3. Strategic Moves

3.1 Game Trees and Subgame Perfection

3.1.1 SubgamePerfect Equilibria

Nash Equilibria from non-credible threats are poor predictors of behaviour.

A subgame: is a smaller game within a larger game with two special properties:

1. once players begin playing the subgame, they do so for the rest of the game;
2. the players all know when they are playing the subgame.

The subgame’s subroot node: the initial node: the subgame consists of the subroot and all its successors — property 1.

If every information set that contains a decision node of the subgame does not contain decision nodes that are not part of the subgame — property 2.

The subgame preserves the original game’s:

• set of players,
• order of play,
• set of possible actions, and
• information sets.

Rational behaviour in the full game should be rational in the subgame.
Defn: A strategy profile is a **subgame-perfect equilibrium** (SGPE) of a game $G$ if this strategy profile is also a N.E. for every subgame of $G$.

With perfect information (singleton information sets), the SGPE $=$ those from backwards induction (B.I.).

B.I. eliminates non-credible threats, so a N.E. $\Leftrightarrow$ a SGPE, with perfect information.

The real power of SGPE occurs when there is not perfect information — when players are not always aware of what their opponent did (modelled by multi-node information sets).

So long as there is perfect information, backwards induction results in Nash equilibria that are S.G.P.

S.G.P.E. don’t rely on non-credible threats/promises.

_________

1. Reinhart Selten received the 1994 Nobel Prize in Economics for his development of this concept.
3.1.2 An example: side payments

A sequential game, in which there may be “side payments” from one player to another:

```
  C
 / 
W  E
 / 
R  R
 / 
N  S  N  S
1,1 2,-2 -2,2 0,0
```

**Side Payments 1(R,C)**

The second mover, R, has the following option:

- Before his move, he can promise or threaten to reduce his payoff to any positive number or zero by adding the same amount to C’s payoff.
- This can only happen at one final outcome (only one of NE, NW, SE, or SW).
- This is a promise (or threat) of a side payment

What would happen without the promise of a side payment?
What would happen with such a promise?

Side payments in general can only occur when there are binding contracts: cooperative games.
3.1.3 Another example: side payments

A second game tree with side payments possible:

```
C
 /   \
W   E
   /  \
  4,2  R
     /   \n    N   S
     /  \
    1,1  2,3
```

**Side Payments 2 (R,C)**

We distinguish:

- compellent promises (threats) from
- deterrent promises (threats).

Two separate possibilities:

- R: “If W, then payoffs 2½, 3½”
  a compellent promise
- R: “If SE, then payoffs of ½, 4½”
  a deterrent promise

Which is credible or a self-enforcing contract?