1.10 GameTrees: Extensive Form

To completely specify a game, we need to know:

- the set of players (who)
- the set of situations (nodes) and the sequence of their appearance, i.e., the game tree
- who moves at each decision node, i.e., the player partition (order of play, i.e., sequential)
- which decision nodes each player can distinguish, i.e., the information partition (who knows what when)
- what choices each player has at each information set (choice of actions)
- what the payoffs to the players are whenever the game ends, i.e., the payoff function (who gets what when)

Games in which each player knows exactly what has happened in previous moves are called games with perfect information. Otherwise they are games with imperfect information. This is a structural property of the game.

1.10.1 CentipedeGame 1
1.10.2 Centipede Game 2

Common knowledge = complete information

An example from Halpern:

- Two divisions camped on two hilltops overlooking a common valley.
- where awaits the enemy.
- if both divisions attack the enemy simultaneously they will win a battle, whereas
- if only one division attacks it will be defeated.
- no plans for launching an attack on the enemy
- but General Able of the first division wishes to coordinate with General Baker of the second a simultaneous attack (at some time the next day).
- Neither will attack unless he is sure that the other will attack with him.
- can only communicate by means of a messenger.
- one hour to get between Able and Baker
- possible that he will get lost in the dark or be captured by the enemy.
- Question: How long will it take them to coordinate an attack?
Suppose the messenger sent by General Able makes it to General Baker with a message saying, “Let’s attack at dawn.” Will Baker attack?

Of course not, since Able does not know that Baker has received the message, and thus may not attack.

So Baker sends the messenger back with an acknowledgement. Suppose the messenger makes it. Will Able attack?

No, because now Baker does not know that Able got the message, so Baker thinks that Able may think that Baker didn’t get the original message, and thus not attack.

So Able sends the messenger back with an acknowledgement. But of course this is not enough either.

How many acknowledgements, suitable acknowledged, are necessary for Able and Baker to know with absolute certainty that the other division will attack at dawn?

No number of acknowledgements sent back and forth ever guarantees agreement.

There is a lack of common knowledge about the schedule. This is a case of incomplete information.

In practice, most generals would act without perfect information, perhaps after Able had received Baker’s first acknowledgement?

1.12 Definitions— Rasmusen

- The players are the individuals who make decisions. Each player’s goal is to maximise his utility by choice of actions.
- Nature is a non-player who takes random actions at specified points in the game with specified probabilities.
- An action or move by player i is a choice he can make.
- Player i’s action set is the entire set of actions available to him.
- An action combination is an ordered set of one action for each of the n players in the game.
- The players’ order of play must be specified.
- Player i’s strategy s_i is a rule that tells him which action to choose at each instant of the game, given his information set.
- Player i’s strategy set or strategy space is the set of strategies or rules available to him.
- A strategy combination is an ordered set consisting of one strategy for each of the n players in the game.
- By player i’s payoff we mean either:
 1. The utility he receives after all players and Nature have picked their strategies and the game has been played out; or
2. The expected utility he receives as a function of the strategies chosen by himself and the other players.

- The outcome of the game is a set of interesting elements that the modeller picks out from the values of actions, payoffs, and other variables after game is played out.
- An equilibrium is a strategy combination consisting of a best strategy for each of the n players in the game.
- An equilibrium concept or solution concept is a rule that defines an equilibrium based on the possible strategy combinations and the payoff functions.
- Player i’s best response or best reply to the strategies chosen by the other players is the strategy s_i^* that yields him the greatest payoff.
- The strategy s_i^* is a dominant strategy if it is a player’s strictly best response to any strategies the other players might pick, in the sense that whatever strategies they pick, his payoff is highest with s_i^*.
- His inferior strategies are dominated strategies.
- A dominant strategy equilibrium is a strategy combination consisting of each player’s dominant strategy.

- A cooperative game is a game in which the players can make binding commitments, as opposed to a non-cooperative game, in which they cannot.
- Cooperative games often allow players to split the gains from cooperation by making side-payments—transfers among themselves that change the prescribed payoffs (promises or threats in a non-cooperative game).
- Strategy s_i^* is a weakly dominant strategy if it is a player’s best response to any strategies the other player might pick, in the sense that whatever strategies they pick, his payoff is no smaller with s_i than with any other strategy, and is greater in some strategy combination.
- An iterated dominant strategy equilibrium is a strategy combination found by deleting a weakly dominated strategy from the strategy set of one of the players, recalculating to find which remaining strategies are weakly dominated, deleting one of them, and continuing the process until only one strategy remains for each player.
- A zero-sum game (or constant-sum game) is a game in which the sum of the payoffs of all the players is zero (or constant) whatever they choose.
- The strategy combination s^* is a Nash equilibrium if no player has incentive to deviate from his strategy given that the other players do not deviate.
A **subgame** is a game consisting of a node which is a singleton in every player’s information partition, that node’s successors, and the payoffs at the associated end nodes.

A strategy profile is a **subgame perfect Nash equilibrium** if (a) it is a Nash equilibrium for the entire game; and (b) its relevant action rules are a Nash equilibrium for every subgame.

The term **sequential rationality**: the idea that a player should maximise his payoffs at each point in the game, re-optimising his decisions at each point and taking into account the fact that he will re-optimise in the future.

A blend of the economic ideas of rational expectations and ignoring sunk costs.

Sequential rationality has great power.

(See Chapter 4 of Rasmusen: 4.3 Nuisance Suits.)

- The outcome O of a game is **Pareto dominated** if there is some other outcome O' such that:
 1. every player either strictly prefers O' to O or is indifferent between O' and O, and
 2. some player strictly prefers O' to O.

- An outcome is **Pareto optimal** or **Pareto efficient** if it is not Pareto dominated by any other outcome of the game.

(Bierman & Fernandez, 2nd ed., p.10)

In zero-sum games ...
1.13 Oligopolies: Continuous Strategies

e.g., duopoly — two sellers — **von Stackelberg** model describes a dominant firm (once IBM, now Microsoft, or OPEC, etc.)

Model:
- Leader (Spring) produces quantity Q_S of bottled water, and
- Follower (Crystal) produces Q_C of identical water.

- **market demand \rightarrow price P (equal for both)**
 \[P = 10 - (Q_S + Q_C), \quad Q_S + Q_C \leq 10. \]
- common knowledge: Spring sets its production level before Crystal does
- each firm’s production level: common knowledge
- order of play & output choices: common knowledge
- no capacity constraints
- each firm has identical costs ($i = C, S$):
 \[MC_i = AC_i = $3/unit \]
- \therefore payoffs for either firm i are ($i = C, S$):
 \[\pi_i(Q_S, Q_C) = (10 - Q_S - Q_C)Q_i - 3Q_i \]
- zero output \rightarrow zero profit

Cournot Rivalry Game Tree

(Quant \Rightarrow Cournot, Price \Rightarrow Bertrand.)

- What should the Leader (Spring) do? Depends on how the Leader thinks the Follower (Crystal) will react.
 Spring should: Look forward and reason back.
- for every fixed level of output for Spring, what is the best (profit-maximising) level that Crystal can do? What is the Follower’s reaction function?
Crystal (the Follower): choose Q_C^* to max his profit:

$$\pi_C = P (Q_S + Q_C) Q_C - TC_C (Q_C)$$
$$\pi_C = (10 - (Q_S + Q_C)) Q_C - 3 Q_C$$

From Crystal’s viewpoint, Spring’s (the Leader’s) output is predetermined — a constant Q_S, because Spring will have moved first, so Crystal sets $\text{MR}_C (Q_S, Q_C) = \text{MC} (Q_C) = 3$ to get Q_C^*:

$$\text{MR}_C (Q_S, Q_C^*) = (10 - Q_S - Q_C^*) + \frac{dP}{dQ_C} Q_C^* = 3$$

$$\rightarrow Q_C^* = f_C \left(Q_S \right),$$

the profit-maximising output Q_C^* of Follower (Crystal) is a function of the Leader’s choice Q_S.

This function is known as the reaction function, since it tells us how the Follower will react to the Leader’s choice (of output in this case).

It is the locus of points where the family of Crystal’s isoprofit curves have zero slope, w.r.t. output Q_C. Why?

Solving for Q_C^*:

$$Q_C^* = \frac{7 - Q_S}{2}$$

Crystal’s reaction function, contingent on Spring’s action Q_S.

Looking forward & reasoning back, Spring knows this, so Spring’s profit:

$$\pi_S = (10 - (Q_S + \frac{7 - Q_S}{2})) Q_S - 3Q_S$$

Solving for maximum π_S ($d\pi/dQ_S = 0$) gives:

$$\pi_S \text{ max when } Q_S^* = 3.5,$$

with $\pi_S^* = \$6.125$ and $P = \$4.75$

and $Q_C^* = 1.75$ and $\pi_C^* = \$3.06$

So Spring’s first-mover advantage is \$6.125 - \$3.06 = \3.06

leadership — first mover

leadership — innovator, monopolist, faced with threat of entry

incumbent erects barriers to entry by newcomer

long-term contracts reduce incumbent’s flexibility and increase the credibility of defence

The monopolist quantity in this case is $Q_M = 3.5$, with $P_M = \$6.5$

and profit $\pi_M = 6.5 \times 3.5 - 3 \times 3.5 = \12.25

This means that the Leader could pay the Follower not to enter the market by offering him his (Follower’s) profit of 3.06 not to, and still be ahead by $\$12.25 - 3.06 - 6.125 = \3.06.
Simultaneous Moves between the Two

How much will each firm produce?

They need to:
1. make a conjecture about how much the other firm will produce — will it be high, with a lower industry price? Or vice versa?
2. then determine its own quantity to produce — balancing the gain from selling more units against the cost of a lower price.

Industry-wide equilibrium when both firms resolve this balance.

From Spring's point of view, what should Q_S be?

- If Crystal produces Q_C, then I should max my profit π_S:
 \[\pi_S = (10 - Q_C - Q_S)Q_S - 3Q_S \]
 which is maximised at
 \[Q^*_S = \frac{1}{2} (10 - 3 - Q_C) \]
 This is Spring's best response to Crystal's quantity choice of Q_C, or $R_S(Q_C)$.
- If Q_C exceeds 7 units, then Spring should produce zero.

Symmetrically, Crystal's best response $R_C(Q_S)$ to a conjectured production level of Q_S from Spring should be:
\[Q^*_C = \frac{1}{2} (7 - Q_S) \]
Plotting both best responses, or reaction functions:

There is a unique pair of quantities at which the two reaction functions cross: \((Q^*_S, Q^*_C)\).

Hence at this point:

\[
R_C(Q^*_S) = Q^*_C = \frac{2}{3} \quad \text{and} \quad R_S(Q^*_C) = Q^*_S = \frac{2}{3}.
\]

This is a so-called Cournot Nash equilibrium, where each player’s conjecture is consistent with the other’s actual production, and neither has any incentive to alter production. Price/unit = $5\frac{1}{3}$, profit of each = 5.44

Simultaneous Price (Bertrand) Competition, Imperfect Substitutes

Two pizzerias, Donna’s Deep Dish and Perce’s Pizza Pies, compete in a small town. Suppose it costs $6 to make each pizza, and experience has shown that when Donna’s price is \(P_D\) and Perce’s price is \(P_P\) their respective sales \(Q_D\) and \(Q_P\) (measured in hundreds of pizzas per week) are given by:

\[
Q_D = 24 - P_D + \frac{1}{2}P_P \\
Q_P = 24 - P_P + \frac{1}{2}P_D
\]

The two brands of pizza are (imperfect) substitutes: if the price of one rises, sales of the other go up: half the discouraged buyers switch to the other pizza and half move to some other kind of food (Big Macs?)

Perce will set his price \(P_P\) to maximise his profits:

\[
\pi_P = (P_P - 6)Q_P = (P_P - 6)(24 - P_P + \frac{1}{2}P_D)
\]

The best price \(P_P\) for each possible level of Donna’s price \(P_D\) will give Perce’s best response.

Multiply out the terms in Perce’s profit function:

\[
\pi_P = -144 - 3P_D + (30 + \frac{1}{2}P_D)P_P - P_P^2
\]

Differentiating with respect to \(P_P\) (holding the other shop’s price \(P_D\) constant):

\[
\frac{d\pi_P}{dP_P} = 30 + \frac{1}{2}P_D - 2P_P.
\]
The first-order condition for P_P to max π_P is that this derivative should be zero, which gives the best-response curve for Perce as:

$$P_P = 15 + \frac{1}{4} P_D$$

Symmetrically (in this example) Donna's best response curve is:

$$P_D = 15 + \frac{1}{4} P_P$$

So if Donna's price is $32, then Perce's best response is $23, and vice versa.

The two curves intersect at the Nash Equilibrium of the shops' pricing game, at $P_D = P_P = $20.

At those prices, each shop sells 1400 pizzas a week, at a profit per shop of $19,600 per week.

The best-response curves slope up, so when one shop raises its price by $1, its rival should increase its price by 25¢: when the first shop raised its price, some of its customers switched to its rival, which could then best profit from the new customers by raising its price somewhat.

Thus a shop that increases its price is helping increase the profits of its rival, but this side-effect is uncaptured (and so ignored) by each shop independently.

But, as in the PD, they could collude and increase their profits: if they each charged $24, each would sell 1200 pizzas, for a profit of $21,600.

But if $P_D = $24, then Perce's best response would be $21, to which Donna would respond with $20.25, etc., etc, until they converge to $20.

What is best for them jointly? Let $P_D = P_P = P$ and π is maximised when $P = $27; at which price each sells 1050 pizzas, at a profit of $22,050 per shop.
Strategic Complements and Strategic Substitutes

Compare the reaction functions in the Cournot (quantity) game between the water sellers and those in the Bertrand (price) game between the pizzerias.

In the Cournot model the reaction functions were downwards sloping and in the Bertrand model they were upwards sloping.

Strategic complements: in general, when reaction functions are upwards sloping we say that the firms’ actions (here, prices) are strategic complements.

Strategic substitutes: in general, when reaction functions are downwards sloping we say that the firms’ actions (here, quantities) are strategic substitutes.

When actions are strategic complements, the more of the action one firm chooses, the more of the action the other firm will optimally choose.

In the Bertrand (price) model, prices are strategic complements: a competitor’s price cut will best be responded to by a price cut.

When actions are strategic substitutes, the more of the action one firm chooses, the less of the action the other firm will optimally choose.

In the Cournot (quantity) model, quantities are strategic complements: a competitor’s quantity increase will best be responded to by a quantity cut.

A rule of thumb: quantities and capacity decisions almost always strategic substitutes, whereas prices almost always strategic complements.

So what?

These concepts tell us something about how a firm expects its rivals to react to its tactical manoeuvres:

- when actions are strategic complements, increased aggression will elicit increased aggression in the rival:

 e.g. prices: a competitor’s price cut (an aggressive move) will best be responded to by a price cut (also an aggressive move), since the reaction functions are upwards sloping.

- when actions are strategic substitutes, increased aggression will result in lessened aggression in the rival:

 e.g. quantities: a competitor’s quantity increase (aggressive) will best be responded to by a quantity cut (a soft response), since the reaction functions are downwards sloping.
1.14 Benchmarking Oligopoly Behaviour

Two companies produce homogeneous output.

Linear industry demand curve of \(P = 10 - Q \), where \(Q \) is the sum of the two companies' outputs, \(Q = y_1 + y_2 \).

Both companies have identical costs, \(AC = MC = $1/unit \).

Five possibilities for the equilibrium levels of prices, outputs, and profits.

1.14.1 Competitive Price Taking

Each setting price equal to marginal cost.

Price \(P_{PC} = $1/unit \), the total quantity \(Q = 9 \) units between them, and each produces output \(y_1 = y_2 = 4.5 \) units.

Since \(P_{PC} = AC \), their profits are zero: \(\pi_1 = \pi_2 = 0 \).

1.14.2 Monopolistic Cartel

Collude and act as a monopolistic cartel. Each produces half of the monopolist's output and receives half the monopolist's profit.

Output \(Q_M \) such that \(MR (Q_M) = MC = $1/unit \).

\(MR \) curve is given by \(MR = 10 - 2Q \), which results in \(Q_M = 4.5 \) units, \(P_M = $5.5/unit \), and \(\pi_M = (5.5 - 1) \times 4.5 = $20.25 \).

Each produces output \(y_1 = y_2 = 2.25 \) units, and earns \(\pi_1 = \pi_2 = $10.125 \) profit.

1.14.3 Cournot Oligopolists

Cournot oligopolists, each choosing an amount of output to maximise its profit, each assuming that the other is doing likewise: not colluding, but competing. They choose simultaneously.

Cournot equilibrium occurs where their reaction curves intersect and the expectations of each of what the other is doing are fulfilled.

Firm 1 determines Firm 2's reaction function: “If I were Firm 2, I'd choose my output \(y_2^* \) to maximise my Firm 2 profit conditional on the expectation that Firm 1 produced output of \(y_1^e \).”

\[
\max \pi_2 = (10 - y_2 - y_1^e) \times y_2 - y_2
\]

Thus \(y_2 = \frac{1}{2}(9 - y_1^e) \), which is Firm 2's reaction function.

Since the two firms are identical, Cournot equilibrium occurs where the two reaction curves intersect, at \(y_1^* = y_1^e = y_2^* = y_2^e = 3 \) units.

So \(Q_{Co} = 6 \) units, price \(P_{Co} \) is then $4/unit, and the profit of each firm is $9.
1.14.4 Stackelberg Quantity Leadership

What if one firm, Firm 1, gets to choose its output level \(y_1 \) first?

It realises that Firm 2 will know what Firm 1’s output level is when Firm 2 chooses its level: this is given by Firm 2’s reaction function from above, but with the actual, not the expected, level of Firm 1’s output, \(y_1 \).

So Firm 1’s problem is to choose \(y_1^* \) to maximise its profit:

\[
\max_{y_1} \pi_1 = (10 - y_2 - y_1) \times y_1 - y_1,
\]

where Firm 2’s output \(y_2 \) is given by Firm 2’s reaction function: \(y_2 = \frac{1}{2} (9 - y_1) \).

Substituting this into Firm 1’s maximisation problem: \(y_1^* = 4.5 \) units, and so \(y_2^* = 2.25 \) units, so that \(Q_{St} = 6.75 \) units and \(P_{St} = $3.25/unit.\)

Profits are \(\pi_1 = $10.125 \) (the same as in the cartel case above) and \(\pi_2 = $5.063 \) (half the cartel profit).

1.14.5 Bertrand Simultaneous Price Setting.

Remember: Equilibrium means there is no incentive for either firm to undercut the other.

The only equilibrium when they compete using price is where each is selling at \(P_1 = P_2 = MC_1 = MC_2 = $1/unit.\)

Identical to the price-taking case above.

If \(MC_1 \) is greater than \(MC_2 \), then Firm 2 will capture the whole market at a price just below \(MC_1 \), and will make a positive profit; \(y_1 = 0.\)

<table>
<thead>
<tr>
<th></th>
<th>(y_1)</th>
<th>(\pi_1)</th>
<th>(y_2)</th>
<th>(\pi_2)</th>
<th>(P)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price-taking</td>
<td>4.5</td>
<td>0</td>
<td>4.5</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Cartel</td>
<td>2.25</td>
<td>10.125</td>
<td>2.25</td>
<td>10.125</td>
<td>5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Cournot</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Stackelberg</td>
<td>4.5</td>
<td>10.125</td>
<td>2.25</td>
<td>5.063</td>
<td>3.25</td>
<td>6.75</td>
</tr>
<tr>
<td>Bertrand</td>
<td>4.5</td>
<td>0</td>
<td>4.5</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Summary of Outcomes.
Demand: \(P = 10 - Q \)

\[Q = y_1 + y_2 \]

\[MC = AC = 1 \]

\[P = 10 - Q \]

\[\pi_1 = \pi_2 \]

\[y_1 = y_2 \]

\[\bullet \text{Cartel} \]

\[\bullet \text{Cournot} \]

\[\bullet \text{Stackelberg} \]