
Lear ning R.E. Marks © 2007 Page 1

Learning

1. Simon on Learning

2. Artificial Neural Nets

3. Genetic Algorithms and Genetic Programming

4. Models from Psychology: Reinforcement Learning,
etc.
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Herber t Simon on Learning

“Any chang e in a system that allows it to perform better
the second time on repetition of the same task or on
another task drawn from the same population” — Simon
(1983)

“Learning is any chang e in a system that produces a more
or less permanent chang e in its capacity for adapting to
its environment. ” — Simon (1996)

“Armchair speculation about expectations, rational or
other, is not a satisfactory substitute for factual
knowledg e as to how human beings go about anticipating
the future, what factors they take into account, and how
these factors, rather than others, come within the range of
their attention.” — Simon (1982)
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Learning

Previous (e.g. Life, segregation) the agents are
unchanging,

Now: chang e occurs in the agent’s parameters (simplest)
or in the form of the agent model (more complex).

Several sorts of models of learning:

1. Artificial Neural Nets (ANNs): from machine
learning, from biological simplifications of the
brain’s operation,

2. Evolutionar y models, such as Genetic Algorithms
(GAs) and Genetic Programming (GP), from natural
evolution, and

3. Models from psychology experiments, such as
Reinforcement Learning (RL).
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Ar tificial Neural Nets (ANNs)

An anecdote.

Instead of the ∼ 100 million neurons in our brain, we use
up to 50 artificial neurons, in three or more layers:
Input, Hidden, and Output.

When presented with a stimulus, an ANN learns to output
an appropriate signal.

Ever y unit (AN) in any lay er is connected to ever y unit in
the adjoining layer(s).

Ever y connection has a numerical weight.

One layer of units is the Input layer (by convention, on the
left).

One layer of units is the Output layer (right, opposite).

In the middle are the Hidden layer or lay ers.
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The crucial Hidden Layer ...

The Input layer gets stimulus from the environment; the
Hidden layers take the signals received from the Input
layer, process them, and pass them to the Output layer.

The strength of the Input layer’s units are set by the
environmental stimulus; the decoded strengths of the
output layer is the ANN’s response .

Activation of the non-Input-layer units depends on:

• the strength of the inputs to the unit,

• the weights of each of its input connections,

• a mathematical function of these weights and inputs.

Rescale the weighted sum of inputs to unity by a non-
linear activation function bounded between 0 and 1:
usually a sigmoid function (y = 1

1+e−x ).

< >



Lear ning R.E. Marks © 2007 Page 6

So ...

Need to encode any stimulus into numbers for the Input
layer.

Need to train the ANN to give the correct output for a
given input, usually by back-propagation of error: alter the
weights to reduce the error (the difference between the
output with random weights and the correct output
response).

The amount of error adjustment of the weights depends
on:

• the derivative of the activation function,

• the size of the error,

• the ANN’s exog enous learning rate, and

• a momentum propor tional to all previous error
adjustments.
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Applications of ANNs

ANNs used to:

• recognise handwritten digits

• recognise human speech

• select good credit risks for bank loans

• track stock-market trends

• recognise objects in video images

• explore the development of a shared lexicon (= a
language)

• dock Axelrod’s (1987) evolution of cooperation with
the IPD. (Marks & Schnabl 1999)
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Designing ANNs

More an art than a science.

“Good”: learn efficiently without needing too large a
training set.

Design choices:

1. encoding of the environmental stimuli

2. number of Hidden layers

3. number of units in each lay er

4. the specific activation (or squashing) function
(usually sigmoid)

5. the siz es of the learning rate and momentum
constants (use the package defaults)

6. how the error is calculated.
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1. Encoding of Stimuli

Stimuli can be:

1. Continuous or large integ er (a measure or count)
Scaled ∈ [0,1] and directly input, or categorised in
bands.

2. Categorical (e .g. male or female)
Assign one unit per category: 0 or 1 input.

3. Qualitative (e .g. blue , heavy, with a sweet taste)
Code in binary, with a unit per binary position.
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2. Number of Hidden Layers

Depends on the complexity of relationship between
stimuli and responses.

Most phenomena only require a single Hidden layer
(Masters 1992).
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3. Number of Units

Input and Output layers:

Depends on the encoding: as many Input units as input
categories.

e.g. An IPD with one period’s memor y?

with two week’s memor y?
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Numbers of Units in the Hidden layer(s):

ANNs have a degree of generalisation: they can recognise
a variant never seen before .

But we need to retain some specificity (to avoid
misinterpreting new inputs).

Permit a degree of generalisation, but not too much.

As the number of Hidden layer units increases, the
accuracy of input recognition increases, but
generalisation ability falls — when the number of Hidden
units = the number of distinct input examples, then there
is 100% recognition, but no generalisation.
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4. Measuring Recognition Error

Difference , or root square error.

But need to avoid local optima (local hills), by repeating
the training on a new random set of initial connection
weights.
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How are ANNs Agents?

What are ANNs?

• Hornik et al. (1989) have shown that ANNs are
“universal approximators:”

• Can be used as agents when used in parallel, but
don’t require other ANNs.

• Used singly, don’t lead to emergence , but can learn.

• Could use a population of ANNS, playing against
each other, as agents.

See Beltratti et al. (1996) for early applications of ANNs to
financial and economics models.
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Modelling Learning in ACE Models

Tw o sor ts of (deductive) learning have dominated ACE
models: GA (genetic algorithms) & RL (reinforcement
learning)

• GA, with implicit learning as the population “learns”
from generation to generation: either

— a population of players (the single-population
GA model), or

— a population of routines, ideas, heuristics, with
each player modeled as a population (the multi-
population GA model).

• RL, where the probability of choosing an action that
was effective last round increases.

• Anticipator y (inductive), Belief-Based Learning —
the future?
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Evolutionar y Computation

Based on evolution with natural selection.

Fitter individuals have more offspring to pass their genes
to;
less fit individuals have fewer offspring.

Genes occur in chromosomes; each gene codes for one
(or more) functions.

The genotype = the structure of the individual’s
chromosomes.

The phenotype = the expressed characteristics
(behaviours) of the individual, coded by the genotype .

Many phenotypes emerge from the individual genotypes:
difficult to predict.
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Evolution ...

1. Populations evolve , not individuals.

2. Evolutionar y chang e requires diversity at the
genotype level in the population.
Clones are identical, and so are their offspring.

3. While a species chang es and adapts to its
environment, the environment itself might chang e ,
because of the species’ actions (example?) or
because of other species’ actions.

4. Acquired skills die with the parent: only inherent
characteristics are passed on.
But: For Homo sapiens, language means culture,
which can be passed on through deliberate
learning.
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Wollemia nobilis
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Holland’s (1975) Genetic Algorithm mimics natural
evolution.

1. A population of “individuals,” each having a fitness,
which is measured.

2. The fittest individuals are chosen to breed a new
population of offspring, inheriting fitter traits and
genotypes.

3. Return to 1.

In breeding, the GA uses the processes of:

• Selection of parents to breed new offspring,

• Crossover of parents’ chromosomes to pass on a
mixture of their two genotypes, and

• Random mutation of some genes.

Or: selection, exploitation or imitation (of fit phenotypes),
and exploration (of the genotype space) which reduces
the risk of local optima.
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Four GA Design Choices:

1. Measures of Fitness.
Depends on what’s being modelled.
e.g. utility, wealth, survival time, profit,
The average fitness of successive populations is
always monotonically increasing: local optima.

2. Selection mechanisms.
In choosing parents, need to retain some diversity
in genotypes: don’t only choose the fittest
individuals to mate.

Tournament selection: choose pairs of individuals
at random; take the fitter of the pair as a parent.
Typically, retain 40% of new population from the old,
to protect better traits (embodied in the genotypes).
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3. Genetic Operators: crossover & mutation.
Single-point crossover: take two chromosomes
(one from each parent), cut at the same randomly
chosen position, swap the cuts to create two
offspring (use at least one).
Possible to have more than one cut point, but not
impor tant.

Crossover preserves traits (from combinations of
adjoining genes on the chromosome).

Mutation: probability that a gene chang es.
Creates novelty at the genome level: diversity.

4. Population size.
Should considerable exceed the number of genes in
each chromosome .
If the population is too small, then increased risk of
convergence to a local optimum.
But 20 to 50 has been used successfully.
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Docking of a GA Model

In G&T 2nd edition, they dock Axelrod’s (1987) model of
the IPD:

Axelrod (1987) wrote in Pascal VS,

Marks (1988) wrote in C,

G&T (2005, pp. 239−247) write in NetLogo !

Szpiro (1997) used a GA to demonstrate the emergence of
risk aversion.
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GA Developments

Coding of the Genotype:
Nature uses the four nucleotide amino acids.
Holland’s classical GA uses bits in a binary string.

But real numbers are possible: easier to deal with many
real-valued problems.
Mutation: added a randomly chosen small number
(N (0,σ)) to a small propor tion of genes.

Or: use programs as genes → Genetic Programming
(Koza 1992).
Need to ensure that crossover and mutation preserve a
syntactically correct program, even if it performs very
poorly.

Classifier Systems (Holland et al. 1986): Production Sets
which can alter their rules by learning from feedback after
it has acted.
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Best Individual or Whole Population?

GA largely used as an optimiser: asking what is the best
value (of fitness) in the population?

But focussing on the value of the best individual throws
away the population’s emerging characteristics as a
population.

It ignores the aggregate level of emerging phenomena.

Axelrod (1987) not only sought the best-performing
strategy in the IPD,

but also asked questions at the aggregate level of the
population, such as its stability against invasion by a
different strategy: e.g. Tit for Tat’s stability against Always
Defect. (See Marks 1989.)
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How many GA populations?

Vriend (2000): with a GA and a single population,
distinguish social learning from individual learning.

Social learning occurs at the genotypic level: sexual
reproduction means that parents can communicate (share
information) with their offspring via crossover:

∴ over generations, fitter genes or traits can spread
through a single population cover tly, by inheritance of
genetic material.

How many parents, grandparents, great grandparents, ...
do you have?
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Multiple-population GA learning

With one population per player: Individual learning occurs
only through arm’s-length competition, and the selection
of fitter individuals as future parents, not through
inheritance of genetic material. (Illegal communication?)

When all members of a population are identical, then
genetic inheritance is not a problem, since the aim is in
general only to seek the fittest individual.
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GAs with Co-evolution: Many Populations

When the environment in which the GA operates chang es,
and when such chang e is due to the behaviour of the
species’ competitors — co-evolution — then sharing of
genetic material blurs the distinction between species.

Example: If the GA is being used to explore the behaviour
of sellers in an oligopolistic market, genetic sharing can
only model sub-rosa communication across brands.

This is illegal under most antitrust regimes, and therefore
in general should not occur in the model, lest the results
rely on it.
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... so: How many populations?

The answer to the question: how many populations? is
then: as many as there are distinct players, or distinct
species coevolving.

Example: When each seller in an oligopoly has distinct
costs, faces distinct demand, perhaps with a distinct
actions set, then it should be modeled using a distinct
population.

Perhaps because each GA has an internal population of
individuals, a tendency to think of the GA as modeling
heterog enous players.

But a single population assumes homogeneity.
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Individuals in the GA

Each string in a GA population could be:

• an individual brand (say), which I have argued above
is unrealistic in general, or

• one possible decision, of a population that the agent
could make — makes sense with a population per
distinct player.

So each new generation could be:

• new individual decision makers (brands), or

• new ideas or heuristics belonging to long-lived
players.
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Disputes about GAs in Economics:

Chattoe (1998) argues (correctly) that there has been
confusion over the role of the GA:

• an instrument to search a rugged solution space, or

• a model of firms’ decision making and individual
behaviour.

Dawid (1999) argues that the GA is good at modelling the
learning of populations of agents.

Curzon Price (1997): the GA provides a stream of
hypothetical actions or strategies, which may or may not
be used.

Duffy (2006) concludes that empirical evidence exists that
GAs are reasonable “models of adaptive learning by
populations of heterog eneous ag ents.”

< >
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Marks & Schnabl (1999) compare a GA and an ANN
playing an IPD

The logical structure of this ANN is a kind of dual to the
normal ANN: normally the net gets inputs from the
environment of data and forecasts future behaviour, here
it makes the data by creating behaviour of the actual move
(i.e . Cooperate or Defect). The data input of the ANN then
is the history of one’s own and one’s opponent’s moves.

• The ANN did not really transform itself to a structure
to best play the IPD.

• The ANN had to approximate 0 and 1 using real-
valued functions.

∴ The ANN not as close to the IPD as is the GA: ANN
seen to be less stable in solution.

• But with real-valued real-world variables, ANN might
do better than a GA.

• GAs sometimes used to search for better weights in
an ANN.
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Explicit Agent-Based Learning

With populations in a GA, learning is implicit: it occurs at
the population level, not at the individual level — it
emerges.

Ar thur (1991, 1993) was the first economist to model
explicit agent learning, and to calibrate his models using
data from human-subject experiments.

In his Reinforcement Learning (RL) model, how an agent
chooses to act later is a function of the outcomes it
experienced as a result of earlier choices — the Thorndike
effect.

At first he calibrated individual learning, but with the
ar tificial stock market (Arthur et al. 1997), he became
interested in data at the aggregate level.
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Ar thur’s RL Model, the earliest

His model: In round t , player i has a propensity q ij (t ) to
choose pure strategy j , and q ij is updated:

q ij (t + 1) = q ij (t ) + (x − xmin).

where x was the payoff for choosing strategy j previously,
and

xmin is the lowest possible payoff.

∴ Propensity to choose a strategy is reinforced if it has
provided higher payoffs in the past, and vice versa.

p ij (t ) = q ij (t )

ΣN
k =1q ik (t )

is the probability that agent i plays

strategy j in period t .
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Roth and Erev’s generalisation

Roth & Erev (1995), Erev & Roth (1998) generalised
Ar thur’s RL model to get a better fit with experimental
data from multi-player games.

Initial propensities q ij (1) are equal across all strategies.

Σ jq ij (1) = S i (1) = S (1), an initial propensity parameter,
equal across all players and strategies.

The rate of learning is propor tional to S (1).

Again, p ij (t ) = q ij (t )

ΣN
k =1q ik (t )

is the probability that agent i

plays strategy j in period t .
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The Roth-Erev Model ...

Player i updates his propensity to play strategy j
according to the rule:

q ij (t + 1) = (1 −φ)q ij (t ) + Ek ( j , R (x )),

where Ek ( j , R (x )) =




(1 −ε)R (x ) if j = k , or
ε

N−1
R (x ) otherwise ,

where R (x ) = x − xmin.

Three parameters:

• initial-propensity parameter S (1)

• recency parameter φ: reduces the power of past
experiences

• experimentation parameter ε

When φ = ε = 0, Roth-Erev is Arthur.
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Five Types of RL Models

Five types of RL models (Duffy 2006, Brenner 2006):

1. the Ar thur-Roth-Erev model above

2. Q-learning, which optimises long-term payoffs
rather than immediate returns (Watkins & Dayan
1992)

3. multi-agent Q learning (Hu & Wellman 1998), and

4. Adaptive Play (Young 1998)

5. Another modification of RL: suppose that agents
have certain “aspiration levels” in payoff terms that
they are trying to achieve . This idea has a long
histor y in economics dating back to Simon’s (1955)
notion of satisficing.

Could use xasp instead of xmin above .
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Anticipator y, Belief-Based Learning — Inductive

RL and GA-based learning models are deductive: respond
to past actions and payoffs.
No attempt to anticipate and reason back, deductively.

Belief-based learning: agents form beliefs about other
players’ likely actions, and so respond to their beliefs.
Inductive .

Gjerstad & Dickhaut (1998): “heuristic belief learning”:
ag ents use heuristics to update their beliefs about others’
actions (expressed as probabilities) — good convergence
to competitive equilibrium and good fit with aggregate
behaviour.

Timing of bids is crucial.
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Selten’s Directed Learning

Ex-post rationality determines adaptive behaviour.

Requires an ordering over the set of possible actions.

Players probabilistically move towards actions that would
have been profitable had they been chosen earlier;
and never move to lower their payoffs.

Hailu & Schilizzi (2004): use a mixed (i.e. probabilistic)
strategy in a procurement tender:

• if bid X won last auction, then use P ( 1
2
)X and P ( 1

2
)

X +10% as next bid,

• if bid X was too high, then use P ( 1
2
)X and P ( 1

2
)

X −10% as next bid, both bounded.
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Learning: How to optimise (LHTO), or how to predict
(LHOP)?

LHTO: GA searches for actions or strategies that are best,
lead to highest fitness (profits etc.)

LHTP: use the GA strings to encode how prices will
chang e from period to period.

Used to calibrate GA output with human-subject
experimental data.

For us, seems predicting prices is easier than predicting
how to respond to changing prices.

Perhaps this suggest how markets help us solve difficult
problems (see the EJ June 2005 feature discussed in
Lecture 2).
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