Multi-Attribute Decision Making

Many decisions are based on other attributes than price. Choosing a car, for instance, although you might be looking in a particular price band. Comfort, performance, reliability, size, safety, style, image, equipment, handling, noise, running costs — these are some attributes of cars.

Example:
Many decisions are based on other attributes than price. Choosing a car, for instance, although you might be looking in a particular price band. Comfort, performance, reliability, size, safety, style, image, equipment, handling, noise, running costs — these are some attributes of cars.

Example: helping a family to buy a car

Steps:
Multi-Attribute Decision Making

Many decisions are based on other attributes than price. Choosing a car, for instance, although you might be looking in a particular price band. Comfort, performance, reliability, size, safety, style, image, equipment, handling, noise, running costs — these are some attributes of cars.

Example: helping a family to buy a car

Steps: (1) Clarify problem;
Multi-Attribute Decision Making

Many decisions are based on other attributes than price. Choosing a car, for instance, although you might be looking in a particular price band. Comfort, performance, reliability, size, safety, style, image, equipment, handling, noise, running costs — these are some attributes of cars.

Example: helping a family to buy a car

Steps: (1) Clarify problem; (2) Identify objectives;
Many decisions are based on other attributes than price. Choosing a car, for instance, although you might be looking in a particular price band. Comfort, performance, reliability, size, safety, style, image, equipment, handling, noise, running costs — these are some attributes of cars.

Example: helping a family to buy a car

Steps: (1) Clarify problem; (2) Identify objectives; (3) Measurement of effectiveness.
Multi-Attribute Decision Making

Many decisions are based on other attributes than price. Choosing a car, for instance, although you might be looking in a particular price band. Comfort, performance, reliability, size, safety, style, image, equipment, handling, noise, running costs — these are some attributes of cars.

Example: helping a family to buy a car

Steps: (1) Clarify problem; (2) Identify objectives; (3) Measurement of effectiveness.

(1) Clarify problem
keep an older car?
use public transport?
constraints? —
Many decisions are based on other attributes than price. Choosing a car, for instance, although you might be looking in a particular price band. Comfort, performance, reliability, size, safety, style, image, equipment, handling, noise, running costs — these are some attributes of cars.

Example: helping a family to buy a car

Steps: (1) Clarify problem; (2) Identify objectives; (3) Measurement of effectiveness.

(1) **Clarify problem**

keep an older car?
use public transport?
constraints? —

$
manual transmission / auto?
size?
power steering?
? 1. driving kids to school
? 2. reliable & safe commuting vehicle?
? 3. status symbol
? 4. help on family holidays
Example (cont.):

Attributes: Price, handling & performance, overall safety, overall comfort, brakes, visibility, manufacturer’s reputation (AFR 17/11/04)

<table>
<thead>
<tr>
<th>Identify objectives</th>
<th>1</th>
<th>comfort 5A, or 1A + 5K</th>
<th>S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>safe & reliable</td>
<td>S_2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>status</td>
<td>S_3</td>
</tr>
</tbody>
</table>

given the $ constraint
Example (cont.):

Attributes: Price, handling & performance, overall safety, overall comfort, brakes, visibility, manufacturer’s reputation (AFR 17/11/04)

<table>
<thead>
<tr>
<th>Identify objectives</th>
<th>(1) comfort 5A, or 1A + 5K</th>
<th>S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2) safe & reliable</td>
<td>S_2</td>
</tr>
<tr>
<td></td>
<td>(3) status</td>
<td>S_3</td>
</tr>
</tbody>
</table>

given the $ constraint

<table>
<thead>
<tr>
<th>Measurement of effectiveness</th>
<th>(1) + (3) subjective—judgement intuition experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) less subjective</td>
<td></td>
</tr>
</tbody>
</table>
Additive Valuation

1.
Additive Valuation

1. Use scales for S_1, S_2, S_3

 (1) (2) (3)

 For each of the three attributes (1), (2), and (3), score the cars on a scale from 0 to 1.

2.
Additive Valuation

1. Use scales for S_1, S_2, S_3

 (1) (2) (3)

 For each of the three attributes (1), (2), and (3), score the cars on a scale from 0 to 1.

2. Subject to the $\$ constraint, now weight the three attributes: i.e.
Additive Valuation

1. Use scales for S_1, S_2, S_3
 (1) (2) (3)

 For each of the three attributes (1), (2), and (3), score the cars on a scale from 0 to 1.

2. Subject to the $\$ constraint, now weight the three attributes: i.e.
 — How important is the first attribute (comfort) in the total decision? $\rightarrow w_1$
Additive Valuation

1. Use scales for S_1, S_2, S_3
 (1) (2) (3)
 For each of the three attributes (1), (2), and (3), score the cars on a scale from 0 to 1.

2. Subject to the $\$\$ constraint, now weight the three attributes: i.e.
 — How important is the first attribute (comfort) in the total decision? $\rightarrow w_1$
 — How important the second (safety and reliability)? $\rightarrow w_2$
 —
Additive Valuation

1. Use scales for S_1, S_2, S_3
 (1) (2) (3)
 For each of the three attributes (1), (2), and (3), score the cars on a scale from 0 to 1.

2. Subject to the $ constraint, now weight the three attributes: i.e.
 — How important is the first attribute (comfort) in the total decision? w_1
 — How important the second (safety and reliability)? w_2
 — The third (status)? w_3

 The three weightings w_1, w_2, w_3 should be normalised: $\sum w_i = 1$.

3.
Additive Valuation

1. Use scales for S_1, S_2, S_3
 (1) (2) (3)
 For each of the three attributes (1), (2), and (3), score the cars on a scale from 0 to 1.

2. Subject to the $\$ \ constraint, now weight the three attributes: i.e.
 — How important is the first attribute (comfort) in the total decision? $\rightarrow w_1$
 — How important the second (safety and reliability)? $\rightarrow w_2$
 — The third (status)? $\rightarrow w_3$
 The three weightings w_1, w_2, w_3 should be normalised: $\sum w_i = 1$.

3. From part (1), each car j has a score for attribute i:
 $\therefore x_{ij}$ is the score of car j in attribute i.
 \therefore Each car’s total score can be calculated: $\sum_i x_{ij}w_i \rightarrow$ score for car j

4.
Additive Valuation

1. Use scales for S_1, S_2, S_3
 (1) (2) (3)
 For each of the three attributes (1), (2), and (3), score the cars on a scale from 0 to 1.

2. Subject to the $\$e$ constraint, now weight the three attributes: i.e.
 — How important is the first attribute (comfort) in the total decision? $\rightarrow w_1$
 — How important the second (safety and reliability)? $\rightarrow w_2$
 — The third (status)? $\rightarrow w_3$
 The three weightings w_1, w_2, w_3 should be normalised: $\sum w_i = 1$.

3. From part (1), each car j has a score for attribute i:
 $\therefore x_{ij}$ is the score of car j in attribute i.
 \therefore Each car’s total score can be calculated: $\sum_i x_{ij}w_i \rightarrow$ score for car j

4. Choose the car with the highest total score, or iterate, until you feel happy with the scores, the weightings, and the final outcome.
Multiattribute Problem

CBA a subset
e.g. which bank?

<table>
<thead>
<tr>
<th>quality of service</th>
<th>interest rates</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparing specific</td>
<td>outcomes</td>
<td>projects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiattribute Problem

CBA a subset
e.g. which bank?

<table>
<thead>
<tr>
<th>quality of service</th>
<th>interest rates</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comparing specific</td>
<td>outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>projects</td>
</tr>
</tbody>
</table>

There are six ways: (Perry & Dillon in the Package)

1.
Multiattribute Problem

CBA a subset

<table>
<thead>
<tr>
<th>quality of service</th>
<th>interest rates</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparing specific outcomes

projects

There are six ways: (Perry & Dillon in the Package)

1. Pairwise comparisons
2.
Multiattribute Problem

CBA a subset
e.g. which bank?

<table>
<thead>
<tr>
<th>quality of service</th>
<th>interest rates</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparing specific</td>
<td>outcomes</td>
<td>projects</td>
</tr>
</tbody>
</table>

There are six ways: (Perry & Dillon in the Package)

1. Pairwise comparisons
2. “Satisficing”
3.
Multiattribute Problem

CBA a subset
e.g. which bank?

<table>
<thead>
<tr>
<th>quality of service</th>
<th>interest rates</th>
<th>location</th>
</tr>
</thead>
</table>

Comparing specific outcomes projects

There are six ways: (Perry & Dillon in the Package)

1. Pairwise comparisons
2. “Satisficing”
3. Lexicographic ordering
4.
Multiattribute Problem

CBA a subset
e.g. which bank?

<table>
<thead>
<tr>
<th>quality of service</th>
<th>interest rates</th>
<th>location</th>
</tr>
</thead>
</table>

Comparing specific outcomes projects

There are six ways: (Perry & Dillon in the Package)

1. Pairwise comparisons
2. “Satisficing”
3. Lexicographic ordering
4. Reducing search
5.
Multiattribute Problem

CBA a subset
e.g. which bank?

<table>
<thead>
<tr>
<th>quality of service</th>
<th>interest rates</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparing specific</td>
<td>outcomes</td>
<td>projects</td>
</tr>
</tbody>
</table>

There are six ways: (Perry & Dillon in the Package)

1. Pairwise comparisons
2. “Satisficing”
3. Lexicographic ordering
4. Reducing search
5. Even swaps, or Pricing out
6.
Multiattribute Problem

CBA a subset
e.g. which bank?

quality of service | interest rates | location

Comparing specific | outcomes |
projects

There are six ways: (Perry & Dillon in the Package)

1. Pairwise comparisons
2. “Satisficing”
3. Lexicographic ordering
4. Reducing search
5. Even swaps, or Pricing out
6. Additive value models
1. Pairwise comparisons

“eye-balling”:
1. Pairwise comparisons

“eye-balling”:

➢ OK for small number of attributes

➢
1. Pairwise comparisons

"eye-balling":

- OK for small number of attributes
- ? OK number of alternatives?
1. Pairwise comparisons

“eye-balling”:

➢ OK for small number of attributes
➢ ? OK number of alternatives?
➢ large number of alternatives or attributes
➢
1. Pairwise comparisons

“eye-balling”:

- OK for small number of attributes
- ? OK number of alternatives?
- large number of alternatives or attributes
- no complete preference ordering
1. Pairwise comparisons

“eye-balling”:

- OK for small number of attributes
- OK number of alternatives?
- large number of alternatives or attributes
- no complete preference ordering

but
1. **Pairwise comparisons**

 “eye-balling”:

 - OK for small number of attributes
 - ? OK number of alternatives?
 - large number of alternatives or attributes
 - no complete preference ordering
 - but – time consuming, costly
 - continuous variables
 → no information for *delegation*
2. “Satisficing”
2. “Satisficing”

- Set minimum levels ("satisfy") of all attributes but one (the "target" attribute)
2. “Satisficing”

- set minimum levels ("satisfy") of all attributes but one (the "target" attribute)
- choose the project/outcome/action with the highest level of the target
2. “Satisficing”

- set minimum levels (“satisfy”) of all attributes but one (the “target” attribute)
- choose the project/outcome/action with the highest level of the target

→ iterative solution

 if min levels too \(\uparrow\) \(high\)
 \(\downarrow\) \(low\)

So: useful, often used, attributes explicit
3. Lexicographic Ordering
3. Lexicographic Ordering

How to:

>
3. Lexicographic Ordering

How to:

➢ rank attributes;
3. Lexicographic Ordering

How to:

- rank attributes;
- choose project with the highest Attribute 1;
3. Lexicographic Ordering

How to:

➤ rank attributes;
➤ choose project with the highest Attribute 1;
➤ only consider Attribute 2 if there is a tie in terms of Attribute 1.
3. Lexicographic Ordering

How to:

- rank attributes;
- choose project with the highest Attribute 1;
- only consider Attribute 2 if there is a tie in terms of Attribute 1.
- Using the letters of the alphabet in order, this is how dictionaries (or lexicons) order words — hence, lexicographic.
3. Lexicographic Ordering

How to:

➢ rank attributes;
➢ choose project with the highest Attribute 1;
➢ only consider Attribute 2 if there is a tie in terms of Attribute 1.
➢ Using the letters of the alphabet in order, this is how dictionaries (or lexicons) order words — hence, lexicographic.
➢ Examine the table on the next page, where countries’ performances at the Atlanta Olympics are tabulated lexicographically.

This means there is no trade-off between numbers of Silver medals and numbers of Golds, so that Denmark (4 G, 1 S, 1 B) is ranked nineteenth, while Great Britain (1 G, 8 S, 5 B) is ranked thirty-sixth.
3. Lexicographic Ordering

How to:

➢ rank attributes;
➢ choose project with the highest Attribute 1;
➢ only consider Attribute 2 if there is a tie in terms of Attribute 1.
➢ Using the letters of the alphabet in order, this is how dictionaries (or lexicons) order words — hence, lexicographic.
➢ Examine the table on the next page, where countries’ performances at the Atlanta Olympics are tabulated lexicographically.

This means there is no trade-off between numbers of Silver medals and numbers of Golds, so that Denmark (4 G, 1 S, 1 B) is ranked nineteenth, while Great Britain (1 G, 8 S, 5 B) is ranked thirty-sixth.

➢ Or we could rank by total number of medals, which means equal trade-offs between Gold and Silver and Bronze.

➢
3. Lexicographic Ordering

How to:

- rank attributes;
- choose project with the highest Attribute 1;
- only consider Attribute 2 if there is a tie in terms of Attribute 1.
- Using the letters of the alphabet in order, this is how dictionaries (or lexicons) order words — hence, lexicographic.
- Examine the table on the next page, where countries’ performances at the Atlanta Olympics are tabulated lexicographically.

This means there is no trade-off between numbers of Silver medals and numbers of Golds, so that Denmark (4 G, 1 S, 1 B) is ranked nineteenth, while Great Britain (1 G, 8 S, 5 B) is ranked thirty-sixth.

- Or we could rank by total number of medals, which means equal trade-offs between Gold and Silver and Bronze.
- Or we could weight the medals, say, Gold = 3, Silver = 2, Bronze = 1, which still allows a trade-off, but not an equal trade-off.
Lexicographically Ranked by Gold, Silver, Bronze Medals (Atlanta)

<table>
<thead>
<tr>
<th>Country</th>
<th>Gold</th>
<th>Silver</th>
<th>Bronze</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>44</td>
<td>32</td>
<td>25</td>
<td>101</td>
</tr>
<tr>
<td>Russia</td>
<td>26</td>
<td>21</td>
<td>16</td>
<td>63</td>
</tr>
<tr>
<td>Germany</td>
<td>20</td>
<td>18</td>
<td>27</td>
<td>65</td>
</tr>
<tr>
<td>China</td>
<td>16</td>
<td>22</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>France</td>
<td>15</td>
<td>7</td>
<td>15</td>
<td>37</td>
</tr>
<tr>
<td>Italy</td>
<td>13</td>
<td>10</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>Australia</td>
<td>9</td>
<td>9</td>
<td>23</td>
<td>41</td>
</tr>
<tr>
<td>Cuba</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>Ukraine</td>
<td>9</td>
<td>2</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>South Korea</td>
<td>7</td>
<td>15</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>Poland</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>Hungary</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Spain</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Romania</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Netherlands</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>Greece</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Switzerland</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Denmark</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Turkey</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Canada</td>
<td>3</td>
<td>11</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Japan</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Brazil</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>New Zealand</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>South Africa</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Ireland</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Norway</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Belgium</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>North Korea</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Algeria</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Great Britain</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Belarus</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Kenya</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Jamaica</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Finland</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Iran</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Slovakia</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
4. Reducing Search

e.g. which building to choose, given the two main uses for the building of Athletics and Crafts?
4. Reducing Search

e.g. which building to choose, given the two main uses for the building of Athletics and Crafts?

<table>
<thead>
<tr>
<th>Building</th>
<th>Athletics</th>
<th>Crafts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
4. Reducing Search

e.g. which building to choose, given the two main uses for the building of Athletics and Crafts?

<table>
<thead>
<tr>
<th>Building</th>
<th>Athletics</th>
<th>Crafts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

So we see that:

D,B dominate C,A,E
B: 1,2 D: 2,1
4. Reducing Search

e.g. which building to choose, given the two main uses for the building of Athletics and Crafts?

<table>
<thead>
<tr>
<th>Building</th>
<th>Athletics</th>
<th>Crafts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

So we see that:

D, B *dominate* C, A, E

B: 1, 2 D: 2, 1

![Diagram showing increasing preference with buildings A, B, C, D, E on a graph.]
5. Even Swaps, or Pricing Out

[see the Hammond *HBR* reading in the Package.]
5. Even Swaps, or Pricing Out

[see the Hammond *HBR* reading in the Package.]

e.g. which of five jobs to choose, given the five attributes of each job?

<table>
<thead>
<tr>
<th>Job</th>
<th>Salary</th>
<th>Leisure Time</th>
<th>Working conditions</th>
<th>Co-workers</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Freda has ranked the jobs in terms of each attribute.

E \preceq A
E \preceq C
D \preceq B

\therefore Freda’s comparison is reduced to D, E
Even Swaps (cont.)

Spell out the measures of each attribute:

<table>
<thead>
<tr>
<th>Job</th>
<th>Salary</th>
<th>Leisure Time</th>
<th>Working conditions</th>
<th>Co-workers</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$90k$</td>
<td>8 days</td>
<td>W_D</td>
<td>C_D</td>
<td>L_D</td>
</tr>
<tr>
<td>E</td>
<td>$100k$</td>
<td>5 days</td>
<td>W_E</td>
<td>C_E</td>
<td>L_E</td>
</tr>
</tbody>
</table>

Q:
Even Swaps (cont.)

Spell out the measures of each attribute:

<table>
<thead>
<tr>
<th>Job</th>
<th>Salary</th>
<th>Leisure Time</th>
<th>Working conditions</th>
<th>Co-workers</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$90k</td>
<td>8 days</td>
<td>W_D</td>
<td>C_D</td>
<td>L_D</td>
</tr>
<tr>
<td>E</td>
<td>$100k</td>
<td>5 days</td>
<td>W_E</td>
<td>C_E</td>
<td>L_E</td>
</tr>
</tbody>
</table>

Q: How much of $100K would Freda be prepared to give up to get 3 additional leisure days/year?

A:
Even Swaps (cont.)

Spell out the measures of each attribute:

<table>
<thead>
<tr>
<th>Job</th>
<th>Salary</th>
<th>Leisure Time</th>
<th>Working conditions</th>
<th>Co-workers</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$90k</td>
<td>8 days</td>
<td>W_D</td>
<td>C_D</td>
<td>L_D</td>
</tr>
<tr>
<td>E</td>
<td>$100k</td>
<td>5 days</td>
<td>W_E</td>
<td>C_E</td>
<td>L_E</td>
</tr>
</tbody>
</table>

Q: How much of $100K would Freda be prepared to give up to get 3 additional leisure days/year?

A: $25K → E'

<table>
<thead>
<tr>
<th>Job</th>
<th>Salary</th>
<th>Leisure Time</th>
<th>Working conditions</th>
<th>Co-workers</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>90k</td>
<td>8</td>
<td>W_D</td>
<td>C_D</td>
<td>L_D</td>
</tr>
<tr>
<td>E'</td>
<td>75k</td>
<td>8</td>
<td>W_E</td>
<td>C_E</td>
<td>L_E</td>
</tr>
</tbody>
</table>

from above W_E (1st) > W_D (2nd)
Even Swaps (cont.)

Spell out the measures of each attribute:

<table>
<thead>
<tr>
<th>Job</th>
<th>Salary</th>
<th>Leisure Time</th>
<th>Working conditions</th>
<th>Co-workers</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$90k</td>
<td>8 days</td>
<td>W<sub>D</sub></td>
<td>C<sub>D</sub></td>
<td>L<sub>D</sub></td>
</tr>
<tr>
<td>E</td>
<td>$100k</td>
<td>5 days</td>
<td>W<sub>E</sub></td>
<td>C<sub>E</sub></td>
<td>L<sub>E</sub></td>
</tr>
</tbody>
</table>

Q: How much of $100K would Freda be prepared to give up to get 3 additional leisure days/year?

A: $25K → E'

\[
\begin{array}{c|c|c|c|c|c|c|}
D & 90k & 8 & W_D & C_D & L_D \\
E' & 75k & 8 & W_E & C_E & L_E \\
\end{array}
\]

from above W_E (1st) > W_D (2nd)

Q: How much of $90k would Freda be prepared to give up to get W_E?

A:
Even Swaps (cont.)

Spell out the measures of each attribute:

<table>
<thead>
<tr>
<th>Job</th>
<th>Salary</th>
<th>Leisure Time</th>
<th>Working conditions</th>
<th>Co-workers</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$90k</td>
<td>8 days</td>
<td>$D</td>
<td>C_D</td>
<td>L_D</td>
</tr>
<tr>
<td>E</td>
<td>$100k</td>
<td>5 days</td>
<td>$E</td>
<td>C_E</td>
<td>L_E</td>
</tr>
</tbody>
</table>

Q: How much of $100K would Freda be prepared to give up to get 3 additional leisure days/year?
A: $25K → $E′

<table>
<thead>
<tr>
<th>Job</th>
<th>Salary</th>
<th>Leisure Time</th>
<th>Working conditions</th>
<th>Co-workers</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>90k</td>
<td>8 days</td>
<td>$D</td>
<td>C_D</td>
<td>L_D</td>
</tr>
<tr>
<td>$E′</td>
<td>75k</td>
<td>8 days</td>
<td>$E</td>
<td>C_E</td>
<td>L_E</td>
</tr>
</tbody>
</table>

from above W_E (1st) > W_D (2nd)

Q: How much of $90k would Freda be prepared to give up to get W_E?
A: $10k → $D′

“pricing out”
Even Swaps (cont.)

<table>
<thead>
<tr>
<th></th>
<th>$80k</th>
<th>8</th>
<th>W_E</th>
<th>C_D</th>
<th>L_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>D'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E'</td>
<td>$75k</td>
<td>8</td>
<td>W_E</td>
<td>C_E</td>
<td>L_E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$80k</th>
<th>8</th>
<th>W_E</th>
<th>C_D</th>
<th>L_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>D'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E''</td>
<td>$70k</td>
<td>8</td>
<td>W_E</td>
<td>C_D</td>
<td>L_E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$72.5k</th>
<th>8</th>
<th>W_E</th>
<th>C_D</th>
<th>L_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>D''</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E''</td>
<td>$70k</td>
<td>8</td>
<td>W_E</td>
<td>C_D</td>
<td>L_E</td>
</tr>
</tbody>
</table>

i.e. all attributes “priced out” by Freda, whose choice is job \(D \)

\[
\begin{align*}
D' & \sim D'' - ? \\
E' & \sim B'' - ? \\
D & \sim D' - ? \\
E & \sim B' - ? \\
E'' & \sim D'' \\
\therefore & \sim E \sim D
\end{align*}
\]

\[D \sim D'' \triangleleft E'' \sim E \Rightarrow D \triangleleft E\]
6. Additive Value Models

e.g.
6. Additive Value Models

e.g. three projects: A, B, & C
three attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Project A</th>
<th>Project B</th>
<th>Project C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV</td>
<td>$20m</td>
<td>$15m</td>
<td>$25m</td>
</tr>
<tr>
<td>Time to Completion</td>
<td>8y</td>
<td>5y</td>
<td>12y</td>
</tr>
<tr>
<td>Impact</td>
<td>200k</td>
<td>300k</td>
<td>100K</td>
</tr>
</tbody>
</table>

Net Present Value PV \oplus the more, the better
Time to Completion T \ominus the less, the better
Impact I \oplus
6. Additive Value Models

e.g. three projects: A, B, & C

<table>
<thead>
<tr>
<th>Attribute</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Present Value</td>
<td>$20m</td>
<td>$15m</td>
<td>$25m</td>
</tr>
<tr>
<td>Time to Completion</td>
<td>8y</td>
<td>5y</td>
<td>12y</td>
</tr>
<tr>
<td>Impact</td>
<td>200k</td>
<td>300k</td>
<td>100K</td>
</tr>
</tbody>
</table>

Independence

- If the trade-off between \(PV \) & \(T \) is independent of the level of \(I \)
- & if the trade off between \(T, I \) is independent of the level of \(PV \)

then \(PV \) & \(I \) are independent of \(T \).

i.e. *Preference Independence of \(PV, T, I \)*
Value Function

\[V(\text{project } j) = \sum_{i}^{\text{attributes}} w_i [v_{ij}(x_{ij})] \]
Value Function

\[V(\text{project } j) = \sum_{i} w_i [v_{ij}(x_{ij})] \]

where \(x_{ij} \) is the level of attribute \(i \) in project \(j \)

>
Value Function

\[V(\text{project } j) = \sum_{i}^{\text{attributes}} w_i[v_{ij}(x_{ij})] \]

where \(x_{ij} \) is the level of attribute \(i \) in project \(j \)

where \(v_{ij}(\cdot) \) is a “relative value preference of attribute \(i \) for project \(j \)”

\(v_{ij} \in [0, 1] \)
Value Function

\[V(\text{project } j) = \sum_{i}^{\text{attributes}} w_i [v_{ij}(x_{ij})] \]

- where \(x_{ij} \) is the level of attribute \(i \) in project \(j \)
- where \(v_{ij}(.) \) is a “relative value preference of attribute \(i \) for project \(j \)”
 \(v_{ij} \in [0, 1] \)
- where \(w_i \) are attribute weights, \(\sum w_i = 1 \)

Project \(j \) → score \(V_j \) & can compare projects: \(V_j \) to obtain ranking

<table>
<thead>
<tr>
<th>e.g.</th>
<th>(w_i)</th>
<th>(A) (v_{i1}) (j=1)</th>
<th>(B) (v_{i2}) (j=2)</th>
<th>(C) (v_{i3}) (j=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV</td>
<td>0.9</td>
<td>$20m 0.5</td>
<td>$15m 0</td>
<td>$25m 1</td>
</tr>
<tr>
<td>(T)</td>
<td>0.06</td>
<td>8y 0.6</td>
<td>5y 1</td>
<td>12y 0 (−ve)</td>
</tr>
<tr>
<td>(I)</td>
<td>0.04</td>
<td>200k 0.8</td>
<td>300k 1</td>
<td>100k 0</td>
</tr>
</tbody>
</table>

E.g. \(x_{23} \) = level of attribute \(T \) in Project 3 = 12.
\[\sum w_i = 1, \ w_i \geq 0 \] attribute weights
Value Function

\[V(\text{project } j) = \sum \limits_i^\text{attributes} w_i [v_{ij}(x_{ij})] \]

- where \(x_{ij} \) is the level of attribute \(i \) in project \(j \)
- where \(v_{ij}(\cdot) \) is a "relative value preference of attribute \(i \) for project \(j \)"
 \(v_{ij} \in [0, 1] \)
- where \(w_i \) are attribute weights, \(\sum w_i = 1 \)

Project \(j \rightarrow \) score \(V_j \) & can compare projects: \(V_j \) to obtain ranking

<table>
<thead>
<tr>
<th>e.g.</th>
<th>(w_i)</th>
<th>(A) (v_{i1})</th>
<th>(B) (v_{i2})</th>
<th>(C) (v_{i3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NPV})</td>
<td>0.9</td>
<td>$20m$ 0.5</td>
<td>$15m$ 0</td>
<td>$25m$ 1</td>
</tr>
<tr>
<td>(T)</td>
<td>0.06</td>
<td>8y 0.6</td>
<td>5y 1</td>
<td>12y 0 (−ve)</td>
</tr>
<tr>
<td>(I)</td>
<td>0.04</td>
<td>200k 0.8</td>
<td>300k 1</td>
<td>100k 0</td>
</tr>
</tbody>
</table>

- e.g. \(x_{23} \) = level of attribute \(T \) in Project 3 = 12.
 \(\sum w_i = 1, \ w_i \geq 0 \) attribute weights

Project A: \(V_A = 0.9 \times 0.5 + 0.06 \times 0.6 + 0.04 \times 0.8 = 0.518 \)

Project B: \(V_B = 0.9 \times 0 + 0.06 \times 1 + 0.04 \times 0 = 0.1 \)
Alternatives

<table>
<thead>
<tr>
<th></th>
<th>Job A</th>
<th>Job B</th>
<th>Job C</th>
<th>Job D</th>
<th>Job E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekly salary</td>
<td>$2000</td>
<td>$2400</td>
<td>$1800</td>
<td>$1900</td>
<td>$2200</td>
</tr>
<tr>
<td>Flexibility</td>
<td>mod</td>
<td>low</td>
<td>high</td>
<td>mod</td>
<td>none</td>
</tr>
<tr>
<td>Business skills</td>
<td>computer</td>
<td>people man.</td>
<td>operations</td>
<td>org.</td>
<td>time man.</td>
</tr>
<tr>
<td>Development</td>
<td>computer</td>
<td>computer</td>
<td></td>
<td>multitasking</td>
<td></td>
</tr>
<tr>
<td>Annual leave</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Benefits</td>
<td>health, dental retirement</td>
<td>health, dental retirement</td>
<td>health retirement</td>
<td>health</td>
<td>health, dental</td>
</tr>
<tr>
<td>Employment</td>
<td>great</td>
<td>good</td>
<td>good</td>
<td>great</td>
<td>boring</td>
</tr>
<tr>
<td>Location</td>
<td>Syd</td>
<td>Melb</td>
<td>Syd</td>
<td>Bris</td>
<td>Perth</td>
</tr>
</tbody>
</table>

This table provides a comparison of various job options, including their weekly salary, flexibility, business skills, development potential, annual leave, benefits, employment outlook, and location.
Landsburg

1.
Landsburg

1. Tax revenues are not a net benefits (when looking from society’s viewpoint) and a reduction in tax revenues is not a net cost.

2.
Landsburg

1. Tax revenues are not a net benefits (when looking from society’s viewpoint) and a reduction in tax revenues is not a net cost.
2. A cost is a cost, no matter who bears it.
3.
Landsburg

1. Tax revenues are not a net benefits (when looking from society’s viewpoint) and a reduction in tax revenues is not a net cost.
2. A cost is a cost, no matter who bears it.
3. A good is a good, no matter who owns it.
4.
Landsburg

1. Tax revenues are not a net benefits (when looking from society’s viewpoint) and a reduction in tax revenues is not a net cost.
2. A cost is a cost, no matter who bears it.
3. A good is a good, no matter who owns it.
4. Voluntary consumption is a good thing.
5.
Landsburg

1. Tax revenues are not a net benefits (when looking from society’s viewpoint) and a reduction in tax revenues is not a net cost.
2. A cost is a cost, no matter who bears it.
3. A good is a good, no matter who owns it.
4. Voluntary consumption is a good thing.
5. Don’t double count.

Only individuals matter

+

All individuals matter equally
(or: a $ is a $, no matter whose)
Real Options

(See Dixit & Pindyck and Bruun & Bason)

Disadvantages of NPV/DCF (especially for private firms):

1.
Real Options

(See Dixit & Pindyck and Bruun & Bason)

Disadvantages of NPV/DCF (especially for private firms):

1. positive-NPV opportunities might be bid away as firms enter (strategic rivalry)

2.
Real Options

(See Dixit & Pindyck and Bruun & Bason)

Disadvantages of NPV/DCF (especially for private firms):

1. positive-NPV opportunities might be bid away as firms enter (strategic rivalry)
2. allocation of overhead costs in a multi-project setting is non-trivial
3.
Real Options

(See Dixit & Pindyck and Bruun & Bason)

Disadvantages of NPV/DCF (especially for private firms):

1. positive-NPV opportunities might be bid away as firms enter (strategic rivalry)
2. allocation of overhead costs in a multi-project setting is non-trivial
3. assumption of reinvestment at the entire project’s rate is questionable
4.
Real Options

(See Dixit & Pindyck and Bruun & Bason)

Disadvantages of NPV/DCF (especially for private firms):

1. positive-NPV opportunities might be bid away as firms enter (strategic rivalry)
2. allocation of overhead costs in a multi-project setting is non-trivial
3. assumption of reinvestment at the entire project’s rate is questionable
4. the risk adjustment (β) of the discount rate depends on: project life, growth trend in the expected DCF, etc.
5.
Real Options

(See Dixit & Pindyck and Bruun & Bason)

Disadvantages of NPV/DCF (especially for private firms):

1. positive-NPV opportunities might be bid away as firms enter (strategic rivalry)
2. allocation of overhead costs in a multi-project setting is non-trivial
3. assumption of reinvestment at the entire project’s rate is questionable
4. the risk adjustment (β) of the discount rate depends on: project life, growth trend in the expected DCF, etc.
5. interdependencies among projects: spillovers, asymmetric (skewed) outcomes, etc.
6.

< >
Real Options

(See Dixit & Pindyck and Bruun & Bason)

Disadvantages of NPV/DCF (especially for private firms):

1. positive-NPV opportunities might be bid away as firms enter (strategic rivalry)
2. allocation of overhead costs in a multi-project setting is non-trivial
3. assumption of reinvestment at the entire project’s rate is questionable
4. the risk adjustment (β) of the discount rate depends on: project life, growth trend in the expected DCF, etc.
5. interdependencies among projects: spillovers, asymmetric (skewed) outcomes, etc.
6. investments are sunk (sometimes assumed not)
7.
Real Options

(See Dixit & Pindyck and Bruun & Bason)

Disadvantages of NPV/DCF (especially for private firms):

1. positive-NPV opportunities might be bid away as firms enter (strategic rivalry)
2. allocation of overhead costs in a multi-project setting is non-trivial
3. assumption of reinvestment at the entire project’s rate is questionable
4. the risk adjustment (β) of the discount rate depends on: project life, growth trend in the expected DCF, etc.
5. interdependencies among projects: spillovers, asymmetric (skewed) outcomes, etc.
6. investments are sunk (sometimes assumed not)
7. the Winner’s Curse when choosing one of several: the estimates of future costs and benefits are not unbiased in the most attractive project (highest benefits – costs): possibility of negative NPV.
What if there are options present:
What if there are options present:
 — timing: wait
 —
What if there are options present:

— timing: wait
— operational: flexibility & discretion once underway
—
What if there are options present:

— timing: wait
— operational: flexibility & discretion once underway
— growth: future options contingent on this project
What if there are options present:

- timing: wait
- operational: flexibility & discretion once underway
- growth: future options contingent on this project

Then NPV/DCF:

1.
What if there are options present:

— timing: wait
— operational: flexibility & discretion once underway
— growth: future options contingent on this project

Then NPV/DCF:

1. *with timing options:*
 if projects are exclusive or investment budgets limited, then projects effectively compete with themselves over time.

2.
What if there are options present:

— timing: wait
— operational: flexibility & discretion once underway
— growth: future options contingent on this project

Then NPV/DCF:

1. *with timing options:*
 if projects are exclusive or investment budgets limited, then projects effectively compete with themselves over time.

2. *with operational options:*
 including
 —
What if there are options present:
- timing: wait
- operational: flexibility & discretion once underway
- growth: future options contingent on this project

Then NPV/DCF:

1. with timing options:
 if projects are exclusive or investment budgets limited, then projects effectively compete with themselves over time.

2. with operational options:
 including
 - temporary shutdowns
 -
What if there are options present:

— timing: wait
— operational: flexibility & discretion once underway
— growth: future options contingent on this project

Then NPV/DCF:

1. *with timing options*:
 if projects are exclusive or investment budgets limited, then projects effectively compete with themselves over time.

2. *with operational options*:
 including
 — temporary shutdowns
 — expanding or scaling down operations
What if there are options present:

— timing: wait
— operational: flexibility & discretion once underway
— growth: future options contingent on this project

Then NPV/DCF:

1. with timing options:
 if projects are exclusive or investment budgets limited, then projects effectively compete with themselves over time.

2. with operational options:
 including
 — temporary shutdowns
 — expanding or scaling down operations
 — switching between inputs, outputs, or processes
 Can create value, but skew the return distribution: must use options techniques.

3.
What if there are options present:

— timing: wait
— operational: flexibility & discretion once underway
— growth: future options contingent on this project

Then NPV/DCF:

1. *with timing options:*
 if projects are exclusive or investment budgets limited, then projects effectively compete with themselves over time.

2. *with operational options:*
 including
 — temporary shutdowns
 — expanding or scaling down operations
 — switching between inputs, outputs, or processes

 Can create value, but skew the return distribution: must use options techniques.

3. *with growth options:*
 or follow-on investments, with distant and uncertain payoffs. Often, learning more about future options is most valuable.
Why not use Decision Analysis?

Plus: a Decision Tree does model asymmetries and paths, but
Why not use Decision Analysis?

Plus: a Decision Tree does model asymmetries and paths, but

Minus: as the value of the underlying asset (the project) changes over time, so does its risk and so the correct risk premium.
Why not use Decision Analysis?

Plus: a Decision Tree does model asymmetries and paths, but

Minus: as the value of the underlying asset (the project) changes over time, so does its risk and so the correct risk premium.

Answer: the principles of risk-neutral valuation with the Black-Scholes option pricing techniques.