LECTURE 8: PRICE-TAKING FIRMS

Today’s Topic: Price Rules, OK?

1. **A Competitive Market?** the meaning of competition, a price-taker’s revenue.

2. **Profit Maximisation and the Supply Curve:** a simple example, MC and supply, shut-down decisions, long-run entry or exit.

3. **Competitive Supply Curves:** market supply with a fixed number of firms, supply with entry or exit, shifts in demand, upwards-sloping long-run supply?
CONDITIONS FOR COMPETITION

Today: how price is everything for a price-taking firm in a competitive market;
CONDITIONS FOR COMPETITION

Today: how price is everything for a price-taking firm in a competitive market; short-run shutdown or permanent exit?
CONDITIONS FOR COMPETITION

Today: how price is everything for a price-taking firm in a competitive market; short-run shutdown or permanent exit? how the firm’s supply and the market supply curves happen.

Three conditions for perfect competition:
CONDITIONS FOR COMPETITION

Today: how price is everything for a price-taking firm in a competitive market; short-run shutdown or permanent exit? how the firm’s supply and the market supply curves happen.

Three conditions for perfect competition: many buyers and sellers in the market;
CONDITIONS FOR COMPETITION

Today: how price is everything for a price-taking firm in a competitive market; short-run shutdown or permanent exit? how the firm’s supply and the market supply curves happen.

Three conditions for perfect competition: many buyers and sellers in the market; goods or services offered for sale largely identical; and
CONDITIONS FOR COMPETITION

Today: how price is everything for a price-taking firm in a competitive market; short-run shutdown or permanent exit? how the firm’s supply and the market supply curves happen.

Three conditions for perfect competition: many buyers and sellers in the market; goods or services offered for sale largely identical; and (dynamically) firms can freely enter or exit the market.

Examples.
THE COMPETITIVE FIRM’S REVENUE

A price-taking firm faces a perfectly elastic, horizontal demand curve, at price P.
THE COMPETITIVE FIRM’S REVENUE

A price-taking firm faces a perfectly elastic, horizontal demand curve, at price P.

The firm can sell as much as it wishes at price P or below, but nothing at higher prices.

The firm’s Total Revenue, $TR = P \cdot y$, at output $y/period$.

Its Average Revenue: $AR = \frac{TR}{y} = P$

Its Marginal Revenue: $MR = \frac{\Delta R}{\Delta y} = P$

Remember: the firm cannot affect P by varying its output y.
EXAMPLE OF PROFIT MAXIMISATION

<table>
<thead>
<tr>
<th>Output Quantity</th>
<th>Total Revenue</th>
<th>Total Cost</th>
<th>Profit (\pi)</th>
<th>Marginal Revenue (MR)</th>
<th>Marginal Cost (MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(TR)</td>
<td>(TC)</td>
<td>(= TR - TC)</td>
<td>(= \Delta TR/\Delta y)</td>
<td>(= \Delta TC/\Delta y)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE OF PROFIT MAXIMISATION

<table>
<thead>
<tr>
<th>Output Quantity</th>
<th>Total Revenue (TR)</th>
<th>Total Cost (TC)</th>
<th>Profit (π)</th>
<th>Marginal Revenue (MR)</th>
<th>Marginal Cost (MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$0</td>
<td>$10</td>
<td>-$10</td>
<td>$20</td>
<td>$4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>-10</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>14</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE OF PROFIT MAXIMISATION

<table>
<thead>
<tr>
<th>Output Quantity</th>
<th>Total Revenue (TR)</th>
<th>Total Cost (TC)</th>
<th>Profit (π)</th>
<th>Marginal Revenue (MR)</th>
<th>Marginal Cost (MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$</td>
<td>$</td>
<td>= TR - TC</td>
<td>ΔTR/Δy</td>
<td>ΔTC/Δy</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>-10</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>14</td>
<td>6</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>22</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE OF PROFIT MAXIMISATION

<table>
<thead>
<tr>
<th>Output Quantity</th>
<th>Total Revenue (TR)</th>
<th>Total Cost (TC)</th>
<th>Profit (π)</th>
<th>Marginal Revenue (MR)</th>
<th>Marginal Cost (MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>TR $\ ($)$</td>
<td>TC $\ ($)$</td>
<td>$\pi = TR - TC$</td>
<td>$\Delta TR/\Delta y$</td>
<td>$\Delta TC/\Delta y$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>-10</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>14</td>
<td>6</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>22</td>
<td>18</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>34</td>
<td>26</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>70</td>
<td>30</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>94</td>
<td>26</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>140</td>
<td>122</td>
<td>18</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>154</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(GKSM, Table 14.2, with output price $P = $20/unit.)

TC rises disproportionately: Decreasing Returns to Scale DRTS, and hence rising MC. Why?
EXAMPLE OF PROFIT MAXIMISATION

<table>
<thead>
<tr>
<th>Output Quantity</th>
<th>Total Revenue ($)</th>
<th>Total Cost ($)</th>
<th>Profit = TR − TC</th>
<th>Marginal Revenue = ∆TR/∆y</th>
<th>Marginal Cost = ∆TC/∆y</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>TR</td>
<td>TC</td>
<td>π</td>
<td>MR</td>
<td>MC</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>−10</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>14</td>
<td>6</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>22</td>
<td>18</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>34</td>
<td>26</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>70</td>
<td>30</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>94</td>
<td>26</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>140</td>
<td>122</td>
<td>18</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>154</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(GKSM, Table 14.2, with output price \(P = \$20/\text{unit.} \))

\(TC\) rises disproportionately: Decreasing Returns to Scale (DRTS), and hence rising \(MC\). Why?

What is the profit-maximising level of output?
PROFIT-MAXIMISING GRAPHS

Total Costs and Revenues $

Output y/hr
PROFIT-MAXIMISING GRAPHS

Output \(y/\text{hr} \)

Total Costs and Revenues $
PROFIT-MAXIMISING GRAPHS

Output \(y/\text{hr} \)

Total Costs and Revenues $
PROFIT-MAXIMISING GRAPHS

Output \(y/hr \)

Total Costs and Revenues \$
PROFIT-MAXIMISING GRAPHS

Output \(y/\text{hr} \)

Total Costs and Revenues $
PROFIT-MAXIMISING GRAPHS

Output y/hr

Total Costs and Revenues $
PROFIT-MAXIMISING GRAPHS

Output $/hr

Total Costs and Revenues $

0 1 2 3 4 5 6 7 8

40 80 120 160
PROFIT-MAXIMISING GRAPHS

Output (y/hr)

Total Costs and Revenues ($)

TR
TC
π

Profit (π)
PROFIT-MAXIMISING GRAPHS

Output /hr

Total Costs and Revenues $:

\[TR \quad TC \]

Marginal Cost and Revenue $/unit:

\[MC \quad MR = AR = P \]

Output /hr

\[\pi \]
EFFECTS OF A PRICE FALL

[Graph showing total costs and revenues with output in y/hr on the x-axis and total costs and revenues in $ on the y-axis.]

- TC: Total Costs
- TR₁: Total Revenues for output level 1
- π₁: Profit for output level 1
EFFECTS OF A PRICE FALL

Output $/hr vs Total Costs and Revenues $

- TC, TR_1, TR_2

- π_1
EFFECTS OF A PRICE FALL

Two effects of a price fall:
Two effects of a price fall: lower maximum profit π^*, and
Two effects of a price fall: lower maximum profit π^*, and lower π-maximising output y^*.
Two effects of a price fall: lower maximum profit π^*, and lower π-maximising output y^*.

But the π-maximising output y^* is more easily seen on the $MC-MR$ plot.
Profit-maximising output y^* when $MC(y^*) = MR$.

$P = AR = MR$
MC CURVE AND SUPPLY

Profit-maximising output y^* when $MC(y^*) = MR$.

For a price-taking firm, $MR = AR = $ price P, so as P varies, read off the optimum y^* from the level of output where the horizontal demand curve (price P) cuts the upwards-sloping MC curve.
Profit-maximising output y^* when $MC(y^*) = MR$.

For a price-taking firm, $MR = AR = price\ P$, so as P varies, read off the optimum y^* from the level of output where the horizontal demand curve (price P) cuts the upwards-sloping MC curve.

∴ π-maximising output y^* when $P = MC(y^*)$ for a price-taking firm.
BOB’S BAGELS

Price & Costs, $/unit

Output y/hr

MC
ATC
AVC
BOB’S BAGELS

Price & Costs, $/unit

Output \(y/hr \)

\(MR = AR = P \)
The competitive firm’s supply curve is its MC curve.
The competitive firm’s supply curve is its MC curve. At price $P =$ $1.50, optimum output $y^* = 10$ units/hr, and profit $\pi = y^* \cdot (AR - ATC) = 10(1.5 - 1) = $5/hr.
ECONOMIC PROFITS: +VE & −VE

$\text{$/unit}$

$\text{MC}(y)$

$\text{AC}(y)$

P_1

$\text{AR}_1 = \text{MR}_1$

y_1

output/period
ECONOMIC PROFITS: +VE & −VE

Green rectangle = positive profit = \(y_1 \cdot (AR_1 - AC_1) \)

Red rectangle = negative profit: \(P_3 = AR_3 < AC_3 \).
SHUTDOWN IN THE SHORT RUN

The firm will make a loss (a negative profit) when the Average Revenue ($= P$) is less than ATC.
The firm will make a loss (a negative profit) when the Average Revenue (\(= P \)) is less than \(ATC \).

But it might still operate in the short run, so long as it can cover its \(VC \): In the short run the firm’s \(VC \) are avoidable (if the firm shuts down).
SHUTDOWN IN THE SHORT RUN

The firm will make a loss (a negative profit) when the Average Revenue \((= P)\) is less than \(ATC\).

But it might still operate in the short run, so long as it can cover its \(VC\): In the short run the firm’s \(VC\) are avoidable (if the firm shuts down).

So long as \(P = AR > AVC\), the firm will operate in the short run: price (i.e. \(AR\)) is sufficient to cover Variable Costs, even if it does not also cover Fixed Costs.
SHUTDOWN IN THE SHORT RUN

The firm will make a loss (a negative profit) when the Average Revenue (P) is less than ATC.

But it might still operate in the short run, so long as it can cover its VC: In the short run the firm’s VC are avoidable (if the firm shuts down).

So long as $P = AR > AVC$, the firm will operate in the short run: price (i.e. AR) is sufficient to cover Variable Costs, even if it does not also cover Fixed Costs.

How long can it supply while $AVC < P = AR < ATC$?
SHUTDOWN IN THE SHORT RUN

The firm will make a loss (a negative profit) when the Average Revenue (= P) is less than ATC.

But it might still operate in the short run, so long as it can cover its VC: In the short run the firm’s VC are avoidable (if the firm shuts down).

So long as $P = AR > AVC$, the firm will operate in the short run: price (i.e. AR) is sufficient to cover Variable Costs, even if it does not also cover Fixed Costs.

How long can it supply while $AVC < P = AR < ATC$? Depends.
SHORT-RUN SUPPLY CURVE

Price & Costs, $/unit

Output y/hr

MC

AVC

ATC
The competitive firm’s (Bob’s Bagels) short-run supply curve is its MC curve above AVC.
The competitive firm's (Bob's Bagels) long-run supply curve is its MC curve above ATC.
LONG-RUN ENTRY OR EXIT

In the longer run, FC may be partly avoidable, and exit will occur if the firm incurs a long-run loss: $\text{Profit} = \text{Total Revenue} - \text{Total Costs} < 0$.
LONG-RUN ENTRY OR EXIT

In the longer run, FC may be partly avoidable, and exit will occur if the firm incurs a long-run loss:

Profit = Total Revenue – Total Costs < 0.

Average Profit = $AR – ATC$

$\therefore \text{ Exit when Average Profit} < 0$, when $AR = P < ATC$ in the long run.
LONG-RUN ENTRY OR EXIT

In the longer run, FC may be partly avoidable, and exit will occur if the firm incurs a long-run loss: Profit = Total Revenue − Total Costs < 0.

Average Profit = AR − ATC

∴ Exit when Average Profit < 0, when AR = P < ATC in the long run.

A firm will not enter a market (industry) unless it expects a positive profit:

∴ Entry when AR = P > ATC in the long run.
LONG-RUN ENTRY OR EXIT

In the longer run, FC may be partly avoidable, and exit will occur if the firm incurs a long-run loss:

Profit = Total Revenue – Total Costs < 0.

Average Profit = $AR - ATC$

∴ Exit when Average Profit < 0, when $AR = P < ATC$ in the long run.

A firm will not enter a market (industry) unless it expects a positive profit:

∴ Entry when $AR = P > ATC$ in the long run.

Recall: TC includes the opportunity cost of capital used.
SUPPLY WITH NO ENTRY OR EXIT

The *Industry Supply Curve* S is the horizontal sum of the supply curves $S_1, S_2, S_3, \ldots S_n$ of the n individual price-taking firms:
SUPPLY WITH NO ENTRY OR EXIT

The *Industry Supply Curve* S is the horizontal sum of the supply curves $S_1, S_2, S_3, \ldots S_n$ of the n individual price-taking firms:

$$S = y_1 + y_2 + y_3 + \cdots + y_n$$

At price P', how much will each firm offer to supply?
SUPPLY WITH ENTRY AND EXIT

Firms enter (if $\pi > 0$) or exit ($\pi < 0$).
SUPPLY WITH ENTRY AND EXIT

Firms enter (if $\pi > 0$) or exit ($\pi < 0$). Entry shifts industry supply to the right, exit to the left.
SUPPLY WITH ENTRY AND EXIT

Firms enter (if $\pi > 0$) or exit ($\pi < 0$). Entry shifts industry supply to the right, exit to the left. As the industry supply shifts, so does the industry price P: entry pushes P down, exit up.
SUPPLY WITH ENTRY AND EXIT

Firms enter (if $\pi > 0$) or exit ($\pi < 0$). Entry shifts industry supply to the right, exit to the left. As the industry supply shifts, so does the industry price P: entry pushes P down, exit up.
Firms enter (if \(\pi > 0 \)) or exit (\(\pi < 0 \)). Entry shifts industry supply to the right, exit to the left. As the industry supply shifts, so does the industry price \(P \): entry pushes \(P \) down, exit up.
SUPPLY WITH ENTRY AND EXIT

Firms enter (if $\pi > 0$) or exit ($\pi < 0$). Entry shifts industry supply to the right, exit to the left. As the industry supply shifts, so does the industry price P: entry pushes P down, exit up.

Positive profit ($AR = P_1 > ATC$) induces entry.
SUPPLY WITH ENTRY AND EXIT

Firms enter (if \(\pi > 0 \)) or exit (\(\pi < 0 \)). Entry shifts industry supply to the right, exit to the left. As the industry supply shifts, so does the industry price \(P \): entry pushes \(P \) down, exit up.

Positive profit (\(AR = P_1 > ATC \)) induces entry. Equilibrium price \(P \) falls as supply shift right.
SUPPLY WITH ENTRY AND EXIT

Firms enter (if $\pi > 0$) or exit ($\pi < 0$). Entry shifts industry supply to the right, exit to the left. As the industry supply shifts, so does the industry price P: entry pushes P down, exit up.

Positive profit ($AR = P_1 > ATC$) induces entry. Equilibrium price P falls as supply shift right. The marginal firm’s profit falls to zero: $P_2 = MC = AC$
THE MARGINAL PRICE-TAKING FIRM

\[MC(y) \]

\[AC(y) \]

\[P_1 \]

\[P_2 \]

\[AR_1 = D_1 = MR_1 \]

\[AR_2 = D_2 = MR_2 \]

\[y^* \]

\[\text{output/period} \]

\[\$/\text{unit} \]
THE MARGINAL PRICE-TAKING FIRM

The *marginal firm*: the first to exit if long-run price P falls below P_2 (zero-profit). For this firm, new entrants have competed away any positive economic profits.
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is *price-taking*:
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is price-taking: \(AR = MR = P_2 \)
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is **price-taking**: \(AR = MR = P_2 \)
2. the firm is **profit-maximising**
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is **price-taking**: \(AR = MR = P_2 \)
2. the firm is **profit-maximising**: \(MR = P_2 = MC(y^*) \)
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is **price-taking**: \(AR = MR = P_2 \)
2. the firm is **profit-maximising**: \(MR = P_2 = MC(y^*) \)
3. the firm makes **zero profit**:
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is **price-taking**: \(AR = MR = P_2 \)
2. the firm is **profit-maximising**: \(MR = P_2 = MC(y^*) \)
3. the firm makes **zero profit**: \(AR = P_2 = ATC(y^*) \)
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is price-taking: $AR = MR = P_2$
2. the firm is profit-maximising: $MR = P_2 = MC(y^*)$
3. the firm makes zero profit: $AR = P_2 = ATC(y^*)$
4. y^* is the Efficient Scale of production:
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is price-taking: \(AR = MR = P_2 \)
2. the firm is profit-maximising: \(MR = P_2 = MC(y^*) \)
3. the firm makes zero profit: \(AR = P_2 = ATC(y^*) \)
4. \(y^* \) is the Efficient Scale of production: \(MC(y^*) = \min ATC(y^*) \)
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is price-taking: \(AR = MR = P_2 \)
2. the firm is profit-maximising: \(MR = P_2 = MC(y^*) \)
3. the firm makes zero profit: \(AR = P_2 = ATC(y^*) \)
4. \(y^* \) is the Efficient Scale of production: \(MC(y^*) = \min ATC(y^*) \)

\[\therefore AR = MR = P_2 = MC = ATC \text{ at } y^* \]
THE MARGINAL FIRM

Four things characterise this firm at equilibrium:

1. the firm is **price-taking**: \(AR = MR = P_2 \)
2. the firm is **profit-maximising**: \(MR = P_2 = MC(y^*) \)
3. the firm makes **zero profit**: \(AR = P_2 = ATC(y^*) \)
4. \(y^* \) is the **Efficient Scale of production**: \(MC(y^*) = \min ATC(y^*) \)

\[
\begin{align*}
\therefore \ AR &= MR = P_2 = MC = ATC \text{ at } y^* \\
\end{align*}
\]

Firms with lower costs will still have positive profits at \(P_2 \) and will operate above their Efficient Scales of Production.
A SHIFT IN DEMAND OVER TIME

From LR equilibrium, a shift in demand raises price (up the SR supply curve), which creates positive profits in the industry and larger quantity supplied.
A SHIFT IN DEMAND OVER TIME

From LR equilibrium, a shift in demand raises price (up the SR supply curve), which creates positive profits in the industry and larger quantity supplied. New firms enter, which shifts the SR supply to the right.
A SHIFT IN DEMAND OVER TIME

From LR equilibrium, a shift in demand raises price (up the SR supply curve), which creates positive profits in the industry and larger quantity supplied.

New firms enter, which shifts the SR supply to the right.

New equilibrium: price falls to minimum AC on the LR supply curve.
DOES LONG-RUN SUPPLY SLOPE UP?

Yes:
DOES LONG-RUN SUPPLY SLOPE UP?

Yes: even in the long run some input factors might be limited in supply
DOES LONG-RUN SUPPLY SLOPE UP?

Yes: even in the long run some input factors might be limited in supply (examples? land, rare mineral inputs, environmental amenity and absorption ability)
DOES LONG-RUN SUPPLY SLOPE UP?

Yes: even in the long run some input factors might be limited in supply (examples? land, rare mineral inputs, environmental amenity and absorption ability) so prices rise with increased demand (and so the firm’s production costs).
DOES LONG-RUN SUPPLY SLOPE UP?

Yes: even in the long run some input factors might be limited in supply (examples? land, rare mineral inputs, environmental amenity and absorption ability) so prices rise with increased demand (and so the firm’s production costs). (This is industry DRTS.)

Firms’ costs vary: lower-cost firms might have limited capacity to supply, and the marginal firm is one with higher costs, making zero long-run profit at a market price which provides the lower-cost firms with positive profits.
SUMMARY

1. Firms decide at the margin: their outputs, whether to shut down temporarily, or whether to exit or enter.
SUMMARY

1. Firms decide at the margin: their outputs, whether to shut down temporarily, or whether to exit or enter.

2. For competitive price-taking firms, Average Revenue = Marginal Revenue = Price.
SUMMARY

1. Firms decide at the margin: their outputs, whether to shut down temporarily, or whether to exit or enter.

2. For competitive price-taking firms, Average Revenue = Marginal Revenue = Price.

3. For competitive price-taking firms, their supply curve is their Marginal Cost curve above their Average Total Cost curve (or for short periods, above their Average Variable Cost curve).
SUMMARY

1. Firms decide at the margin: their outputs, whether to shut down temporarily, or whether to exit or enter.

2. For competitive price-taking firms, Average Revenue = Marginal Revenue = Price.

3. For competitive price-taking firms, their supply curve is their Marginal Cost curve above their Average Total Cost curve (or for short periods, above their Average Variable Cost curve).

4. Industry (or market) supply curves are horizontal (CRTS) or rising (DRTS).