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ABSTRACT: New kinds of markets demand new kinds of market design. In the past
twenty years several new kinds of market have been devised and put into operation,
sometimes after several false starts. Designing markets is a new activity for economists,
who haven’t readily thought of themselves as engineers. Emergence of the market
engineer has been hastened by the interest of computer scientists in designing on-line
markets, and there has been a three-way marriage of game theory, experimental results,
and computer science in the use of computer simulation models to analyse, and to design,
new markets. This paper argues for several things. For simulation as an alternative to
closed-form analysis in market analysis and design. For agent-based computational
economic models as specific simulation models. For explicit validation of such models,
using several heuristics. The paper discusses recent research into market design and
simulation.
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“... it is typical of many kinds of design problems that the inner system consists of
components whose fundamental laws of behavior ... are well known. The difficulty of the
design problem often resides in predicting how an assemblage of such components will
behave.” — Simon (1981).

1. Introduction

By “market design” I mean designing the structure and rules of engagement among
economic actors in markets to some specification of performance. By performance I
mean the aggregate impacts of the individual decisions of buyers and sellers in the
market, which might also have a time dimension. It could be known as the engineering of
markets. Many designed markets have been repeated auctions.

For almost as long as recorded history, human societies have used markets and
money (as a clear advance over barter) to allocate goods and services. Since Adam
Smith, we have begun to understand just what an amazing phenomenon these emergent
markets are. With this understanding have arisen demands for new kinds of markets to be
designed and implemented, including, most interestingly, some on-line markets with
automated buyers and sellers. The marriage between computer scientists and economists
is proving very fertile in the new field of market design.

Section 2 argues that there are severe difficulties in designing markets directly, as
an optimization, using the analogy of the complexities encountered by software engineers
attempting to derive desired software systems. Section 3 lists the kinds of new markets
that have been designed, sometimes from scratch, in order to accomplish their tasks of
allocation. Section 4 discusses analysis and the use of computer simulation2 to achieve it.
Section 5 discusses modeling learning, including Genetic Algorithms and Reinforcement
Learning, both inductive. Section 6 discusses design by iterative analysis, in the presence
of syntactic complexity. Section 7 develops a framework for market design. Section 8
focuses on the general problem of market design. Section 9 argues for ACE-based
market design, from the bottom up. Section 10 examines barriers to adoption of ACE
methods in economics, and focuses on validation of simulation models. Section 11
concludes.

2. The Elemental Complexity of Design

Edmonds & Bryson (2004) examine the shortcomings of formal methods of software
design, with some lessons for market design. In formal methods, the specifications of the
software are written in a formal language, often of a logical or set-theoretic nature. The
specification is thus unambiguous, and the specifications can themselves be formally
manipulated.

To achieve correct implementation, there are two major questions that need to be

2. The reader should not mistake computer simulation of models of the market with the stochastic
sampling that is sometimes called “Monte Carlo simulation.” As Judd (1998) points out, the latter is
sensitivity analysis of parameter values, often initial conditions; it might be used as part of model
simulations, but despite its name it should not be mistaken for them.
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answered, which are very similar to the questions that market designers need to answer.
The first Edmonds & Bryson call the “programming problem:” how is a giv en
specification translated into a system of software? For market designers, the analogue is:
how to map from the specifications of the desired behavior of the market to its structure
(rules and environment)? The second question is the “checking problem:” checking
whether a specific software system satisfies the formal specification. The market design
analogue is: does a given specific market structure (rules and environment) satisfy the
specifications?

Edmonds & Bryson (2004) characterise the “formal specification strategy” of
software design as a threefold process: first, decide the goals for the software system,
second, write a formal specification to meet these goals, and, third, implement a software
system that meets these goals. An example of a high-level goal might be “to be
responsive to the changing demands of web browsers.”

The software engineers need to ensure, first, that the goals are correct (meet the
client’s needs), second, that the formal specification (which might be expressed in a
logical or set-theoretic language) meets the goals, and, third, that the system operates to
spec. These are difficult for two broad reasons: first, the programming problem of
translating specifications into a program or programs, and, second, the checking problem.

Imagine that there is a program that can translate the formal specification into a
software system. Edmonds & Bryson (2004, p.938−9) show that even if such a
translation program exists, there is no effective way of producing such a computation that
takes us from specifications to a program (or software system) that satisfies the specs.
Their proof uses the undecidable Entscheidungsproblem (the “halting problem,” Turing
1936), and relies on the formal specification being written in a language that is
sufficiently “expressive” to formulate an enumeration of formal specifications, together
with Gödel’s incompleteness proof (Gödel 1931).

Second, even though the checking problem is apparently less ambitious than the
programming problem, using similar methods, Edmonds & Bryson (2004, p.939) prove
that there is no effective or systematic way of checking whether the program corresponds
to the formal specification.

These results are of interest to the market designer, especially if moving from
higher-level goals (as determined by the client), to a specification of the market’s and
traders’ behavior, and finally the rules and environment of the market in which human
actors buy and sell, can be thought of as analogous to the software design problem of
Edmonds & Bryson (2004). Indeed, if it’s impossible with well behaved programs to
implement the goals and specifications, how much harder with human actors and all their
inconsistencies?

Edmonds & Bryson characterise the “programming problem” as resulting in
syntactic complexity: there is no easy way to predict the resulting behavior of an
implementation from its initial set-up. In evolutionary biology, the mapping from
genome (structure) to phenome (behavior) exhibits syntactic complexity, and the market
design problem we face — mapping from specification of market structure (rules and
environment) to market behavior — is similarly syntactically complex.

Given the “messiness” of software systems having to mesh with quite distinct
software systems or with direct human interactions, and given the issues of formal
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specification outlined above, Edmonds & Bryson argue that software engineers need to
apply classical scientific experimental methods in order to validate their software
systems: to answer the checking problem.

The particular software systems that Edmonds & Bryson are considering are multi-
agent systems (MAS), which here are equivalent to agent-based computational economic
(ACE) systems. That is, Edmonds & Bryson are arguing for the necessity of using
simulation experiments in ensuring that ACE software systems perform correctly (are
internally validated, or verified). We argue here that, in the absence of any easy way to
map from goals of the market to specification of the market to the market’s design
because of syntactic complexity and the programming problem, use of ACE systems can
allow resolution of the checking problem, and used iteratively can allow new markets to
be designed.

The following table contrasts the two approaches of the software engineer and the
market designer:

Goals: for the software for the market

Specifications: for the software for the market performance

Design: of the MAS software system of the market (structure and rules)

The irony is that Edmonds & Bryson are designing a multi-agent system of software,
while we argue that using agent-based software provides a way of moving from
specification to design of markets.3

3. New “Designer” Markets

Market design is a discipline that has arisen with the demands for new kinds of markets,
and the designing and implementing of new, “designer” markets. We can list five or six
kinds of designer markets that have been devised in the last twenty years:

1. Markets for new financial instruments, such as options and derivatives.
Markets for new financial derivatives were created and traded after Black,
Scholes, and Merton solved the 70-year-old problem of pricing options.
Previously, financial traders knew that options were valuable, but not how to value
them exactly. More recently, there has been research into the rules and micro-
structure of stock markets, continuous double-auction trading, through the use of
simulated markets (LeBaron (2006))

3. A recent article argues that markets are in effect computational devices themselves: in a paper that
draws out the connections between economic exchange, usually in markets, and distributed
computation, such as computer networks, Axtell (2005) notes that “bilateral trade produces a kind of
social computer which endogenously decentralises economic computations.”
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2. Markets for emissions trading: for SO2, CO2, NOx.
Realization that the emissions from anthropogenic processes were, at least
potentially, altering the biosphere for the worse was followed only after a lag with
the awareness by policy makers that market mechanisms could be harnessed to
control such emissions, generally more efficiently than could other mechanisms.
See Hailu and Schilizzi (2004) and Janssen and Ostrom (2006).

3. Electro-magnetic spectrum auctions.
Simultaneous ascending-bid auctions have recently been designed for selling
bands of local electro-magnetic spectrum. Use of auctions to choose the new
owners and to value these assets slowly replaced so-called “beauty contests,” in
which subject to certain technical requirements licenses were virtually given
aw ay. But these new auction mechanisms at first did not allow for the
complementary nature of bands in different localities. Only after intensive efforts
by economists advising governments and bidding companies did the successful
“3G” auctions occur (Roth 2002, Milgrom 2004).

4. Markets for electricity.
There has been a move away from centralized engineering-dominated means of
allocating electricity load across generators and distribution networks to using
market mechanisms of various kinds. Since electricity cannot (easily or cheaply)
be stored, previously existing market mechanisms were not appropriate. Instead,
several types of new market mechanisms have been introduced. Marks (2006)
surveys the origins and development of this application of ACE-based market
design.

5. On-line markets and markets for e-commerce.
With the growth of the use and extent of the Internet over the past ten years, and
the dot-com boom, with buying and selling on-line, opportunities for designing
on-line markets de novo, as opposed to trying to emulate existing face-to-face
markets, have arisen. In the last few years these opportunities have giv en rise to
much work by computer scientists, as well as economists. Indeed, there is a
productive research intersection of the two disciplines, as revealed in some of the
papers discussed below. See MacKie-Mason and Wellman (2005)

6. Labor clearinghouses.
Roth (2002) describes earlier work of designing the entry-level labor market (a
labor clearinghouse) through which American doctors get their first jobs, and
other matching markets.

7. Contract design.
Not strictly a market, but the negotiations leading to an agreed contract can also
be designed. Contract design is another area where agent-based modeling might
be used, but negotiation and design of contracts by use of computer simulation
and agent-based modeling is only now emerging from its infancy (Jennings et al.
2001).
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4. Analysis and Simulation

In order to change markets it is necessary to understand their operation. Before design
must come analysis. Once we understand through analysis how the elements of the
market of concern work together, we can ask the question of how to improve its
operation: how better to design it.

Since Samuelson, economists have sought closed-form solutions to understand the
performance of markets. In this approach, economic actors are assumed to be perfectly
rational, with the means to solve for equilibria outcomes in complex situations.
Economists have examined the existence, uniqueness, and stability of equilibria of
economic interactions. When the interactions among economic actors are strategic, the
equilibria become Nash equilibria.

But in an operating, real-time actual market, we are not interested just in
equilibrium characterization: continual shocks might never allow the system to approach,
let alone reach, the equilibrium. Moreover, in a repeated interaction almost any
individually rational outcome for each player can be supported as an equilibrium (the
Folk Theorem of repeated games). This is particularly so for interactions which have the
general character of the iterated Prisoner’s Dilemma (IPD).

This paper argues that simulation must be used when closed-form solutions fail, or
give an exact answer to the wrong problem, as sometimes happens (Judd 2006). There
are four reasons why simulation is the market designer’s friend:

1. Tractability: despite improvements in mathematical techniques, it is still very
difficult to obtain solutions to the design of some markets, such as continuous
double auctions (CDAs).

2. Market designers must characterize out-of-equilibrium behavior, and especially
the dynamic behavior of an operating market with fluctuating demand, and
perhaps varying numbers of sellers, with unpredictable, varying costs.

3. The assumption of perfect rationality and unlimited computational ability on the
part of human traders is unrealistic, and not borne out by laboratory experiments
with human subjects. Instead, using computer models of trading agents, designers
have modeled economic actors in markets as “boundedly rational” — bounded
computational ability, or bounded memory, or bounded perception (Marks 1998).

Conlisk (1996) gives four reasons for using bounded rationality in
economic models: first, evidence of limits to human cognition, second, successful
performance of economic models with bounded rationality, third, sometimes
unconvincing arguments in favor of unbounded rationality, and, last but not least,
the costs of deliberation.

4. To model learning: There are two reasons to include learning in any models used
to design markets: first, individuals and organizations learn: a model without
learning is not as realistic as one incorporating learning. Bunn & Oliveira (2003)
note that many researchers (including Erev & Roth 1998) have shown that
learning models predict people’s behavior better than do Nash equilibria.

Moreover, learning can help to eliminate many otherwise legitimate Nash
equilibria. Indeed, ev olutionary (or learning) game theory has been seen as a
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solution to the multiplicity of Nash equilibria that occur in closed-form game-
theoretic solutions: a priori, all are possible, but to see which are likely in reality,
see how players learn and choose amongst them.

5. Learning

Learning can be defined as “Any change in a system that allows it to perform better the
second time on repetition of the same task or on another task drawn from the same
population” — Simon (1983)

There are several sorts of models of learning that could be used in computer
simulation models:

1. Artificial Neural Nets (ANNs): derived from machine learning and from
biological simplifications of the brain’s operation,

2. Evolutionary models, such as Genetic Algorithms (GAs) and Genetic
Programming (GP), derived from natural evolution, and

3. Models from psychology experiments, such as Reinforcement Learning (RL).

Here we focus on the GA and RL models, since these have received most use in ACE
simulations, although others have been mooted (Duffy 2006).

Among the engineers who pioneered the applications of the GA, it has largely used
as an optimizer: asking what is the best value (or fittest individual) in the population. But
focusing on the value of the best individual throws away the population’s emerging
characteristics as a population. It ignores the aggregate level of emerging phenomena. In
contrast, Axelrod (1987) not only sought the best-performing strategy in the IPD, but also
asked questions at the aggregate level of the population, such as its stability against
invasion by a different strategy: e.g. Tit for Tat’s stability against Alway Defect. Marks
(1989b) also examined stability of a population to invasion.

Early use of the GA in both engineering and the social sciences used single-
population implementations of the GA. Is this appropriate for simulating social
phenomena?

Vriend (2000) distinguished the social learning that occurs, for instance, with a
single-population GA from individual learning that occurs when each agent is modeled
as a separate GA. Social learning occurs at the genotypic level: sexual reproduction
means that parents can communicate (share information) with their offspring via
crossover: therefore over generations, fitter genes or traits can spread through a
population covertly, by inheritance of genetic material. In contrast, individual learning
occurs only through arm’s-length competition, and the selection of fitter individuals as
future parents, not through inheritance of genetic material from other player’s parents.

When all agents are identical, then modeling them as identical members of a single
population is appropriate, and genetic inheritance is not a problem, since the aim might
be only to seek the fittest individual, or to allow communication among the group.

When the environment in which the GA operates changes, and when such change
is due to the behavior of the species’ competitors — co-evolution — then sharing of
genetic material blurs the distinction between species or agents. For example: If the GA
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is being used to explore the behavior of sellers in an oligopolistic market, genetic sharing
can only model sub-rosa communication across brands. This is illegal under most
antitrust regimes, and therefore in general should not occur in the model, lest the results
rely on it.

The answer to the question: how many populations? is then as many as there are
distinct agents, or distinct species co-evolving. For example: When each seller in an
oligopoly has distinct costs, faces distinct demand responses, perhaps with a distinct
actions set, then it should be modeled using a distinct population. Perhaps because each
GA has an internal population of individuals, and perhaps revealing the predominant uses
of the GA as an optimization tool in engineering, there has been a tendency to think of
the GA as modeling heterogeneous players. But a single population assumes
homogeneity.

Each string in a GA population could be modeling one of two possibilities: either
an individual brand (say), which I have argued above is unrealistic in with a single
population, or one possible decision of a selection (the population) that the agent could
make. This latter makes sense with a population per distinct player. So there are two
possibilities for each new generation. It could comprise: either new individual decision
makers (brands), or, alternately, new ideas or heuristics belonging to long-lived players.
The former corresponds to Vriend’s social learning, and the latter to his individual
learning. The two contrasting models of learning do not require the GA for their
implementation.

There have been criticisms of the use of GAs previously. Chattoe (1998) argues
(correctly) that there has been confusion over the role of the GA. Is it an instrument to
search a rugged solution space (Kauffman 1995), or a model of firms’ decision making
and individual behavior? Dawid (1999) argues that the GA is good at modeling the
learning of populations of agents. Curzon Price (1997) argues that the GA can be seen as
providing a stream of hypothetical actions or strategies, which may or may not be used.
Duffy (2006) concludes that empirical evidence exists that GAs are reasonable “models
of adaptive learning by populations of heterogeneous agents.”

Whichever version (single- or multi-population) of the GA is used, learning in this
model is implicit: it occurs at the population level, not at the individual level — it
emerges. With RL models, however, learning is explicit. In both cases, learning is
inductive (backwards-looking) rather than deductive (forward-looking).

Arthur (1991, 1993) was the first economist to model explicit agent learning, and to
calibrate his models using data from human-subject experiments. In his RL model, how
an agent chooses to act later is a function of the outcomes it experienced as a result of
earlier choices — the Thorndike effect. At first he calibrated individual learning, but with
the artificial stock market (Arthur et al. 1997), he became interested in data at the
aggregate level.

His model can be described as: In round t, player i has a propensity qij(t) to choose

pure strategy j, so that pij(t) = qij(t)

ΣN
k=1qik(t)

is the probability that agent i plays strategy j in

period t. The propensity qij is updated based on the payoff x received for choosing
strategy j in the previous period:

qij(t + 1) = qij(t) + (x − xmin),
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where xmin is the lowest possible payoff. Thus the propensity to choose a strategy is
reinforced if it has provided higher payoffs in the past, and vice versa.

Roth & Erev (1995) and Erev &  Roth (1998) generalized Arthur’s RL model to get
a better fit with experimental data from multi-player games. Their initial propensities
qij(1) are equal across all N strategies: Σ j qij(1) = Si(1) = S(1), an initial propensity
parameter, equal across all players and strategies. The rate of learning is proportional to

S(1). Again, pij(t) = qij(t)

ΣN
k=1qik(t)

is the probability that agent i plays strategy j in period t.

Player i updates his propensity to play strategy j according to the rule:

qij(t + 1) = (1 −φ )qij(t) + Ek( j, R(x)),

where Ek( j, R(x)) = (1 − φ )R(x) if j = k, or

= ε

N−1 R(x) otherwise;
and where R(x) = x − xmin.

There are thus three parameters in the Roth-Erev model: the initial-propensity
parameter S(1); the recency parameter φ , which reduces the power of past experiences;
and the experimentation parameter ε . Arthur’s RL model is a special case of the Roth-
Erev model: when φ = ε = 0, Roth-Erev is Arthur.

6. From Analysis to Design

Roth (1991) was the first to argue for the economist as designer: the market engineer. He
outlined the iterative process of market design using three possible approaches:

1. traditional closed-form game-theoretic analysis;

2. experimental results from economics laboratories; and

3. computational exploration of different designs.

If the design criteria are clearly defined, some recent techniques of simulation and
optimization from computer scientists and computational economists can be used to
search for optimal market designs, although, following our discussion above, only in
special cases can this be done directly.

Historical market institutions have in general not been imposed from above (top-

down design) but have emerged from the bottom up as a consequence of a multitude of
actions and interactions of the myriad traders (McMillan 2002).

The omnipotent programmer can experiment with different market forms and
different kinds of boundedly rational agents to discover sufficient combinations of each
for specific behavior of the market, But evolutionary computation raises the possibility of
bottom-up design, or emergence of market design through simulation.

There may be difficulties in the design process, as we alluded to in the discussion
of complexity above. Design is a process of building that is directed by the pre-specified
design objectives, or the formal specifications. But specifying objectives does not at all
resolve the issue of exactly how the model building should occur. Why?

Objectives are specified in a performance space (or behavior space), but the
building occurs in a design space. The mapping from designed structure to the desired
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performance is not clear. In biological evolution, design occurs in the genome space,
while behavior or performance occurs in the phenome space. In designer markets,
policy-makers use theory, human experiments and computer simulations to analyze how
successful the design process has been: the mapping from design (structure and rules) to
behavior of the economic actors (the performance of the system). Where the mapping is
sufficiently well understood, and where closed-form analytic solution is tractable, it is
possible to describe not only sufficiency but also necessity.

Sufficiency: If the market has this structure, and the rules of trading are such and
such and the traders are given this information, then this market performance and trader
behavior will follow. Necessity: If you want this performance and behavior, then this is
the only set (or sets) of designs (combinations of structure and rules) that will produce it.

With no closed-form analytical solution, but with human experiments or with
computer simulations, necessity is in general unattainable, only sufficiency. But with few
degrees of freedom, necessity is close: using copper rods and wooden “atoms,” Watson &
Crick (1953)4 simulated the structure of DNA, given its chemical properties (acid),
known atomic composition (and electrical properties), and with some X-ray diffraction
photographs.

7. A Framework for Market Design

MacKie-Mason & Wellman (2006), who examine designing on-line, computerized
markets, have giv en much thought to the elements of a market and the transactions
undertaken in the market, in a lesson for traditional economists, who have sometimes
taken some of these elements for granted, in examining traditional markets. Their work
provides a framework for market design.

MacKie-Mason & Wellman characterise a transaction as including three
fundamental steps: first, the connection (searching for and discovering the opportunity to
engage in a market interaction), second, the deal (negotiating and agreeing to terms), and,
third, the exchange (executing a transaction). They define a “marketplace system” as
consisting of: the agents and the market mechanism through which they interact, all
embedded in an environment of social institutions (language, laws, etc.).

Their market mechanism is the set of “rules, practices, and social structures of a
social choice process, specifying: permissible actions” (including messages), and market-
based exchange transactions as outcomes of a function of agent messages. (They are
concerned specifically with ACE simulation.)

This characterization of a marketplace implies at least two design decisions: first,
the design of the market mechanism, which might be decomposed into the design of
mechanisms for, successively, the connection, the deal, and the exchange phases of a
transaction, and, second, the design of agents to interact with the market mechanism,
whether existing or newly designed.

4. Notice that the title of Watson & Crick’s classic 1953 paper includes the phrase “a structure”, not the

structure: necessity had not been proved by the simulation, or “stereo-chemical experiment,” in their
words.
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MacKie-Mason & Wellman (2006) define an agent as an “autonomous decision-
making locus in a system of multiple decision-making entities”. An agent has “type”
attributes, such as preferences, beliefs, intentions, and capabilities. The designer wants
consistency between the agents’ behavior, beliefs, and preferences, consistent with some
principle of rationality. In this paper we focus on the design of MacKie-Wellman’s
market mechanism, specifically the deal negotiation task that governs the settlement from
allowable actions.

Mechanisms specify the agents’ concerns that are recognized, and, the rules
mapping actions into allocation outcomes. A rule might specify which actions are
permissible, or the procedure for choosing a settlement of agents’ concerns based on
observable actions. For example, auctions have rules governing allowable actions, and
rules governing settlement.

Designs are constrained in various ways. This means, in general, that the design of
the market mechanism must be measured, and usually consists of a constrained
optimization, even if not explicitly or directly. Examples of constraints on a market
include: “No external subsidies” or “maintain horizontal equity”.

The general market design issue has become designing a market mechanism that
includes defining a set of concerns over which agents can interact, while specifying rules
of permissible actions, and specifying rules for mapping from actions to settlement and
outcomes.

8. Market Design

Design objectives are specified in a performance space (or behavior space) and the
building occurs in a design space. The mapping from the designed structure to the
desired performance may not be clearcut (because of the syntactic complexity discussed
above) or even computable (as discussed above). For these reasons, direct design of
markets (the programming problem as discussed above) is hardly ever attempted.
Instead, we use iterative simulation (of the checking problem, as above) to determine a
design or designs that result in the desired performance, subject to any design constraints.

Where there are several design criteria, the possibility arises of trade-offs between
the criteria. For example, if a firm has market power, it can maximize its seller revenue,
but at the cost of market efficiency, as measured by the sum of seller (or producer) surplus
and buyer (or consumer) surplus. Or it might be possible to improve the fairness of a
market outcome, but at the cost of market efficiency. Such trade-offs must be explicit.

It might be possible to use a version of Simon’s (1981) satisficing: so long as the
other criteria are met (above some target level), the remaining criterion is used to rank the
designs. Or different criteria could be weighted to derive a single, scalar maximand.

How good is a designed auction market? Phelps et al., (2002, 2005) suggest eight
possible criteria for comparing market designs: first, maximizing seller revenue: this was
one of the main criteria in the design of the spectrum auctions, such as the 3G auctions
(Milgrom, 2004); second, maximizing market allocative efficiency: a socially desirable
policy attribute of a marketplace system; third, discouraging collusion, in order to attain
the first and second criteria; fourth, discouraging predatory behavior, in order to help to
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maximize efficiency; fifth, discouraging entry-deterring behavior, in order to maximize
seller revenue; sixth, budget balance: no third-party payments for a deal to be reached;
seventh, individual rationality: the expected net benefit to each participant from the
market mechanism should be no less than the best alternative; and, eighth, strategy-
proofness: participants should not be able to gain from non-truth-telling behavior.

Analytical methods should be used where useful. For instance, Myerson &
Satterthwaite (1983) derived an impossibility result: No double-sided auction mechanism
with discriminatory pricing5 can be simultaneously efficient, budget-balanced, and
individually rational. LeBaron (2006), in examining the use of agent-based models of
financial markets, discusses seven basic design questions for his models, which translate
across to more general models. First, the economic environment itself needs to be
resolved: what will be traded? what is the scope of the market? Second, how are agents’
preferences to be modeled: with particular functional forms such as mean−variance,
Constant Absolute Risk Aversion, myopic or inter-temporal, or perhaps just using
evaluation of specific behavioral rules? Third, modeling of market clearing and price
formation. Fourth, evaluating the fitness of the model: wealth or utility? And whether
the evolving rules are forecast-based (what will the price be at time t?) or demand- and
action-based. Fifth, how information is precessed and revealed. Sixth, how learning
occurs: is it social and direct or at arm’s length; is it individual? Seventh, how is
benchmarking to be undertaken?

While these questions relate to the models used to design markets, they may also
reflect on the design criteria for the final designer markets.

9. Agent-based Market Design

It is possible to design a market without the use of agents: for instance, given a market
with demand and supply schedules, economic efficiency is maximized at the output level
where marginal value equals the marginal unit cost, no matter how the social surplus is
divided between buyers and sellers. But, as discussed above, such direct design
(optimization) requires a well defined problem.

With several design trade-offs and the possible emergence of unforeseen
performance in the system, enter agent-based analysis and design. ACE analysis and
design models the market system as “evolving systems of autonomous, interacting agents
with learning capabilities” (Koesrindartoto & Tesfatsion, 2005)

LeBaron (2006) places some weight on how actual trading occurs: the institutions
under which trading is executed. He argues that agent-based models are well suited to
examining market design and micro-structure questions for two reasons: first, they can
produce a large amount of data, and, second, they allow testing of market design in a
heterogeneous, adaptive environment.

Examples of analysis using ACE models include Audet et al. (2002), an agent-

5. In discriminatory-price auctions (or “pay-as-bid” auctions), distinct trades in the same auction round
occur at distinct prices; in uniform-price auctions, however, all trades in any giv en auction round
occur at the same price.
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based study of stock-market micro-structure (order books v. dealers). Bottazzi et al.
(2005) is another stock-market study that examines tick sizes (and unexpectedly
determines that smaller tick sizes do not necessarily improve the market’s efficiency).
Chan & Shelton (2001) examine how a model behaves with different RL mechanisms, all
of which enable the optimum policy function for a market-making broker to be found.
Marks (1989b), Arifovic (1994), Midgley et al. (1997) modeled market interactions using
a GA, as did Nicolaisen et al. (2000) who examined an electricity market. On the other
hand, Nicolaisen et al. (2001) made a single change from GA learning to RL learning, for
a better result, as Marks (2006) discusses at length.

A rare example of a case of direct design of a market (a single auction) is provided
by Byde (2006). This is a sealed-bid auction where the highest bidder wins and pays an
amount given by

(1 − w)bid1 + wbid2,

where bid1 is the highest bid and bid2 the second-highest. It is readily seen that when w

= 0, it’s a first-price auction, and when w = 1, a second-price auction. Using a GA to
explore the impacts on seller’s rev enue, Byde found under certain plausible conditions
that seller’s rev enue is maximized when w = 0.3. Thus he derived a new, “synthetic”
auction, superior (for the seller) to both first-price and second-price auctions.

10. Barriers to ACE Acceptance and Simulation

Leombruni & Richiardi (2005) question the evident reluctance of main-stream
economists to embrace ACE modeling. They found only 8 ACE articles among the
26,698 in the top 20 economics journals6 from 1970 to 2004.

They giv e two possible reasons: first, difficulties in the interpretation of the
simulation dynamics and in generalization of the results, and, second, problems in
estimation of the simulation models. I would add: in general, no necessary conditions

from simulation, just sufficient conditions, and the need for validation of the models.7

In the 2006 Handbook (Tesfatsion & Judd 2006), a search reveals that only 4 of 24
chapters mentioned “validation”, a total of 9 times. This unfortunate statistic does not
reflect the importance of validation in ACE.8 There are two related activities in properly
and effectively using models, whether simulation models in general, ACE models in

6. These include, in order (Kalaitzidakis et al. 2003): American Economic Review, Econometrica,

Journal of Political Economy, Journal of Economic Theory, Quarterly Journal of Economics, Journal

of Econometrics, Econometric Theory, Review of Economic Studies, Journal of Business and

Economic Statistics, Journal of Monetary Economics, Games and Economic Behavior, Journal of

Economic Perspectives, Review of Economics and Statistics, European Economic Review,

International Economic Review, Economic Theory, Journal of Human Resources, Economic Journal,

Journal of Public Economics, Journal of Economic Literature. I note that at least four articles on
ACE models have appeared in these journals so far in 2005, a good sign.

7. I am grateful to Nick Vriend for pointing out that very few articles presenting traditional closed-form
models have included validation.



- 14 -

particular, or, indeed, closed-form models: verification and validation.
Verification (sometimes known as internal validity) asks: is the simulation working

as the modeler wants it to? — is it “doing the thing right?” Validation asks: is the model
used in the simulation the correct model? — is it “doing the right thing?” (Boehm
1981).

To verify: use a suite of tests, and run them every time you change the simulation
code — to verify the changes have not introduced extra bugs. To validate: ideally,
compare the simulation output with the real world. But there are two reasons why this
comparison might fail. First, the two processes, real-world and model, are stochastic,

which means that complete accord is unlikely, and the distribution of differences between
the two processes is usually unknown. Second, the two processes are path-dependent,

which means that output from either process is sensitive to initial conditions/parameters.
Another means of assuring oneself that the model is correct — of validating the model —
is the test the model for “retrodiction,” which means reversing time in the simulation,
starting from a known date and attempting to match earlier behavior between the
historical real world and the model’s output. Finally, what if the model is correct, but the
input data are bad? Then the model will faithfully reflect its given inputs, but in that case
the output will not accord with reality, at any lev el (see below). Further, the modeler can
use sensitivity analysis, to ask: first, about the robustness of the model to assumptions
made, and, second, which the crucial initial conditions/parameters are. This sensitivity
can include randomized Monte Carlo stochastic sampling, with many runs.

Judd (2006) quotes statistician John Tukey, who, in 1962, said, “Far better an
approximate answer to the right question ... than an exact answer to the wrong question.”
That is, economists face a tradeoff between: the numerical errors of computational work
and the specification errors of analytically tractable models. Judd makes some further
suggestions: First, the simulator should search for counterexamples: if found, then they
should provide insights into when the proposition fails to hold. If not found, then the
simulator does not have a proof (remember: sufficiency, but not necessity), but failure to
find counterexamples should provide strong evidence for the truth of the proposition.
Second, the simulator should use sampling methods: Monte Carlo, and quasi-Monte
Carlo methods (Judd 1998), which will allow the use of standard statistical tools to
describe the confidence in the results. Third, use of regression methods to find the
“shape” of the proposition. Fourth, replication of the model and generalization of the
results: this has led to so-called“docking” (Axelrod 2003) by replicating on a different
platform or language, although lack of standard software is an issue. Finally, Judd argues
that there are productive synergies between simulation and conventional theory, which
should be exploited. The Myerson & Satterthwaite impossibility result (above) which
reduces the space of possible feasible specifications is an example of such synergy.

Axelrod (2003) discusses model replication and “docking” of simulation models.
By docking he means that a simulation model written for one purpose is aligned or
“docked” with a general purpose simulation system written for a different purpose. From
his experiences with model docking, he draws four lessons: First, model docking is not
necessarily so hard. Second, replication can be measured at three decreasingly exact

8. One of the Handbook editors, Leigh Tesfatsion, informs me that there had been plans for a chapter on
validation, sadly unfulfilled.
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levels: (a) numerical identity, (b) distributional equivalence, and (c) relational
equivalence. Third, which is the null hypothesis? And what is the sample size? Fourth,
minor procedural differences (e.g. sampling with or without replacement) can block
replication, even at the level of distributional equivalence.9

Axelrod gives four reasons for errors in docking occurring: First, there was
ambiguity in the published model descriptions. Second, there were gaps in the published
model descriptions, which were incomplete. Third, there were errors in the published
model descriptions. Fourth, there were (as mentioned above) software and/or hardware
subtleties, such as. different floating-point number representations in the two computers.

Validation is difficult, especially with a model of a complex system (which can
result in emergence) (Kelton et al. 2001); and when the parameter space is large (Shervais
et al. 2003); with possible path dependence, positive feedback, extreme sensitivity to
initial conditions; and with incomplete knowledge of micro-details.

LeBaron (2006) suggests three steps to validation. First, attempt to replicate
difficult empirical features: do ACE models fit facts not otherwise explained? Two, put
parameters under evolutionary control: such things as learning rates and memory depth
(when using an evolutionary model). Third, use results from laboratory experimental
markets with human subjects: this can elucidate the learning dynamics (such as
refinements to RL models) for ACE models.

I would argue in conclusion that ACE modelers must try harder: the challenge of
validation to gain acceptance is an opportunity to demonstrate the relative indifference of
the closed-form traditionalists to validation. There is a need for: benchmarking: both
against history, and against other models (with docking); seeking the extremes or
“breaking” the model (Miller 1998): what levels of inputs (separately or in combination)
result in absurd outputs? looking at the model as a “black box” and exploring its
response to step functions (off and on, minimum and maximum, one input variable at a
time), and statistically estimating the model as a function from inputs to outputs (inputs
as independent variables, outputs as dependent variables).

Judgment of the modeler should result in acceptance by the policy-makers, but
how? The modeler should first convince herself of the model’s validity, as the most
skeptical observer.

11. Conclusions

Market Design in the face of complexity in the mapping from initial conditions (structure,
parameters) in the design space to behavior in the performance space requires iterated
analysis to explore the mapping. Simulations allow the modeler to tackle the
programming problem of determing to what extent given market specifications (structure,
rules and environment) will result in the desired market performance and behavior. Used

9. Marks (1989a) was a replication or docking of Axelrod (1987); whereas Axelrod wrote in Pascal VS,
Marks wrote in C on different hardware; the replication was at least relationally equivalent, if not
numerically identical. Marks & Schnabl (1999) was a replication of Axelrod (1987) using a GA and a
Neural Net.
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iteratively, this process allows the modeler to explore the space of feasible market
designs. and to choose a desired design, before the real-world market is undertaken.
Using bottom-up ACE modeling can capture heterogeneity, as well as modeling how
behavior co-evolves in competitive interactions.

The use of simulations in general, and ACE simulations in particular, to design
markets requires validation of the models used. The paper discusses heuristics for
validation, which is ultimately an issue of confidence in the model and the modeler.

In his Fisher-Schultz Lecture, Roth (2002) argued that “in the service of design,
experimental and computational economics are natural complements to game theory,” and
that the economics literature should encompass market design experience in sufficient
detail to allow scientific knowledge about market design to accumulate in the discipline.
Indeed, he remarks that although the existing theoretical literature gav e only broad
directions in his task of designing the labor clearinghouse for American doctors, his use
of experimental results and computational models made this design possible, and
incidentally showed that answers from static theory were often close to the experience of
a dynamic market. It is in the spirit of Roth’s call to action that this paper has been
written.
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