is to position the question within the research literature; good science builds
upon what we know and the previous work of others. Generally, the question itself addresses
what we do not know, but would find interesting to know more about. The literature review
sets the stage for the research; the development of hypotheses are supported by reference to
the theory, or what we think we know; the experimental design gives us confidence in the
research procedure and in the results; and, the laboratory, whether it is a data set, field study,
or computational model yields the data for analysis and the answer we seek. Usually we
do not directly confront different models, different experimental designs, or different data
sources—as Axtell et al. did. It is still quite rare to have a replication of an experiment and
demonstration that the results are equivalent in either the distributional or relational sense.
Our usual approach is to consider the experiments as independent tests, and downplay the
connections. Our docking is largely suggestive by juxtaposition–“docking lite”, if you will.

Nonetheless, informal docking is extremely important—a beginning, but limited step.
We can extend the docking notion further for greater validation and deeper understanding.
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Docking en Large

Axtell et al. (1995) docked two what is forward computational models using a distributional
criterion of equivalency. Docking en large extends, or more fully develops Axtell et al.’s idea
to explore the connectedness among the questions, the laboratories and the experiments.
The general idea is to investigate whether two models “touch” more deeply than we are able
to do by informal docking. Here we want to investigate some possible docking variations.

We want to explore the possibility of docking more generally along the dimensions:

– equivalency: distributional and relational,
– computational models, field studies, large database studies and human subject experi-

ments, and,
– what is models with what might be and what should be models.

There are innumerable experiments and questions of equivalency. In the discussion above,
we have suggested some possible docking experiments. Here we want to explore some
docking questions and related experiments:

Is There a Forward Procedural Explanation for a Backward Explanation?

As discussed earlier, for forward problems in organizational studies, we specify the rule,
the process or the mechanism and then observe the outcomes; for backward problems,
we observe the behavior or the outcome and infer the process or mechanism. “These two
are obviously related” (Gutowitz, 1990). Sastry (1997) developed a forward procedural
explanation for the observations in Romanelli and Tushman’s (1994) punctuated equilib-
rium model. Sastry’s forward explanation was much less elaborate than Romanelli and
Tushman’s, suggesting that a more parsimonious explanation is sufficient for the results.
Recently, Ocasio (1999) presented a sophisticated backward explanation of CEO succes-
sion. There are hypothesized procedural mechanisms which are plausible, but not tested.
A procedural model of the CEO selection procedure could be created to dock the back-
ward inference with the forward procedural model, and further to the test the robustness of
the explanation as discussed below. As I have argued, our confidence in the hypothesized
explanation would be enhanced.

Are the Models Alternative Sufficient Explanations of the Phenomenon?
or Is There a Confirmation of a Model Using an Alternative Explanation?

Many of our studies yield one, or a very few explanations of the results. We have a the-
oretically based hypothesis which we confirm. Any pair-wise docking and confirmation
gives us greater confidence in the explanation hypothesized. In the Axtell et al. (1995)
study, they generated equivalent results, and thus, have alternative mechanisms, but related
explanations to explain the results. It is an interesting and open question whether there are
additional explanations—probably so. Our understanding is richer and more satisfying if
we have a few alternative explanations—or better yet, when we have a few sufficient ex-
planations and can eliminate a large number of plausible alternative explanations. We have
greater confidence in an explanation if we can triangulate (McGrath et al., 1982) among
computational and human subject experiments and real world observations.
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Can We Eliminate a Plausible Explanation That is not Feasible?

We have a stronger theory and greater confidence in the explanation if we can eliminate
alternative possible sufficient explanations. Our understanding is enhanced when we can
eliminate a plausible explanation which is in fact not true. E.g., if we have a plausible
hypothesis for which we have a backward test, and then we construct the related procedural
model and find it does not yield an equivalency, then we can reject that explanation.

What are the Boundaries or Limits of the What is Explanation for What might be?

When we have a what is explanation, we would like to explore the limits of the explanation
to understand better what might be. There may be a tendency to overstate the universality
of our results. Many of our tested hypotheses are more general than the evidence or data we
use to support the results. It is critical to understand the limits of our conclusions. Within a
single model, the robustness of the results is important. One approach is to systematically
vary parameters in the model which reflect important assumptions. If the results obtain for
wide variations in these parameters, then we have greater confidence in the universally of the
results. If the results are fragile, we have a narrow sufficient explanation. More generally,
we may want to test the boundary limitations by purposefully “crashing” the model to
understand when it does not obtain as hypothesized.

If we have two or more models where we have tested the boundaries, it is not likely the
boundaries will be the same. The conservative interpretation is that the intersection of the
explanation interiors is the region of explanation. The intersection of the exteriors is an
excluded region. The region of explanation by one model and not by the other creates a
contingent region of explanation.

Is One Model a Special Version of the Other?

The special version is usually created by holding some variables constant and then examining
the results. Axtell et al. (1995, p. 124) note that Newton’s concept of gravity is a special
case of Einstein’s theory; Newton’s gravity works well on the earth, but not beyond. In
social science, we are frequently examining a simple version of a theory to test whether
it remains a sufficient explanation for a phenomenon; and if so, we usually prefer the
simpler, parsimonious explanation. ACM is not a special version of Sugarscape in a strict
sense in that there are some parameters in Sugarscape are turned off to create ACM, but
the ACM is clearer simpler model than Sugarscape; yet, both explain the diversity in the
community within the distributional equivalency criterion. Further, we are interested when
the simple model is not a good explanation, as Einstein was. We have suggested above
that all laboratories—computational, human subject or real world observations–are special
versions of a deeper reality. Our real world laboratory and the computational one are different
special versions, and further, the computational model can be a special version of the real
world model. We want to know the special conditions when they are equivalent and when
they are not—and whether equivalent in a distributional or relational sense. As discussed
above, the two models may have differing regions where each is valid.
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Are the Models at Different Levels of Analysis?

Two models can be at differing levels of analysis for the same phenomenon, e.g., the
individual, the organization and the society. Organizations can be analyzed in terms of
properties and characteristics: structure, centralization, formalization, etc, (Burton and Obel,
1998), or as agents or individuals who communicate and make decisions (Jin and Levitt,
1996; Carley and Lin, 1997). The two models are then at differing levels of analysis,
containing some concepts in common, e.g., centralization. For docking test, the concept of
equivalency would need to be further developed. Similarly, ACM is an agent based culture
model; Harrison and Carroll (1991) also consider organizational culture, but at a more
aggregate level of hiring, firing and socialization processes, but not at the individual level
of behavior. Here, these models are quite different; a new equivalency criterion is needed
before we can consider what docking might mean—culture has two definitions here.

Using institutional arguments, Dimaggio and Powell (1991) propose that organizations
look alike or are isomorphic due to coercive, mimetic and normative forces in their organi-
zational fields. The underlying micro mechanisms are intuitive and make good sense, but
are not actually tested as to their feasibility. Mimetic isomophorism suggests that organi-
zations copy successful organizations without being explicit about the micro mechanisms
and possible limits. Rivkin (2000), in a computational study on a rugged landscape, found
that unless an organization copies the total strategy of another organization, it is unlikely to
obtain the same high level of performance. E.g., a near perfect copy of Southwest Airline’s
successful strategy is not likely to yield the same high profits. Informal docking suggests
that there are severe limitations to mimetic strategies, but we do not know much about the
conditions and boundaries. Benchmarking is advocated as a universal solution to improve
efficiency and profits, and it is practiced in piecemeal fashion. Rivkin’s study suggests there
are limiting conditions for benchmarking to be successful. More generally, the institutional
isomorphoric mechanisms need clarity in the possible micro mechanisms that yield these
outcomes, and a better understanding of the boundaries of applicability.

Can the Models be Linked or Related?

There are a number of ways that two models can be linked:

– elements—variables and relations—in common, but with some different variables. As
mentioned above, centralization was a variable in two different models. Here you can
also link field with computational studies.

– the output of one model can be the input for another e.g., agent based organizational
models and experiments can yield design heuristics for rule based expert systems. One
possibility is the development of expert system design rules (Burton and Obel, 1998)
from agent based models which test organizational properties, say on decentralization
and yield results which can be stated as rules. Another possibility is a cascaded param-
eterization process where the first model determines the value of a variable that then
becomes a parameter value in the second model. Here, we could reverse the direction
where the design model would suggest an appropriate level of decentralization and the
agent based model would take the level of decentralization as a given or input parameter.
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These variations on docking are not exhaustive, nor mutually exclusive. And, further equiv-
alency needs to be specific to the question and the computational laboratories. The concept
of equivalency is fundamental, i.e., on what basis are we making a comparison.

Summary

I have argued that computational laboratories can be used to further organization science
and our understanding of how organizations work. We can address questions of: what is,
what might be, and what should be. And further, the docking of laboratories is an excellent
way to enhance organization science.

Briefly, I would like to restate the main ideas and arguments:

– Computational laboratories are complementary laboratories to human subject laborato-
ries and field studies as laboratories. Each has its advantages and its limitations. Com-
putational laboratories permit us to go beyond and explore what is possible in other
venues; what might be is a larger world of possibility to explore, test ideas and design
new organizations for what should be.

– The validation of a laboratory and a model is dependant upon the question under con-
sideration.

– Validity is enhanced through docking and our understanding of the science is deepened.
– Triangulation is well accepted in science and the computational laboratory gives us

another place to do research. No question can be answered definitively in any one
laboratory; differing laboratories are needed.

– Sufficiency explanations are more completely specified and we have a better understand-
ing of what we are testing where the forward problem specification of the organizational
process rules out a number of alternative explanations, or at least, suggesting an alter-
native mechanism is required.

– Docking, where two or more laboratories or models are connected in non trivial ways,
deepens our understanding of organizations and how they work, and further the science
of organization.

Computational laboratories have been venues for fundamental contributions to organization
science. As computational laboratories become more widely available to organizational
scholars, we will see continuing, and perhaps growing use.
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