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1. As a Technique — to investigate the detailed
dynamics of a system.

2. As a Heuristic Tool — to develop hypotheses,
models, and theories.

3. As “Experiments” — perform numerical
experiments, Monte Carlo probabilistic sampling.

4. As a Tool for Experimentalists — to suppor t
experiments.

5. As a Pedagogic Tool — to gain understanding of a
process.
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1. Technique

• Solution of a set of equations describing a complex
(e .g. bottom-up) interaction.

• Discrete (CA): if the model behaviour ≠ empirical, it
must be because of the transition rules.

•

< >



Lecture 1a AGSM © 2005 Page 2

1. Technique

• Solution of a set of equations describing a complex
(e .g. bottom-up) interaction.

• Discrete (CA): if the model behaviour ≠ empirical, it
must be because of the transition rules.

• Continuous: not so clear-cut: background theory v.
model assumptions

Q: does more realistic assumption → more accurate
prediction?

“A simulation is no better than the assumptions built into
it” — Herbert Simon
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2. Heuristic Tool

Where the theory is not well developed, and the causal
relationships are not well understood:

• theor y development = guessing suitable
assumptions that may imitate the chang e process
itself

• but how to assess assumptions independently?

Durlauf: Is there an underlying optimisation by agents?
(Complexity and Empirical Economics, EJ, 2005)
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3. Substitute for Experiment

When actual experiments are perhaps:

• pragmatically impossible: scale, time

• theoretically impossible: counterfactuals

• ethically impossible: e.g. taxation, no minimum wage

or to complement lab experiments
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Ag ent-Based Models v. Economic Experiments

Hailu & Schilizzi (2004, p.155) compare and contrast ABMs
with experiments using human subjects, under the
headings:

• Approach to inference , or micro-macro relationship

• Specification of behavioural rules

• Informational problems

• Degree of control

• Explanation of agents’ choices

• Temporal length of analysis

• Representativeness / realism

• Data

• Cost
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4. Tool for Experimentalists

• to inspire experiments

• to preselect possible systems & set-ups

• to analyse experiments
(statistical adjustment of data)
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5. For Learning

A pedagogic device through play ...

See Mitchell Resnick. Turtles, termites, and traffic jams:
Explorations in massively parallel microworlds. MIT Press,
1997.

Play with NetLogo models, and experience emergence:
Life is famous, and others too.
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Summar y

A simulation imitates one process by another process

With Social Sciences: few good descriptions of static
aspects, and even fewer of dynamic aspects
(Remember: existence , uniqueness, stability)
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Robust Predictions from Simple Theory

(from Latané, 1996)

Four conceptions of simulation as a tool for doing social
science:

1. As a scientific tool: theory + simulation +
experimentation

2. As a language for expressing theory:

— natural language,

— mathematical equations (i.e., closed form), and

— computer programs, such as C++, Java, etc.

3. As an “easy” alternative to thinking: robust coding

4. As a machine for discovering consequences of
theor y: if this, then that.
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A Third Way of Doing Science

(from Axelrod & Tesfatsion 2006)

Deduction + Induction + Simulation.

• Deduction: deriving theorems from assumptions

• Induction: finding patters in empirical data

• Simulation: assumptions → data for inductive
analysis

S differs from D & I in its implementation & goals.

S permits increased understanding of systems through
controlled computer experiments
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Emergence of self-organisation
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Emergence of self-organisation

Examples: ice, magnetism, money, markets, civil society,
prices, segregation.
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Emergence of self-organisation

Examples: ice, magnetism, money, markets, civil society,
prices, segregation.

Defn: emergent proper ties are proper ties of a system that
exist at a higher level of aggregation than the original
description of the system

Adam Smith’s Invisible Hand → prices

Schelling’s segregation model:
People move because of a weak preference for a
neighbourhood that has at least 33% of those adjoining
the same (colour, race , whatever) → segregation.

Need models with more than one level to explore
emergent phenomena.

< >



Lecture 1a AGSM © 2005 Page 12

Families of Simulation Models

1. System Dynamics SD
(from differential equations)

2. Cellular Automata CA
(from von Neumann & Ulam, related to Game
Theor y)

3. Multi-agent Models MAM
(from Artificial Intelligence)

4. Learning Models LM
(from Simulated Evolution and from Psychology)
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Comparison of Simulation Techniques

G & T compare these (and others):

Technique Number Communication Complexity Number
of Levels between ag ents of ag ents of ag ents
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Comparison of Simulation Techniques

G & T compare these (and others):

Technique Number Communication Complexity Number
of Levels between ag ents of ag ents of ag ents

SD 1 No Low 1
CA 2+ Maybe Low Many
MAM 2+ Yes High Few
LM 2+ Maybe High Many

Number of Levels: “2+” means the technique can model
more than a single level (the individual, or the society)
and the interaction between levels.

This is necessary for investigating emergent phenomena.

So “agent-based models” excludes Systems Dynamics
models, but can include the others.
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Simulation: The Big Questions
from: www.csse .monash.edu.au/∼ korb/subjects/cse467/questions.html

• What is a simulation?

• What is a model?

• What is a theory?

• How do we test the validity of any of the above?

• When do we trust them, what sort of understanding do they afford us?

• What is an experiment? What does it mean to experiment with a
simulation?

• What is the role of the computer in simulation?

• How does general systems dynamics influence simulations?

• How do we handle sensitivity to initial conditions?

• How precisely can a simulation approximate real life / a model?

• How do we decide whether to use a theory / model / simulation / lab
experiment / intuition for a given problem?

• Does a simulation have to tell us something?

• How complex is too complex, how simple is too simple?

• How much information do we need to (a) build and (b) test a simulation?

• How/when can the transition from a quantitative to a qualitative claim be
made?
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Verification & Validation

Verification (or internal validity): is the simulation working
as you want it to:

— is it “doing the thing right?”
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Verification & Validation

Verification (or internal validity): is the simulation working
as you want it to:

— is it “doing the thing right?”

Validation: is the model used in the simulation correct?

— is it “doing the right thing?”

To Verify: use a suite of tests, and run them ever y time
you chang e the simulation code — to verify the chang es
have not introduced extra bugs.
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Validation

Ideally: compare the simulation output with the real world.

But:

1.
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Validation

Ideally: compare the simulation output with the real world.

But:

1. stochastic ∴ complete accord is unlikely, and the
distribution of differences is usually unknown

2. path-dependence: output is sensitive to initial
conditions/parameters

3. test for “retrodiction”: reversing time in the
simulation

4. what if the model is correct, but the input data are
bad?

Use Sensitivity Analysis, to ask:

• robustness of the model to assumptions made

• which are the crucial initial conditions/parameters?

use: randomised Monte Carlo, with many runs.
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Judd’s ideas (2006)

“Far better an approximate answer to the right question ...
than an exact answer to the wrong question.”

— John Tukey, 1962.

That is, economists face a tradeoff between:

the numerical errors of computational work
and

the specification errors of analytically tractable models.
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Judd on Validation

Several suggestions:

1.
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Judd on Validation

Several suggestions:

1. Search for counterexamples:
If found, then insights into when the proposition
fails to hold.
If not found, then not proof, but strong evidence for
the truth of the proposition.

2. Sampling Methods: Monte Carlo, and quasi-Monte
Carlo → standard statistical tools to describe
confidence of results.

3. Regression Methods: to find the “shape” of the
proposition.

4. Replication & Generalisation: “docking” by
replicating on a different platform or language, but
lack of standard software an issue.

5. Synergies between Simulation and Conventional
Theor y.
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Axelrod on Model Replication and “Docking”

Docking: a simulation model written for one purpose is
aligned or “docked” with a general purpose simulation
system written for a different purpose.

Four lessons:

1.
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Axelrod on Model Replication and “Docking”

Docking: a simulation model written for one purpose is
aligned or “docked” with a general purpose simulation
system written for a different purpose.

Four lessons:

1. Not necessarily so hard.

2. Three kinds of replication:

a. numerical identity

b. distributional equivalence

c. relational equivalence

3. Which null hypothesis? And sample size.

4. Minor procedural differences (e.g. sampling with or
without replacement) can block replication, even at
(b).
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Reasons for Errors in Docking

1. Ambiguity in published model descriptions.

2. Gaps in published model descriptions.

3. Errors in published model descriptions.

4. Software and/or hardware subtleties.

e.g. different floating-point number representation.

(See Axelrod 2003.)
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