THE FIRM

This section of the subject analyses the *supply side* of the market. We’re interested in the sale of the output of firms, covering costs and making a return above the opportunity cost of capital (the economist’s definition of profit). We look at the following topics:

1. **The Firm’s Choices**
 What do firms do? What *constraint* do firms face? What *choices* do firms make?

2. **Profit-Maximising Firms**
 We assume that the firm is interested in *maximising its profit*: given the cost curve and the revenue curve, what level of output does it choose? *H&H*, Ch. 6.1

3. **Three conditions for profit maximisation.**

4. **Costs**: opportunity costs; fixed cost versus variable cost; total cost versus average cost; marginal cost; short-run and long-run costs, time.

5. **Revenues**: a firm facing a downwards sloping demand curve has some *market power* to choose its price. A downwards sloping marginal revenue curve.

 Price elasticity of demand as a measure of market power.

6. **Price-Taking Firms**
 If the firm is a *price taker* in the market it sells into and the markets it buys from, *what choices does it have?* *H&H*, Ch. 6.2

7. With the cost function, we can derive the price-taking firm’s *supply curve* of optimum output against output price.

 Suppose we know the firm’s costs as a function of the level of output. (This implies that the firm has already decided how to produce the output—the levels of inputs etc.—so that the only decision is how much to produce.) What are the *short-run and long-run conditions* for operation. *H&H*, Ch. 6.3

8. **Firm’s Production Process**
 How does the firm transform inputs to output? Using technology and management described by the *production function*. *Returns to scale* is related to the behaviour of costs. *H&H*, Ch. 11.1

9. **Cost minimisation** results in the *cost function* we used above.

10. **Summary of the Section.**
1. The Firm’s Choices

The firm uses environmental services
buys labour services
machine services
material & energy inputs
managerial skills
technical know-how
land

“factor inputs”

combines them to produce outputs
sells its outputs

What are the firm’s constraints?

What are the firm’s choices and goals?

The firm’s choices: (e.g. a restaurant)

- what to produce
- how to produce it (technology)
- amounts (flows) of inputs
- amounts (flows) of outputs

What are the firm’s preferences?

Assume that the firm is profit-maximising—
(it always prefers more profit to less)

where:

- Total economic profits
 = Total revenues – Total costs
- Total revenues = price \times \text{quantity sold}
- Total cost includes the opportunity costs

 = alternative opportunities forgone
 = the pay necessary to induce the owners of the factors of production to sacrifice their next best alternatives or opportunities
 = the going market price for each factor \times quantity bought (for a price taker).

(For capital: cost must include a normal return to owners \geq the opportunity cost, the next best return, the next best opportunity forgone or sacrificed.)

\neq \text{accounting cost}
2. Profit-Maximising Firms

The firm’s objective: we assume that the firm maximises profits (but read Simon’s article in Package).

Profit = Total Revenues – Total Costs,

where the economist includes the normal return to capital as a cost. (An opportunity cost.) Profits are a return above “normal”.

The decision of the firm: at what level of output \(y \) to operate, in order to maximise profits, given the technology, the input and output markets.

We assume that the firm knows its Total Revenues as a function of output, \(TR(y) \) and its Total Cost function \(TC(y) \), so that Total Profit \(\pi(y) \) is also a function of output. Choose output \(y^* \) to maximize profit:

\[
\max_{y} \pi(y) = TR(y) - TC(y)
\]

\[\rightarrow y^* \text{ level of output to maximise profits}\]

This is an unconstrained maximisation problem. Differentiating with respect to output \(y \):

\[
\frac{d\pi(y)}{dy} = \frac{dTR(y)}{dy} - \frac{dTC(y)}{dy}
\]

\[= MR(y) - MC(y) = 0 \text{ at } y^*,\]

where \(MR \), the Marginal Revenue, is the revenue associated with the sale of an additional unit, and \(MC \), the Marginal Cost, is the cost associated with the production and sale of the additional unit.

That is, marginal profit equals marginal revenue \(MR \) less marginal cost \(MC \). So when profit is a maximum, at \(y^* \),

\[
\frac{d\pi(y^*)}{dy} = 0, \text{ and}
\]

\[\therefore \text{ Marginal Revenue } MR = \text{ Marginal Cost } MC\]

Show TC and TR on another grpah here

Total profit
\[\pi_{\text{max}}\]

Profit is maximised when marginal profit is zero (the first-order or necessary condition).

Setting \(\frac{d\pi(y)}{dy} = 0 \) and solving for \(y \) will result in the optimal level of output \(y^* \).

\[\therefore \text{ profit } \pi \text{ is a maximum at output } y^*\]

when \(MR(y^*) = MC(y^*) \) & marginal \(\pi = 0 \).
3. Three Conditions

1. The First-Order, necessary condition, that
 Marginal Revenue = Marginal Cost
 at the profit-maximising level of output \(y^* \).
 Consider: You can sell an additional unit for $2.79, and it costs you $2.50 to produce and sell that unit.
 Q: Should you sell it?
 Q: What if the most you can sell the next unit for is $2.60, while your costs have risen to $2.55 for that unit?
 Q: The next unit costs, say, $2.60 to produce and sell, but it fetches only $2.52. What then?
 So: If Marginal Revenue > Marginal Cost, then produce more,
 or if Marginal Revenue < Marginal Cost, then produce less,
 until: Marginal Revenue = Marginal Cost, and profit is maximised.

2. Additional condition: that profit is a maximum, not a minimum; that is, marginal profit is falling, or marginal cost is rising. (Second-Order, sufficient condition.)

3. And also that profit \(\pi \) is positive, or non-negative. \(\pi \geq 0 \) in the long run.

4. Costs

 Profit = Sales Revenue – Costs

Four cost topics:

1. Cost Functions
 — Total Costs \(TC \)
 — Fixed \(FC \) and Variable Costs \(VC \)
 — Average \(AC \) and Marginal Costs \(MC \)

2. Economic versus Accounting Costs
 — Opportunity Costs

3. Short-run and Long-run Costs
 — before and after commitment to plant size

4. Sunk Costs
 — recoverable or not?
4.1 Total Cost Function

A price fall will stimulate sales, but higher output will raise Total Costs. By how much? Profitable?

Total Cost Function:
for each level of output per period, a unique level of total cost.

“unique”: assume that the firm produces at the most efficient means possible, given its technological capabilities.

.: “efficiency” implies: total costs always rise with output because more input factors of production (labour, machinery, materials) necessary.

Graphically, we show the total cost associated with any level of output:

4.2 Fixed Costs and Variable Costs

Total Cost, TC, is made up of two parts:

1. The Fixed Cost, FC, the costs which are unrelated to a particular level of output, such as overheads, rent, telephone rental, electricity connection charge, interest payments, and

2. The Variable Cost, VC, the costs which are directly related to the level of output, y, and which therefore rise with output. Example: labour costs, materials costs, energy costs.

But the distinction is not always clear:

- Fuzzy dividing line: some costs contain both fixed and variable elements, and semi-fixed costs.
- “fixed”: invariable to firm’s output per period but could be affected by other decisions.
- move to smaller premises (and so reduce its rent), not renew its car leases, etc. Time horizon: in the short run, many costs are fixed, but in the longer run almost all expenses are variable. The further one looks ahead, the lower the FC are.
4.3 Average and Marginal Costs

Geometrically:

- the Average Cost, \(AC \) is the slope of the ray through the origin to any point on the \(TC \) curve corresponding to output \(y \): \(TC(y)/y \)
- the slope of the Total Cost curve is at output \(y \) is the Marginal Cost: \(\partial TC(y) / \partial y \) \(= MC(y) \)

The shape of the Total Cost curve is critical for the second-order (sufficient) conditions that profit is maximised and not minimised.

Usually, we use diagrams with dollars per unit of output, rather than dollars, on the vertical axis:

\[
\text{Profit } \pi(y) = \text{Total Revenue } TR(y) - \text{Total Cost } TC(y)
\]

\[\therefore \text{ Average Profit } = AR(y) - AC(y)\]

Marginal Costs \(MC \): the incremental cost of producing exactly one more unit of output.

\(MC \) can vary with output level — overtime payments? older, less reliable machinery? training temps?

Average Costs \(AC \): how do the firm’s average or per-unit costs vary with the amount of output it produces?

- Constant \(AC \): constant returns to scale, CRTS
- Falling \(AC \): economies of scale or increasing returns to scale, IRTS
- Rising \(AC \): diseconomies of scale or decreasing returns to scale, DRTS

Falling Average Fixed Costs \(AFC \) but often rising Average Variable Costs \(AVC \) → U-shaped \(AC \) curve.

Output at lowest \(AC \): the minimum efficient scale \(MES \)

\(AC \) is very important for size and scope of firm
\(AC \) is very important for structure of industry
Note:
1. Average Cost $AC \neq$ Marginal Cost MC:
 except when Total Costs vary in direct proportion to output, (TC curve linear through the origin)
 then $AC(y) = MC(y) = a$ constant, for all y

 More generally,
 when $MC < AC$, AC falls with output y
 when $MC = AC$, AC invariant with y
 when $MC > AC$, AC rises with y
 (Think: average speed versus speedo reading.)

 At output where AC is a minimum,
 $AC = MC$

 Average Cost = Marginal Cost

2. We can approximate the Marginal Cost by the incremental cost $\Delta(TC)$:

 • $AC = $ Average Cost $= \frac{TC(y)}{y}^{\Delta(\text{Total Cost})}$
 • $MC = $ Marginal Cost $= \frac{\Delta(\text{Output})}{\Delta(\text{Total Cost})}$

 (as $\Delta \text{ Output} \to 0$) $= \frac{d\;TC(y)}{dy}$

 Average Profit $= \; AR - AC$
 $= \; \text{Average Revenue} - \; \text{Average Cost}$

 Total Profit $\pi = y (AR - AC)$

Now,

Total $= \text{Total Fixed} + \text{Total Variable Cost}$

where $\text{Total Fixed Cost, TFC}$, is the cost when there is zero output

$$ TFC = TC(y = 0)$$

= “the overheads”

and $\text{Total Variable Cost, TVC}$, is the cost associated with output $= \text{Total Cost} - \text{Total Fixed Cost}$

$$ \therefore \; TVC(y) = TC(y) - TFC$$

Average Variable Cost $= \frac{TC - TFC}{y} = \frac{TVC}{y}$

& Marginal Cost $= \frac{d(TC)}{dy}$

$$ \therefore \; MTC \equiv MVC$$

$$ \therefore \; \frac{d\;TFC}{dy} = 0$$

\therefore \; MC \equiv \; \text{Marginal Variable Cost}

Note: Marginal Fixed Cost is zero. (Why?)

3. For a short period, it’s possible for a firm to operate with maximum profit, π^*, less than zero $(TR < TC)$, so long as $TR > TVC$; Total Revenue is greater than Total Variable Cost. (cash flow)

In the long run, to stay open, the firm needs positive profit:

$$ TR \geq TC \; (\pi^* \geq 0). $$
4.4 Economic versus Accounting Costs

Accountants use historical costs, objective and verifiable to outsiders.

Business decisions require economic costs, based on opportunity costs:
the cost (or sacrifice) of using a resource is the value of the best forgone alternative use of that resource.

e.g. shareholders’ funds:
could liquidate the firm for $100 million,
so forgo say 5% of $100m per year
plus 1% w&t and obsolescence per year
6% → $6 million per year
an economic cost
if firm’s return on capital < $6 million a year,
then making a negative economic profit

Total costs include economic costs.

Example 1: EVA analysis:
Economic Value Added = operating profit – cost of capital × capital

Example 2: Bill asserts that he could not even “give away” (for literally zero dollars) a building that he owns and uses in his business. In economic jargon, the building has a zero opportunity cost.
Is this true?
4.5 Time Horizon & Costs

Short run: period in which the firm cannot adjust the size of its production facilities

For each plant size, is associated *SAC* curve (*Short-run Average Cost*)

SAC: annual costs of all relevant variable inputs *VC* (labour, materials, energy) plus annualised *FC* of the plant itself

\[
SAC (y) = AV(y) + AFC (y)
\]

Larger plant’s *MES* will be higher than a smaller plant’s.

AC of a smaller plant at some *y* may be lower than the *AC* (*y*) of a larger plant.

Firm: choose the scale of plant to minimise *SAC* associated with planned output *y*.

If planned *y* smallish, reduce costs via lower *FC* and lower *VC*.

LAC (*Long-run Average Cost*): minimum cost at any *y*, given the possibility of choosing the best plant for that level *y*.

LAC is the *AC* curve the firm faces before commitment.

LAC can exhibit economies of scale. But to realise these economies, not only large plant, but also sufficient output.

Possible: large plant with small output, and high *AC*, but wrong to conclude: no economies of scale.

(H&H Fig. 6.5)
4.6 Sunk Costs

Sunk Costs: costs already incurred *and* which cannot be recovered.

Avoidable Costs: the opposite, could be avoided.

Decision makers should ignore sunk costs (but often don’t) and consider only avoidable costs.

Example 3:
You see an advertisement for shirts on special twenty kilometres away, at prices substantially less than at your local shirt shop.

Since you “need” new shirts, and the prices advertised are substantially lower, you drive over.

But when you get there, you find that none of the shirts on special are in your size. The shop stocks your sized shirts, but at prices only slightly less than your local shop.

What should you do?

a. Should you refuse to buy any shirts because they are not cheap enough to justify the expense of the twenty-km drive?

b. Should you buy some shirts anyway?

c. Should you buy large numbers of shirts so that the total savings offset the cost of driving over?

d. What if your sized shirts are more expensive than your local shop’s? Should you buy them anyway, since you might as well get something for your trip?

Answer:

a. No. Ignores sunk costs already incurred and unrecoverable.

b. Yes. You should buy some shirts anyway—you’ve already incurred the cost of driving over (and back): it’s sunk.

c. Depends if you like them and if you think they won’t go out of style or size.

d. No. Throwing good money after bad.

Irrelevance of Sunk Costs: bygones are bygones.

- Sunk costs ≠ fixed costs
 - Fixed costs: the minimum necessary for producing any output at all.
 - If some fixed costs are recoverable (say, by reselling equipment at purchase price, or because equipment was leased), then these costs are recoverable, and hence not sunk.

- Sunk costs important for analysing:
 - rivalry among firms,
 - firms’ entry and exit decisions from markets, and
 - firms’ decisions to adopt new technology.
5. Revenues

See H&H, Ch. 2.2, 8.1

How does a firm’s Total sales Revenue TR depend on its pricing decision?

Now, TR equals the product of price P and quantity y ($TR = P \times y$), so we must examine the relationship between the changes in the price P and the quantity y sold.

\therefore Need consider: the demand function and the price elasticity of demand.

e.g. Consider the demand curve $P = 10 - y$.
If the asking price is $10/unit, then none will be sold, but if the price asked is $6/unit, then 4 units per period will be sold, and if the price falls to zero, then 10 units per period will be sold.

What is the marginal revenue associated with this demand curve?

Total Revenue = price \times quantity $= P \times y = 10y - y^2$.

Marginal Revenue $= \frac{dTR}{dy} = 10 - 2y$, as plotted.

With linear demand curves, the MR is twice as steep as the demand curve.

Average Revenue $= \frac{\text{Total Revenue}}{\text{output}} = 10 - y = D$.

Average Revenue is nothing other than the Demand Curve, for any demand curve.

- $AR = \text{Average Revenue}$ $= \frac{\text{Total Revenue}}{\text{Output}}$
 $= \frac{P \times y}{y}$
 $= P$, price of output
 $= \text{the Demand Curve}$

- $MR = \text{Marginal Revenue}$ $= \frac{\Delta(\text{Total Revenue})}{\Delta(\text{Output})}$
 (as Δ Output $\to 0$)
 $= \frac{d(P \times y)}{dy}$
 $= P + y \frac{dP}{dy}$
 $= P \left(1 + \frac{y}{P} \frac{dP}{dy}\right)$
 $= P \left(1 + \frac{1}{\eta}\right)$,
 $= AR \left(1 + \frac{1}{\eta}\right)$,
 $< AR$

where η is the price elasticity of demand, < 0.

So, at any level of output y, the MR is less than the AR or price P. (Remember that the AR is the demand curve.)
A simple numerical example:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Price</td>
<td>(2) Quantity Demanded</td>
<td>(3) Total Revenue</td>
<td>(4) Marginal Revenue</td>
<td>(5) Profit with AC=MC=30¢
π = TR – TC
(3)–[(2)×0.30]</td>
</tr>
<tr>
<td>$1.00</td>
<td>1</td>
<td>$1.00</td>
<td></td>
<td>$0.70</td>
</tr>
<tr>
<td>0.90</td>
<td>2</td>
<td>1.80</td>
<td>0.80</td>
<td>1.20</td>
</tr>
<tr>
<td>0.80</td>
<td>3</td>
<td>2.40</td>
<td>0.60</td>
<td>1.50</td>
</tr>
<tr>
<td>0.70</td>
<td>4</td>
<td>2.80</td>
<td>0.40</td>
<td>1.60</td>
</tr>
<tr>
<td>0.60</td>
<td>5</td>
<td>3.00</td>
<td>0.20</td>
<td>1.50</td>
</tr>
<tr>
<td>0.50</td>
<td>6</td>
<td>3.00</td>
<td>0.00</td>
<td>1.20</td>
</tr>
<tr>
<td>0.40</td>
<td>7</td>
<td>2.80</td>
<td>–0.20</td>
<td>0.70</td>
</tr>
<tr>
<td>0.30</td>
<td>8</td>
<td>2.40</td>
<td>–0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>0.20</td>
<td>9</td>
<td>1.80</td>
<td>–0.60</td>
<td>–0.90</td>
</tr>
<tr>
<td>0.10</td>
<td>10</td>
<td>1.00</td>
<td>–0.80</td>
<td>–2.00</td>
</tr>
</tbody>
</table>

\[MC = AC \Rightarrow \text{constant cost firm} \]

or Constant Returns to Scale CRTS

When is Revenue maximised?

\[TR = P \times y, \quad P = P(y) \]

\[\Delta TR = P \times \Delta y + \Delta P \times y \]

\[MR = \frac{\partial TR}{\partial y} = \frac{\partial P(y)}{\partial y} \times y + P \]

Profit is maximised at output \(y^* \) when \(MR(y^*) = MC(y^*) \).
5.1 Market Power

If a seller faces a downward-sloping demand curve—it possesses market power, and can choose any combination \((P, y)\) on the demand curve to maximize its profit \(\pi\). But choose \(y\) to maximise profit \(\pi\).

\[
\pi = TR(y) - TC(y)
\]

\[
\max_y \pi \Rightarrow \frac{d\pi}{dy} = 0 = \frac{dTR}{dy} - \frac{dTC}{dy}
\]

\[
\therefore MR(y^*) = MC(y^*) \text{ for } \pi \text{ max.}
\]

\[
\rightarrow y^* \rightarrow P^*
\]

Marginal Revenue \(MR\) \(\equiv \frac{d(P \times y)}{dy} = P \times (1 + \frac{1}{\eta_P}) \leq P\), (i.e., market power), for any level of output, because the price elasticity of demand \(\eta_P\) is negative.

6. Price-Taking Firms

A special case: many sellers and buyers.

Most firms in industrial economies have some market power; only small farms or mines, selling a homogeneous, unbranded product into markets along with many other small enterprises, lack any market power. But the benchmark of perfect competition assumes no market power, so it must be understood.

First: (Assume that the firm is a price taker, with no market power: that is, that it faces:

- horizontal supply curves for its factor inputs
- horizontal demand curves for its outputs.)

(And assume that technology is known & fixed.)

The firm buys inputs facing a horizontal supply curve for its factor inputs: ('\(\therefore\) no market power)

\[
\frac{\partial w_{iM}}{\partial z_i} = 0
\]
and

the firm sells its output facing a horizontal demand curve for its output: (‘.’ no market power)

\[\frac{\partial P_M}{\partial y} = 0 \]

since the firm is a price taker in both markets.

Is this a realistic model?
Is this a useful model?

Profit Maximising, Price Taking

From above, profit \(\pi \) is maximised at the output level \(y^* \) when Marginal Revenue equals Marginal Cost, or

\[MR(y^*) = MC(y^*) \]

But \(MR(y) = \frac{dTR(y)}{dy} = \frac{d(P \times y)}{dy} = P \)

if \(\frac{dP}{dy} = 0 \) (for a price-taking firm \(P \) is given), then

\[\therefore \text{ profit maximum when } P = MC(y^*) \]

For a price-taking firm,

Marginal Revenue = Price of output
= Average Revenue

because, however much the firm offers for sale, the price remains unaltered, cet. par.

As a notational assumption: single output \(y \) from several inputs \(z_i \) (labour, capital, land, energy, materials, etc.)

Graphically:

The slope of the Total Cost curve is the Marginal Cost

\[\frac{dTC(y)}{dy} \text{ is } MC(y) \]

The slope of the Total Revenue curve is the Marginal Revenue

\[\frac{dTR(y)}{dy} \text{ is } MR(y), \] and

for a price-taking firm \(MR(y) = P \), the market-given price, because \(TR = P \times y \).

Total Revenue = price \(\times \) output.
By geometry, profit is maximised when the slopes of the Total Revenue and Total Cost curves are equal (the curves are parallel).

This occurs when \(MR(y) = MC(y) \),
or when \(P = MC(y^*) \)

Profit is maximised at that level of output \(y^* \) where

price = marginal cost

Note that the shape of the Total Cost curve is critical for the second-order (sufficient) conditions that profit is maximised and not minimised.

Or, for a competitive, price-taking firm, by definition, the demand curve is horizontal (\(|\eta^P| = \infty \))

\[\therefore \frac{dP}{dy} = 0 \]
\[\therefore MR = P \]

Hence \(\pi \) is max. when Price = Marginal Cost (\(y^* \))

\(\rightarrow y^* \)

Graphically, for a price-taking firm:

Profit is maximised when \(P = MC(y^*) \), so long as (1) second-order conditions hold (maximum, not minimum), and (2) profit is positive, or \(AR > AC \), or \(P > AC \).

This means that the firm will not produce (in the long run) at levels of output such that \(MC < AC \).

The point where the maximum profit is just zero is known as the breakeven point, and occurs at output \(y' \), where \(P = MC = AC \), the point of minimum Average Cost.

In the diagram of Total Cost and Revenue, this is the point at which a ray from the origin is tangent to the Total Cost curve.

In the short run, so long as \(TR > TVC \), the firm may operate briefly. Why?
7. Supply Curve

Note that a firm with market power can choose the price (and quantity on its demand curve) that it chooses to operate at, and so does not have a supply curve. The rest of this section is for firms without market power (i.e. price-takers), facing horizontal demand curves.

Question: How does the optimal output y^* vary with P? That is, what does the supply curve look like?

![Supply Curve Diagram](image)

The supply curve: the maximum amount of output that the (profit-maximising, price-taking) firm is willing to supply at a given price, $S(P)$; y^* as a function of the output price P.

(P' and y': breakeven price & quantity, $\pi(y') = 0$)

The Supply curve is the marginal cost curve above breakeven y'.

So a profit-maximising, price-taking firm chooses output y to maximise its profit π:

\[
\max_{\text{output } y} \pi = TR - TC(y) \rightarrow y^*
\]

1. First-order, necessary conditions are that price equals marginal cost.
2. Second-order, sufficient conditions are that marginal cost increases with output, or that Total Cost increases disproportionately with output.
3. Further, the firm will not survive unless profit is positive in the long run, and unless price is greater than Average Variable Cost in the short run.

require:

- $P = MC(y^*)$ \hspace{1cm} 1\text{st Order}
- y^* increasing $MC(y^*)$ \hspace{1cm} 2\text{nd Order}
- $\pi > 0$ in long run
- $P > AVC$ in short run

\rightarrow output y^* as a function of price P,
the supply curve $y^* = S(P)$

The firm’s long-term supply curve is its marginal cost curve above breakeven, $\pi \geq 0$.

7.1 Short-Run Operating Condition
For a Price-Taking Firm

For a short period, it’s possible for a firm to operate with maximum profit, π^*, less than zero ($TR < TC$), so long as $TR > TVC$; Total Revenue is greater than Total Variable Cost. (cash flow)

<table>
<thead>
<tr>
<th></th>
<th>Short-Run</th>
<th>No-Shutdown Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \geq AVC$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the long run, to stay open, the firm needs positive profit.

$TR \geq TC$ \hspace{1cm} ($\pi^* \geq 0$);

<table>
<thead>
<tr>
<th></th>
<th>Long-Run</th>
<th>No-Shutdown Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \geq AC$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.2 Firm and Industry Supply Curves

The price-taking firm’s supply curve: the firm’s profit-maximising output as a function of the price P it faces, identical to its MC function, above breakeven.

The industry supply curve S is the horizontal sum of the supply curves $S_1, S_2, S_3, \cdots S_n$ of the n individual price-taking firms:

\[P = \text{$/unit of output$} \]

\[y' = y_i \]

\[S = S_1 + S_2 + S_3 + \cdots + S_n \]
8. The Firm’s Production Process

H&H, Ch. 11

Where does the firm’s Total Cost function $TC(y)$ come from?

A wider problem: the firm chooses inputs z_i as well as output y levels.

$$\max \pi = P \times y - \sum_{i=1}^{n} w_i \times z_i$$

subject to constraints,

where P is price of output y (taken)

w_i is price of input z_i (taken).

(Still a price-taker on all markets.)

Constraints:

- technological — technical feasibility
- availability of inputs $\leftarrow w_i$ (supply curves)
- legal — pollution, occupational safety, etc.
- taxes
- capacity (in the short run)
- actual or potential rivals (output) $\leftarrow P$ (demand curves)
- quotas & regulations
- capital?

8.1 The Production Function

Focus on the technological constraint, embodied in the Production Function, which relates the flow of output to the amounts of inputs: the maximum amount of output y which can be produced by a set of input quantities $z = (z_1, z_2, \ldots)$:

$$y \leq F(z_1, z_2, \ldots, z_n)$$

The Production Function $F(z)$ captures the technical possibilities, and relates inputs z_i to output y.

$$\begin{align*}
\text{Total Revenue} & = P \times y \\
\text{Total Cost} & = w_1 \times z_1 + w_2 \times z_2 + \ldots \\
& = \sum_{i=1}^{n} w_i \times z_i
\end{align*}$$

The firm’s problem:

$$\max \pi = P \times y - \sum_{i=1}^{n} w_i \times z_i$$

subject to $y \leq F(z_1, \ldots, z_n)$

Examples: $y = F(L, K)$, L = labour, K = capital

$$y = A L^a K^{-(\alpha - 1)} \quad \text{(Cobb-Douglas)}$$

$$= 212 \times L^{0.6} \times K^{0.4}, \text{ for example}$$

allows a trade-off between labour and capital.
The firm’s problem is to choose inputs z_i:

$$\max_{z_i} \quad \pi = P \times y - \sum_{i=1}^{n} w_i \times z_i$$

s.t. $y \leq F(z_1, \ldots, z_n)$.

We assume that it operates up to its technological limits, (if inequality, then it’s inefficient, forgoing profits): so

$$y = F(z_1, \ldots, z_n).$$

An Efficient Firm:

- a firm is efficient
- only if it is operating
- on the production function
- $y = F(z_1, z_2 \ldots z_n)$

(Profit maximising \Rightarrow efficiency)

Substitute into the profit function:

(efficient operation \Rightarrow equality)

$$\max_{\text{inputs } z_i} \quad \pi = P \times y - \sum_{i=1}^{n} w_i \times z_i$$

$$= P \times F(z_1, \ldots, z_n) - \sum w_i \times z_i$$

Partially differentiate π with respect to input i (not output):

$$\frac{\partial \pi}{\partial z_i} = P \times \frac{\partial F}{\partial z_i} - w_i = 0 \quad \text{for } \pi \text{ max, for all } i,$$

$$\therefore \quad P \frac{\partial F}{\partial z_i} = P \times MP_i = w_i \quad \text{for all inputs } i \ (1^{\text{st}} \text{O.N.C.})$$

where $MP_i = \frac{\partial F}{\partial z_i}$ is the Marginal Product of input i, the additional amount of output y from one unit more of unit i (quantity not revenue), cet. par.

i.e. $MP_i = \frac{w_i}{P}$ Marginal Product of input i and MP_i equals the ratio of input price to output price for π max.

or $P \times MP_i = w_i$. The value of the marginal product $i = \text{the cost of extra unit of input } i$, (Why?)

Note that this is nothing more than our old friend: $MR = MC$, where the marginal revenue is the value of the marginal product associated with an extra unit of input i, and the marginal cost is the cost of that unit of input.
What is the slope of the family of iso-profit lines? That is, the slope of the lines:

$$\text{constant} = P \times y - \sum w_i \times z_i$$

Let’s consider how to deal with the firm’s problem of choosing a single input z graphically. Price of output y is P; price of input z is w. Consider the iso-profit line corresponding to zero profit: it must pass through the origin, since no inputs → no output → no profit:

$$0 = P \times y - \sum w_i \times z_i$$

or

$$y = \frac{w}{P} \times z$$

The slope is w/P, the price w of the input divided by the price P of the output.

- As w rises or P falls, the slope is steeper, and z^* and y^*?
- As w falls, and/or P rises, the slope is flatter. So z^* and y^*?

To obtain the constant-profit, or iso-profit curve, consider a level (π^0) of profit = revenue – cost of inputs:

$$\pi^0 = P \times y - \sum_{i=1}^2 w_i \times z_i$$

$$= P \times y - w_1 \times z_1 - w_2 \times z_2$$

Partially differentiating π^0 with respect to z_i, and setting $d\pi^0 = 0$:

$$d\pi^0 = 0 = P \times \frac{dy}{dz_i} \bigg|_{\pi^0} - w_i \text{ for } i = 1, 2$$

$$\therefore \frac{dy}{dz_i} \bigg|_{\pi^0} = \frac{w_i}{P}$$

the slope of the iso-profit line.
Profit maximization ⇒ the iso-profit line will be tangent to the production function. (First-order condition)

\[\frac{w_i}{P} = \frac{\partial F}{\partial z_i} = M P_i, \]

where \(M P_i \) is the slope of the production function. or: the marginal revenue associated with input \(i \) = the marginal cost of input \(i \).

First-order, necessary condition for Profit Maximizing:
for each input used, the value of the marginal product of the input

\[= \text{the marginal cost of the input} \]
\[= \text{its price (of input)} \]
\[P \times M P_i = w_i \]

Rewriting this (for \(M P_i > 0 \)):

\[P = \frac{w_1}{M P_1} = \frac{w_2}{M P_2} = \ldots \frac{w_i}{M P_i} = \ldots \frac{w_n}{M P_n} = \]

i.e. price of output = the marginal cost of producing a unit of output, for each input separately.

On reflection, you will see that, however we write it, it’s just the old necessary condition for profit maximization: marginal revenue = marginal cost.

Iso-quants or contours of output:
efficient combinations of inputs which result in equal quantity of output.

\[y = F(z_1, z_2) \]

Fixed-Proportions Technologies Technology with Input Substitution

The slope of the iso-quant: (along \(\bar{y} \))

differentiating \(\bar{y} = F(z_1, z_2) \)

\[d\bar{y} = 0 = \frac{\partial F}{\partial z_1} dz_1 + \frac{\partial F}{\partial z_2} dz_2 \]

\[\therefore \frac{d\bar{z}_2}{dz_1} \bigg|_{\text{isoquant}} = -\frac{\frac{\partial F}{\partial z_1}}{\frac{\partial F}{\partial z_2}} = -\frac{M P_1}{M P_2}, \text{ the slope of } \bar{y} < 0 \]
8.2 Marginal Rate of Substitution in Production (MRSP)

\[\frac{MP_1}{MP_2} = -\text{slope of the isoquant} \geq 0 \]

An isoquant: a curve showing all possible (efficient) combinations of inputs that are capable of producing a certain quantity of output.

\[\frac{\partial F}{\partial z_1} , \text{ or } MP_1 > 0, \]

which in general is decreasing:

\[\frac{\partial^2 F}{\partial z_1^2} < 0, \frac{\partial MP_i}{\partial z_i} < 0 \]

8.3 Returns to Inputs & Returns to Scale

There are two directions of movement:

1. increase one input, keeping all others fixed, and
2. increase all inputs proportionately.

1. If we plot output \(y \) against input \(z_1 \), moving along direction 1 we obtain a curve whose slope is

\[\frac{\partial F}{\partial z_1} , \text{ or } MP_1 > 0, \]

which in general is decreasing:

\[\frac{\partial^2 F}{\partial z_1^2} < 0, \frac{\partial MP_i}{\partial z_i} < 0 \]

diminishing returns to input \(i \).

(doubling input 1 doesn’t double output, cet. par.)

That is, increasing input \(i \), ceteris paribus, leads to an increasing amount of output, but at a falling rate of increase.
If we move in direction \mathbf{e}, increasing all inputs proportionately, it’s as though we multiplied the input vector \mathbf{z} by a number $k > 1$

There are three possibilities:

1. **Constant Returns to Scale** CRTS
 - if output grows proportionately
 - i.e. $y' = F(k\mathbf{z}) = kF(\mathbf{z}) = ky^0$

2. **Increasing Returns to Scale** IRTS
 - if output grows more than proportionately
 - i.e. $y' = F(k\mathbf{z}) > kF(\mathbf{z}) = ky^0$

3. **Decreasing Returns to Scale** DRTS
 - if output grows less than proportionately
 - i.e. $y' = F(k\mathbf{z}) < kF(\mathbf{z}) = ky^0$

In the long run, we have usually assumed CRTS. The effects of environmental constraints may result in DRTS in the future.

Note: 2nd Order (sufficient) conditions for profit maximization are satisfied by DRTS.
9. Cost Minimization

We can consider the problem of cost minimization as one of choosing the inputs z_i:

$$\min_T \text{TC} = \sum w_i z_i$$

subject to $y_0 = F(z_1, \ldots, z_n)$

that is, minimize the total cost to attain a fixed level of output y_0.

Two inputs (z_1 and z_2), and constraint y_0 is an isoquant y_0.

Objective function, Total Cost = $w_1 z_1 + w_2 z_2$ is a straight line, whose slope can be calculated:

$$d \text{TC} = 0 = w_1 dz_1 + w_2 dz_2$$

$$= w_1 dz_1 + w_2 dz_2$$

Taking the derivative:

$$\frac{d TC}{dz_1} = -\frac{w_1}{w_2}$$

Cost minimization occurs with tangency of the iso-cost line and the isoquant: (First-order, necessary conditions)

$$\frac{w_1}{w_2} = \frac{MP_1}{MP_2}$$

where $MP_i = \frac{\partial F}{\partial z_i}$ is the marginal product (extra output) of an extra input unit of i,

where w_i is the cost of the extra unit of input i,

and $\frac{w_i}{MP_i}$ is the cost per unit of output (the marginal cost of output) of obtaining more output by using more of input i.

Example: $y = F(z_1, z_2) = \sqrt{z_1 \times z_2}$, where $F(.)$ is a production function.

$w_1 = $2.00/unit input price

$w_2 = $0.50/unit input price

we want cost-minimizing inputs to produce

4 units of output

$y = 4 = \sqrt{z_1 \times z_2}$

Iso-cost curve equation:

$$w_1 z_1 + w_2 z_2 = \text{Total Cost}$$

$$2z_1 + 0.5z_2 = \text{Total Cost}$$

$$z_2 = -4z_1 + \text{TC}$$

From the diagram,

$$z_1^* = 2$$

$$z_2^* = 8$$

cost = $8 = \text{TC} (y = 4)$
But we can also obtain this algebraically, by solving the two equations:

\[
\frac{w_1}{MP_1} = \frac{w_2}{MP_2}
\]

and

\[F(z_1, z_2) = 4 \]

So, in general:

cost minimization occurs when the iso-cost curve is tangent to the isoquant (the target)

the slope of iso-cost curve \[\frac{dz_2}{dz_1} \bigg|_{cost} = -\frac{w_1}{w_2} \]

the slope of isoquant \[\frac{dz_2}{dz_1} \bigg|_{y} = -\frac{MP_1}{MP_2} \]

\[\therefore \text{ 1st Order: } \frac{MP_1}{MP_2} = \frac{w_1}{w_2} \]

or

\[\frac{w_1}{MP_1} = \frac{w_2}{MP_2} = \cdots = \frac{w_i}{MP_i} \cdots \]

for all factor inputs (land, labour, capital, materials, energy, etc.).
9.2 Marginal Rate of (Technical) Substitution in Production (MRTS):

defined as the ratio of marginal products

\[\frac{MP_1}{MP_2} = - \text{slope of isoquant} \]

because it’s the rate at which \(z_2 \) can be substituted for \(z_1 \), while keeping output \(y \) constant.

The degree of substitutability between factors can vary:

in the question of the Assignment there was no possibility of substitution, except to use a different process, perhaps in combination.
The **elasticity of substitution** measures the extent to which the cost-minimising ratio of inputs quantities changes in response to changes in the ratio of prices of the inputs.

\[
\frac{z_1}{z_2} \text{ compared to } \frac{w_1}{w_2}
\]

Formally,

\[
S = \frac{d \ln \frac{z_1}{z_2}}{\frac{d \ln w_1}{w_2}}
\]

\[
= \frac{\frac{\frac{d z_1}{z_2}}{\frac{d w_1}{w_2}} \times \frac{\frac{w_1}{w_2}}{\frac{z_1}{z_2}}}{\frac{d w_1}{w_2}}
\]

10. Summary

1. **Cost minimization**, for given prices of output \(P \) and of inputs \(w_i \):

 \[
 \rightarrow \text{minimum cost} = \sum w_i z_i
 \]

 which is a function of a target output \(\bar{y} \)

 \[
 \rightarrow \text{Total Cost function } C(\bar{y})
 \]

 For different target outputs, \(\bar{y} \), cost minimization will result in different Total Cost levels, and also in different amounts of cost-minimizing inputs \(z_i(\bar{y}) \)

2. With Total Cost function \(C(y) \), we can **maximize profit**, for given output price \(P \)

 \[
 \pi = TR(y) - TC(y)
 \]

 \[
 \rightarrow \text{profit-maximizing output } y^* \text{ and maximum profit }
 \]

 \[
 \pi^*;
 \]

 \[
 MR(y^*) = MC(y^*)
 \]

 subject to conditions \((\pi^* \geq 0, \text{ increasing } MC, \text{ aka DRTS})\)

Note: can show IRTS, DRTS, and CRTS in terms of the cost function \(TC(y) \):

- **IRTS** aka “decreasing costs”
- **DRTS** aka “increasing costs”
- **CRTS** aka “constant costs”
Package Readings:

- Wallach on the CPI
- Leibenstein on consumers (theory)
- Baumol on demand (empirical)
- Simon on decision making
- Koutsoyiannis on cost estimation
- *The Economist* and *Fortune* on increasing returns
- Boulding on agriculture
- (Thaler not in package)
- Bell on shifts in demand
- Radford on a POW micro economy
- Fels on price policy on prostitution
- *The Economist* on ski lifts and tickets
- Koch & Grupp, Nisbet & Vakil on drug economics