Session 2: Afternoon

Model Construction
Outline

➤ Why use ABM?
➤ Explanation versus Prediction
➤ Process of Model Construction
 ➤ Induction vs. Deduction
 ➤ Homomorphism
 ➤ Pseudo Code
➤ Boolean Operators
Gilbert & Troitzsch’s seven uses

- Gain a better understanding
- Prediction
- Substitute for human expertise
- Training
- Entertainment
- Discovery
- Formalization
Why use ABM? (1)

- Theory: fidelity to actual system
 - Nonlinearity
 - Cannot be understood analytically
 - Unpredictable
 - Space
 - Physical (GIS)
 - Network
 - (Bounded?) rationality of actors (Simon)
- Dynamics rather than equilibria
Why use ABM? (2)

- Methodology
 - Formalization: expose hidden assumptions
 - Pepinsky, p. 374: “Simulation forces the researcher to examine deeply the assumptions that she makes about the environment, the agents, the rules and parameters.”
 - Relationships between levels of analysis
 - Emergence
 - The agent-structure debate (Wendt)
 - Quasi-experimentation
 - Counter factuals (Fearon)
 - “micro foundations”
Why use ABM? (3)

- Agent learning
 - Inverts rational choice assumption
 - Change through learning
 - Appeal of ABM to social constructivism

<table>
<thead>
<tr>
<th></th>
<th>Rational Choice</th>
<th>ABM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
<td>Interests</td>
<td>Behavior</td>
</tr>
<tr>
<td>Inferences</td>
<td>Behavior</td>
<td>Interests</td>
</tr>
</tbody>
</table>
Epistemology

- Two issues
 - Explanation vs. Prediction
 - Point vs. Trend Prediction
Explanation vs. Prediction

- Gilbert and Troitzsch
 - ABM best for “discovery” and explanation
 - Not good for prediction

- Prediction is not the only epistemological criterion
 - Scientific realism vs. positivism
 - Theories that predict well but are based on the wrong explanation are problematic
Point vs. Trend Prediction

Types of prediction

- ABM good for “trend” prediction
 - Explore the statistical distribution of outcomes in the model
 - Provide a good sense of probabilities of events

- ABM not good for “point” prediction
 - Due to sensitivity of macro parameters to micro values

Types of prediction

- ABM good for “trend” prediction
 - Explore the statistical distribution of outcomes in the model
 - Provide a good sense of probabilities of events

- ABM not good for “point” prediction
 - Due to sensitivity of macro parameters to micro values

Session 2b: July 7
All agent-based models:

- Represent the environment of the system
- Stipulate relevant actors
- Specify rules (algorithms) and parameters
- Explore behavior over (simulated) time

NOTE: does not require assumption of linearity

- Or indeed of any functional form
- Contra regression analysis

Clausewitz: “The map is not the territory”
Notes about vocabulary

- "Target" vs. "Model"
- Simulation
 - "creating an artificial representation [model] of a real world system [target] in order to manipulate and explore the properties of that system."

Pepinsky, p. 369
Notes about vocabulary

- "Inputs"
 - Similar to "independent" variables
- "Outputs"
 - Similar to "dependent" variables
- "Parameters"
 - Not "variables" because we are not sampling
- Time vs. simulated time
 - Time in the model may or may not correspond to actual time
- Data
 - "Empirical": from the target
 - "Meta": from the model
Core concerns of social theory

- Change through actor learning
- Reciprocal influence of agents and structures
- Counterfactual reasoning
Business examples

- We’ll read for July 26th
5th am Intro
5th pm NetLogo
7th am Theory
7th pm Modeling
12th am Emergence
12th pm Systems
14th am Design
14th pm Experiments
19th am Criticisms
19th pm Validation
21st am Smart Agents
21st pm Networks
26th Applications
28th Presentations

Epistemology

➤ Questions?
I. The Building Process
Steps of Research

1. Puzzle
2. Definition of target
3. Observations of target
4. Assumptions and design the model
 a) “Environment”
 b) “Agents”
 c) Parameters and rules
 d) Time
5. Simulate
6. Record data
7. Verification
8. Validation
9. Sensitivity analysis
Your Team Project

Suggestions for picking a topic:

- Identify a process of interest
- Identify a (possible) complex adaptive social system
- Identify an historical example
Building a model

An example: The Protests in Iran
Steps

- Identify agents and environment
- Write pseudo code
- Translate into NetLogo
1. Identify Agents & Environment

- Two approaches
 - “Inductive” approach
 - “Deductive” approach
Inductive Approach

- GOAL: represent an actual process or system as an ABM
 - A “high fidelity” model
 - Lots of data points
 - Very detailed
 - For predicting the behavior of the target system
 - e.g. what will happen in the Iranian protests?
Methods:
- Ethnographic research
 - Identify relevant actors
 - Interview them to identify
 - Relevant agent attributes
 - Behavioral routines
 - Build ABM procedures based on empirical observation
Deductive Approach

➢ GOAL: build an “artificial society”
 ➢ Highly abstract
 ➢ Generalize across empirical domains
 ➢ e.g. theories of social mobilization
 ➢ For explanation rather than prediction
Deductive Approach

- Methods: formalization
 - Make assumptions about actors, attributes
 - Build ABM behavioral procedures based on general social theory
 - e.g. rational choice, satisficing, prospect theory
 - Compare formal model to empirical system
- Note: most library models in NetLogo fall in this category
Approaches compared

Inductive approach

Deductive approach

System

Model

Session 2b: July 7
Homomorphism

Homomorphism and Induction

Homomorphism and Deduction

Homomorphism

- **Induction**
 - Observe change S' in real system, then map onto the model
 - $F(E(S'))$

- **Deduction**
 - Model change s', then compare to the real world
 - $E(f(s'))$

$$F(E(S')) = E(f(s'))$$
1. Identify Agents & Environments

➤ Questions?
2. Pseudo Code

- Gilbert, p. 54: “an informal mixture of natural language and programming conventions that makes the structure and flow of a program clear without requiring the reader to be familiar with any particular programming.”
- NOTE: no conventions (of which I’m aware)
GOAL:

- Begin to think about the process of coding
- Identify relevant agents, patches
- Identify relevant variables
- Identify globals
Initialization
Create three types of agents
protestors endowed with
social network
preference
police
militia
Create patches as Azadi Square

Execution
Loop forever:
each protestor:
perceptions
counts number of nearby protestors (in-radius ?)
counts number of nearby police + nearby militia
checks preferences of nearby protestors, with some error
performance
communicates: checks preferences of social network
policy
evaluations: if ratio of protestors to (police + militia) is greater than threshold
Join the protest
acts: moves-with-crowd
otherwise: wander
each police and militia:
counts number of nearby police + nearby militia
counts number of nearby protestors
if number of police + militia is greater than threshold
move as a group toward protestors

end loop
...
Reminder!

- Pseudo code for your team’s model due on Tuesday, July 12th
3. Translate into NetLogo code

- Declaration of variables
- “Setup” procedure
- “Go” procedure
NetLogo code example

```
globals [police-size protester-size]
turtles-own
[
  protester? militia? police?
p-threshold m-threshold
]
patches-own [ walkable? ]
to setup
  ca
  crt 1000
  ask turtles
  [ let target one-of patches with [walkable? ]
    setx [pxcor] of target [pxcor] of target
    set shape "person"
    set protester? false
    set militia? false
    set police? false
    ifelse (random 1000 < 100)
    [ ifelse (random 1000 < 50)
      [ set police? true set militia? false ]
      [ set police? false set militia? true ]
    ]
    set protester? true
  ]
  setup-patches
end
to go
  count-neighbors
  check-neighbor-preferences
  check-network-preferences
  move-with-crowd
```

Session 2b: July 7
Notice . . .

➤ “Nested” procedures
 ➤ A “go” procedure can call another procedure
 ➤ Any procedure can call any procedure

➤ Clunky turtle variables
 ➤ true/false turtles-own variables to keep track of
 ➤ Protesters
 ➤ Police
 ➤ militia
NetLogo “breed” primitive

- Allows you to declare different types of agents
- Then write code using breed name
- Compare

```
ask turtles with (police?) [ fd 1 ]
ask police [ fd 1 ]
```
Use of Breeds

Azadi Square - NetLogo

```plaintext
breed [ police pol ]
breed [ protesters protester ]
breed [ militia militant ]

globals [ police-size protester-size ]

police-own [ m-threshold ]
protesters-own [ p-threshold ]
patches-own [ walkable? ]

to setup
  ca
  create-protesters 800
  create-police 50
  create-militia 150

  ask turtles
    [ let target one-of patches with [ walkable? ]
      setxy [ pxcor ] of target [ pycor ] of target
      set shape "person"
    ]

  ask police [ set color blue ]
  ask militia [ set color blue - 3 ]
  ask protesters [ set color green ]

  setup patches
end

to go
  count-neighbors
  check-neighbor-preferences
  check-network-preferences
  move-with-crowd
end
```
Questions?
II. Topics in Modeling
Boolean operators

- CAS
 - Are massively parallel
 - Have strictly local decision-making
- Modeling this micro-level agency requires modeling contingency . . .
 - . . . in time
 - . . . in space
 - . . . in states/variables
Same Rules, Different Behaviors

- Heterogeneity of capabilities
- Heterogeneity of locations
- Heterogeneity of histories
- Heterogeneity of strategies
- Yugo vs. Lamborghini
- Red vs. Green Light
- Pulling out of the driveway vs. arriving at the store
- Stay off the Motorway vs. buy a radar detector
Contingency

- NetLogo primitives
 - if . . .
 - ifelse . . .
 - while . . .
 - foreach . . .
Specifications actions only if some condition is true

NetLogo syntax:

```plaintext
if (TRUE CONDITION)
    [ commands to execute ]

ask turtles
    [
        if (energy < 5)
            [ eat-grass ]
    ]
```
Specifies actions for both the true condition and the false condition

NetLogo syntax:

```netlogo
ifelse (TRUE CONDITION)
  [ commands if condition is true]
  [ commands if condition is false ]
```

```netlogo
ask turtles
  [ ifelse (energy > 100)
    [ make-new-turtle ]
    [ eat-grass]
  ]
```
Execute a loop of instructions as long as some condition is true

NetLogo syntax

```plaintext
while [ TRUE CONDITION ]
    [ commands to execute ]

while [ count turtles with [ shape = "bug" ] < 0.5 * count turtles ]
    [ ask one-of turtles with [ shape = "bug" ]
        [ ask one-of turtles with [ shape != "bug" ]
            [ set shape "bug" ]
        ]
    ]
```
“foreach”

- Execute a loop of commands for each item in a list
- NetLogo syntax

```plaintext
foreach [ x y z ]
    [ commands to execute ]

foreach [ 1 3 8 ]
    [ ask turtle ? [ set color yellow ] ]
```
Boolean conjunctions

- **“and”**
 - Both conditions are true
 - Area (2)
- **“or”**
 - Either is true
 - Area (1 + 2 + 3)
- **“xor”**
 - One or other, but not both
 - Areas (1 + 3)
- **“not”**
 - Condition is not true
 - Area (4)
Boolean Operators

Questions?
Measuring results

- What outcomes or “emergent properties” do I wish to measure?
- What constitutes “success” or “failure”?
Measuring results

➤ Monitors
➤ Plots and histograms
➤ Output
Creating Monitors

- Global variables
- Turtle variables
- Patch variables

Session 2b: July 7
Creating Plots and Histograms

- Summarize change in variables . . .
 - Over time
 - Across the population
Write data to
 ➤ Command center (temporary)
 ➤ Output Interface (temporary)
 ➤ External file (saved)
Output to Command Center

- NetLogo primitives
 - “show”
 - “print”
 - “write”
 - “type”
Output to Interface

- NetLogo primitives
 - “output-show”
 - “output-print”
 - “output-write”
 - “output-type”
Output to External File

5th am Intro
5th pm NetLogo
7th am Theory
7th pm Modeling
12th am Emergence
12th pm Systems
14th am Design
14th pm Experiments
19th am Criticisms
19th pm Validation
21st am Smart Agents
21st pm Networks
26th Applications
28th Presentations

Session 2b: July 7
Sample Data

5th am Intro
5th pm NetLogo
7th am Theory
7th pm Modeling
12th am Emergence
12th pm Systems
14th am Design
14th pm Experiments
19th am Criticisms
19th pm Validation
21st am Smart Agents
21st pm Networks
26th Applications
28th Presentations

Session 2b: July 7
Questions?
Emergence, nonlinearity, tipping and equilibria

Social versus physical, biological, and ecological systems