
AGENT-BASED MODELS

AB Models are used where the interactions are
decentralised, and the autonomous agents make their
own decisions (perhaps constrained).

∴ AB models are suitable for interactions which are
bottom-up, not top-down.

∴ social and market interactions, rather than
engineering or internal organisational interactions.

Sometimes known as Agent-based Computational
Economics (ACE) models.
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Using AB models

In ABM/ACE models, a population of software objects is:

— instantiated, and each agent is given

— cer tain internal states (e.g., preferences,
endowments) and

— rules of behaviour (e.g., seek utility improvements).
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Using AB models

In ABM/ACE models, a population of software objects is:

— instantiated, and each agent is given

— cer tain internal states (e.g., preferences,
endowments) and

— rules of behaviour (e.g., seek utility improvements).

The agents are then permitted to interact directly with one
another. A macrostructure emerges from these
interactions.

< >
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Patterns Emerge

Patterns in this macrostructure may then be (Axtell, 2005):

— compared with empirical data,

— to revise agent internal states and rules, and

— the process repeated until an empirically plausible
model obtains.

e.g. ACE stock markets have been used to model
heterog eneous ag ents: will the stylised features of such
markets emerge?
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Patterns Emerge

Patterns in this macrostructure may then be (Axtell, 2005):

— compared with empirical data,

— to revise agent internal states and rules, and

— the process repeated until an empirically plausible
model obtains.

e.g. ACE stock markets have been used to model
heterog eneous ag ents: will the stylised features of such
markets emerge? Yes.
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What is an Agent?

An agent: a self-centred program that controls its own
actions based on its perceptions of its operating
environment.

Derived from the Distributed AI notion of a network of
calculating nodes.
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What is an Agent?

An agent: a self-centred program that controls its own
actions based on its perceptions of its operating
environment.

Derived from the Distributed AI notion of a network of
calculating nodes.

Example: the automata in Conway’s Game of Life or
Schelling’s Segregation game or the couples in March &
Lave’s Sons and Daughters game ..
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What is an Agent?

An agent: a self-centred program that controls its own
actions based on its perceptions of its operating
environment.

Derived from the Distributed AI notion of a network of
calculating nodes.

Example: the automata in Conway’s Game of Life or
Schelling’s Segregation game or the couples in March &
Lave’s Sons and Daughters game ..

Another example of an agent that won $2,000,000 in a
challeng e by the U.S. Department of Defense in October
2005 ...
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Ag ents and agency

Wooldridg e & Jennings (1995) would give computer
ag ents these proper ties:

• autonomy: no others control their actions and
internal state,

• social ability: can interact and communicate with
other agents

• reactive: they perceive their environment and
respond

• pro-active: they initiate goal-directed actions

• (intentionality: metaphors of beliefs, decisions,
motives, and even emotions)

< >
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Fur ther ag ent features:

plus (Epstein 1999):

• heterog eneity: not “representative” but may differ

• local interactions: in a defined space

• boundedly rational (Simon): information, memory,
computational capacity

• non-equilibrium dynamics: large-scale transitions,
tipping phenomena

< >
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Eight Desired Attributes of Modelled Agents (G&T)

1. Knowledg e & beliefs.
Ag ents act based on their knowledg e of the
environment (including other agents), which may be
faulty — their beliefs, not true knowledg e.

2.

< >



Lecture 2 R.E. Marks © 2007 Page 8

Eight Desired Attributes of Modelled Agents (G&T)

1. Knowledg e & beliefs.
Ag ents act based on their knowledg e of the
environment (including other agents), which may be
faulty — their beliefs, not true knowledg e.

2. Inference .
Given a set of beliefs, an agent might infer more
information.

3.
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Eight Desired Attributes of Modelled Agents (G&T)

1. Knowledg e & beliefs.
Ag ents act based on their knowledg e of the
environment (including other agents), which may be
faulty — their beliefs, not true knowledg e.

2. Inference .
Given a set of beliefs, an agent might infer more
information.

3. Social models.
Ag ents, knowing about interrelationships between
other agents, can develop a “social model”, or a
topology of their environment: who’s who. etc.

< >
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Eight Desired Attributes ...

4.
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Eight Desired Attributes ...

4. Knowledg e representation.
Ag ents need a representation of beliefs: e.g.
predicate logic, semantic (hierarchical) networks,
Bayesian (probabilistic) networks.

[Sebastian] Thrun [leader of the winning team
in the 2005 DARPA Grand Challenge] had a
Zen-like revelation: “A key prerequisite of true
intellig ence is knowledg e of one’s own
ignorance ,” he thought. Given the inherent
unpredictability of the world, robots, like
humans, will always make mistakes. So Thrun
pioneered what’s known as probabilistic
robotics. He programs his machines to adjust
their responses to incoming data based on the
probability that the data are correct. — Pacella
(2005).

< >
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Eight Desired Attributes ...

5.
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Eight Desired Attributes ...

5. Goals.
Ag ents driven by some internal goal, e.g. survival,
and its subsidiary goals (food, shelter). Usually
definition and management of goals imposed on the
ag ent.

6.
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Eight Desired Attributes ...

5. Goals.
Ag ents driven by some internal goal, e.g. survival,
and its subsidiary goals (food, shelter). Usually
definition and management of goals imposed on the
ag ent.

6. Planning.
Ag ent must (somehow) determine what actions will
attain its goal(s). Some agents modelled without
teleology (simple trial-and-error), others with
inference (forward-looking), or planning.

7.
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Eight Desired Attributes ...

5. Goals.
Ag ents driven by some internal goal, e.g. survival,
and its subsidiary goals (food, shelter). Usually
definition and management of goals imposed on the
ag ent.

6. Planning.
Ag ent must (somehow) determine what actions will
attain its goal(s). Some agents modelled without
teleology (simple trial-and-error), others with
inference (forward-looking), or planning.

7. Language .
For communication (of information, negotiation,
threats). Modelling language is difficult. (Want to
avoid inadver tent communication, e.g. through the
genome of a population in the GA.)

8.
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Eight Desired Attributes ...

5. Goals.
Ag ents driven by some internal goal, e.g. survival,
and its subsidiary goals (food, shelter). Usually
definition and management of goals imposed on the
ag ent.

6. Planning.
Ag ent must (somehow) determine what actions will
attain its goal(s). Some agents modelled without
teleology (simple trial-and-error), others with
inference (forward-looking), or planning.

7. Language .
For communication (of information, negotiation,
threats). Modelling language is difficult. (Want to
avoid inadver tent communication, e.g. through the
genome of a population in the GA.)

8. Emotions.
Emergent features? Significant in modelling
ag ents? Or epiphenomenal?
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How to Model Agent Architecture?

Early approach to modelling cognitive abilities (symbolic
paradigm) was fragile , complex, and lacked common
sense .
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How to Model Agent Architecture?

Early approach to modelling cognitive abilities (symbolic
paradigm) was fragile , complex, and lacked common
sense .

Since then, five approaches:

1. Production Systems

2. Object Orientation

3. Language Parsing & Generation

4. Machine-Learning Techniques, and (most recently)

5. Probabilistic Robotics — Stanley (Thrun et al. 2005).
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How to Model Agent Architecture?

Early approach to modelling cognitive abilities (symbolic
paradigm) was fragile , complex, and lacked common
sense .

Since then, five approaches:

1. Production Systems

2. Object Orientation

3. Language Parsing & Generation

4. Machine-Learning Techniques, and (most recently)

5. Probabilistic Robotics — Stanley (Thrun et al. 2005).

Ignore 3., 4. last lecture, 5. too new.
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Production Systems

Contain:

1. a set of rules (a condition + an action),

2. a working memory, and

3. a rule interpreter (is the condition satisfied? if so,
act)

No prespecified order of rules: contingent.

The agent’s designer specifies how to break ties among
rules.

< >



Lecture 2 R.E. Marks © 2007 Page 13

Object Orientation

In “object-oriented” programming languages:

• “objects” are program structures containing data +
procedures for operating on those data;

• the data are stored in “slots” inside the object;

• the procedures are called “methods”;

• objects created from templates called “classes”;

• classes are ranked in a hierarchy, with subordinate
classes more specialised.

< >
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Modelling pedestrian flow.

e.g. Pedestrian flow in a shopping mall —

• Class: pedestrian;

• Slots: location, direction, gait;

• Subclass 1: lone walkers;

• Subclass 2: group walkers (with a List of Who, and
Interactions with others in the group).
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Modelling pedestrian flow.

e.g. Pedestrian flow in a shopping mall —

• Class: pedestrian;

• Slots: location, direction, gait;

• Subclass 1: lone walkers;

• Subclass 2: group walkers (with a List of Who, and
Interactions with others in the group).

If the rules are specified at the class level, then all agents
share the rules, but with different attributes.
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Modelling pedestrian flow.

e.g. Pedestrian flow in a shopping mall —

• Class: pedestrian;

• Slots: location, direction, gait;

• Subclass 1: lone walkers;

• Subclass 2: group walkers (with a List of Who, and
Interactions with others in the group).

If the rules are specified at the class level, then all agents
share the rules, but with different attributes.

OO computer languages: C++, Lisp, Java. etc.
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Probabilistic Robotics

In the 2004 DARPA Grand Challenge, robots used
Production System architecture .

Results:
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Probabilistic Robotics

In the 2004 DARPA Grand Challenge, robots used
Production System architecture .

Results: The most successful entrant in the 2004 race
completed just 7.4 miles of the 150-mile off-road (desert)
course , and only six of the fifteen cars competing
travelled even 1.3 miles.
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In the 2004 DARPA Grand Challenge, robots used
Production System architecture .

Results: The most successful entrant in the 2004 race
completed just 7.4 miles of the 150-mile off-road (desert)
course , and only six of the fifteen cars competing
travelled even 1.3 miles.

In the 2005 Grand Challenge, many robots used
probabilistic (or Bayesian or fuzzy-logic) architecture .

Results:
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Probabilistic Robotics

In the 2004 DARPA Grand Challenge, robots used
Production System architecture .

Results: The most successful entrant in the 2004 race
completed just 7.4 miles of the 150-mile off-road (desert)
course , and only six of the fifteen cars competing
travelled even 1.3 miles.

In the 2005 Grand Challenge, many robots used
probabilistic (or Bayesian or fuzzy-logic) architecture .

Results: “Stanley,” Stanford’s robotic Volkswagen Touareg
beat the field, completing the 132-mile race with a winning
time of 6 hours 53 minutes 58 seconds (an average speed
of 19.1 mph). Four other vehicles successfully completed
the race. All but one of the 23 finalists in the 2005 race
surpassed the 7.36 mile distance completed by the best
vehicle in the 2004 race.

< >



Lecture 2 R.E. Marks © 2007 Page 16

Grand Challenge Rules

• The vehicle must travel autonomously on the ground
in under ten hours.

• The vehicle must stay within the course boundaries
as defined by a data file provided by DARPA.

• The vehicle may use GPS and other public signals.

• No control commands may be sent to the vehicle
while en route .

• The vehicle must not intentionally touch any other
competing vehicle .

• An autonomous service station is permitted at a
checkpoint area approximately halfway between start
and finish.

The Stanford team won the first prize of US $2,000,000 in
2005.

< >
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Modelling the Environment

Definition of the environment depends on what is being
modelled.

For individuals:

• move in a space, or on a network;

• use sensors to perceive the environment, including
other agents;

• perhaps be able to affect the environment directly;

• perhaps receive and send signals in the
environment.

For computer agents, the order of agents running can be
crucial (“concurrency”). Sometimes, buffering their
signals is sufficient.

< >
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G & T Use NetLogo to build a multi-agent simulation.

< >



Lecture 2 R.E. Marks © 2007 Page 19

Economic Journal June 2005 Feature —

• focussed on Complex Adaptive Systems CAS in
economics

• appeared just after Leombruni & Richiardi asked,
“Why are economists sceptical about agent-based
simulations?” (Physica A 355: 103−109, 2005.)

• included 4 papers: introduced by Markose , with
papers by Axtell, Robson, and Durlauf

• addressing, respectively,

— markets as complex adaptive systems,

— formal complexity issues,

— the co-evolutionar y Red Queen effect and
novelty, and

— the empirical and testable manifestations of
CAS in economic phenomena.

< >
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Markose and the EJ Feature on CAS:

• many “anomalies” not understood or modelled using
conventional optimisation economics:

— innovation,

— competitive co-evolution,

— persistent heterog eneity,

— increasing returns,

— “the error-driven processes behind market
equilibrium,”

— herding,

— crashes and extreme events such as October
1987.

• need the “adaptive or emergent methods” of ACE
simulation

< >
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Moreover ...

Axtell (2005) argues that:

• the decentralised market as a whole can be seen as
a collective computing device

• the parallel distributed agent-based models of k-
lateral exchang e → the specific level of complexity
(polynomial) in calculations of equilibrium prices
and allocations.

< >
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Simon’s Bounded Rationality

Ag ent-based models, following Simon (1982), also assume
Bounded Rationality. Indeed, in the absence of Turing
machine (universal calculator), it is difficult not to.

But Epstein (2006) reflects:
“One wonders how the core concerns and history of
economics would have developed if, instead of being
inspired by continuum physics ... blissfully unconcerned
as it is with effective computability — it had been founded
on Turing. Finitistic issues of computability, learnability,
attainment of equilibrium (rather than mere existence),
problem complexity, and undecidability, would then have
been central from the start. Their foundational importance
is only now being recognized.

< >
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Epstein on the virtues of boundedly rational agents ...

“As Duncan Foley summariz es:

`The theory of computability and computational
complexity suggest that there are two inherent
limitations to the rational choice paradigm.

One limitation stems from the possibility that the
ag ent’s problem is in fact undecidable , so that no
computational procedure exists which for all inputs
will give her the needed answer in finite time.

A second limitation is posed by computational
complexity in that even if her problem is decidable ,
the computational cost of solving it may in many
situations be so large as to overwhelm any possible
gains from the optimal choice of action.’ (See Albin
1998, 46).”

< >
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ABM → Generative Explanation:

Generative explanation (Epstein 2006):

“If you haven’t grown it, you haven’t explained its
emergence .”

To answer: how could the autonomous, local interactions
of heterog eneous boundely rational agents generate the
obser ved regularity (that emerges)?

— Generative sufficiency is a necessar y but not sufficient
condition for explanation. Each realisation is a strict
deduction.

Grüne-Yanoff (2006) argues to distinguish functional
explanations (easier for simulators) from causal
explanations (much less achievable for social scientists).

< >
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Truth and Beauty

Epstein (2006): does AB simulation lack beauty?

Russell: Mathematics as cold, austere, supreme beauty.

Russell: Beauty when “the premises achive more than
would have been thought possible , by means which
appear natural and inevitable .”

The first damns computer simulation, but the second can
occur with emergence from AB models.

Epstein compares different schools of classical music:
German v. French.

Truth (from agent-based modelling) can be beautiful too.

< >
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Formalisation of Agent-Based Models

Epstein (2006): ever y ag ent model is a computer program.

∴ Turing computable

But for ever y Turing machine , ∃ a unique corresponding
and equivalent

par tial recursive function.

They might be extremely complex and difficult to interpret,
but they exist.

Hence: “recursive” or “effectively computable” or
“constructive” or “generative” (after Chomsky) social
science .

< >
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Validation of Agent-Based Models

Moss & Edmonds (2005): for AB models at least two
stages of empirical validation.

1. the micro-validation of the behaviour of the
individual agents in the model, by reference to data
on individual behaviour.

2.
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Validation of Agent-Based Models

Moss & Edmonds (2005): for AB models at least two
stages of empirical validation.

1. the micro-validation of the behaviour of the
individual agents in the model, by reference to data
on individual behaviour.

2. macrovalidation of the model’s aggregate or
emergent behaviour when individual agents
interact, by reference to aggregate time series.

with the emergence of novel behaviour, possible
surprise and possible highly non-standard
behaviour, it’s difficult to verify using standard
statistical methods.

∴ only qualitative validation judgments might be
possible .
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Simulation and Necessity?

Mathematical “model A” comprises the conjunction
(a1∧ a2∧ a3

. . .∧ an), where ∧ means “AND”, and the a i

denote the elements (equations, parameters, initial
conditions, etc) that constitute the model.
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Mathematical “model A” comprises the conjunction
(a1∧ a2∧ a3

. . .∧ an), where ∧ means “AND”, and the a i

denote the elements (equations, parameters, initial
conditions, etc) that constitute the model.

Sufficiency: If model A exhibits the desired target
behaviour B , then model A is sufficient to obtain exhibited
behaviour B: A ⇒ B

Thus, any model that exhibits the desired behaviour is
sufficient, and demonstrates one conjunction of
conditions (or model) under which the behaviour can be
simulated.
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Simulation and Necessity?

Mathematical “model A” comprises the conjunction
(a1∧ a2∧ a3

. . .∧ an), where ∧ means “AND”, and the a i

denote the elements (equations, parameters, initial
conditions, etc) that constitute the model.

Sufficiency: If model A exhibits the desired target
behaviour B , then model A is sufficient to obtain exhibited
behaviour B: A ⇒ B

Thus, any model that exhibits the desired behaviour is
sufficient, and demonstrates one conjunction of
conditions (or model) under which the behaviour can be
simulated.

But if there are several such models, how can we choose
among them? And what is the set of all such conjunctions
(models)?
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Necessity

Necessity: Only those models A belonging to the set of
necessar y models N exhibit target behaviour B .

That is, (A ∈ N ) ⇒ B , and (D ∉ N ) ⇒ ⁄ B .

< >
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Necessity

Necessity: Only those models A belonging to the set of
necessar y models N exhibit target behaviour B .

That is, (A ∈ N ) ⇒ B , and (D ∉ N ) ⇒ ⁄ B .

A difficult challeng e: determine the set of necessary
models, N.

Since each model A = (a1∧ a2∧ a3
. . .∧ an), searching for the

set N of necessary models means searching in a high-
dimensional space, with no guarantee of continuity, and a
possible large number of non-linear interactions among
elements.
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Lack of Necessity Means ...

For instance, if D ⇒ ⁄ B , it does not mean that all elements
a i of model D are invalid or wrong, only their conjunction,
that is, model D .

It might be only a single element that precludes model D
exhibiting behaviour B .

But determining whether this is so and which is the
offending element is a costly exercise , in general, for the
simulator.

Without clear knowledg e of the boundaries of the set of
necessar y models, it is difficult to generalise from
simulations.
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Lack of Necessity Means ...

For instance, if D ⇒ ⁄ B , it does not mean that all elements
a i of model D are invalid or wrong, only their conjunction,
that is, model D .

It might be only a single element that precludes model D
exhibiting behaviour B .

But determining whether this is so and which is the
offending element is a costly exercise , in general, for the
simulator.

Without clear knowledg e of the boundaries of the set of
necessar y models, it is difficult to generalise from
simulations.

Only when the set N of necessary models is known to be
small (such as in the case of DNA structure by the time
Watson & Crick were searching for it) is it relatively easy
to use simulation to derive necessity.
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Formalisation of Validation

Let set P be the possible range of obser ved outputs of the
real-world system.

Let set M be the exhibited outputs of the model in any
week.

Let set S be the specific, historical output of the real-
world system in any week.

Let set Q be the intersection, if any, between the set M and
the set S, Q ≡ M ∩ S.

We can characterise the model output in several cases.
(Mankin et al. 1977).
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Five Cases for Validation

a. no intersection between M and S (Q = ∅ ), then the model is
useless.

b. intersection Q is not null, then the model is useful, to some
degree: will correctly exhibit some real-world system
behaviours, will not exhibit other behaviours, and will exhibit
some behaviours that do not historically occur. Both
incomplete and inaccurate.

c. If M is a proper subset of S (M ⊂ S), then all the model’s
behaviours are correct (match historical behaviours), but the
model doesn’t exhibit all behaviour that historically occurs:
accurate but incomplete .

d. If S is a proper subset of M (S ⊂ M), then all historical
behaviour is exhibited, but will exhibit some behaviours that
do not historically occur: complete but inaccurate .

e. If the set M is equivalent to the set S (M ⇔ S), then (in your
dreams!) the model is complete and accurate.

< >
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Validation Relationships

(a)

S

M

(b)

S Q M

(e)

S M Q

(c)

S M Q

(d)

M S Q

Figure 2: Validity relationships (after Haefner (2005)).
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Modelling Goals

One goal: to construct and calibrate the model so that M ≈
Q ≈ S: there are very few historically obser ved behaviours
that the model does not exhibit, and there are very few
exhibited behaviours that do not occur historically.

The model is close to being both complete and accurate.
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Modelling Goals

One goal: to construct and calibrate the model so that M ≈
Q ≈ S: there are very few historically obser ved behaviours
that the model does not exhibit, and there are very few
exhibited behaviours that do not occur historically.

The model is close to being both complete and accurate.

In practice, a modeller might be happier to achieve case
d., where the model is complete (and hence provides
sufficiency for all observed historical phenomena), but not
accurate .
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Measures of Validity

A measure of validity which balances the Type I error of
inaccuracy with the Type II error of incompleteness.

Define a metric m() (a ratio scale) on the sets.

Define inaccuracy α as

(1)α ≡ 1 −
m(Q)

m(M)
,

and incompleteness γ as

(2)γ ≡ 1 −
m(Q)

m(S)
.
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Continued ...

A measure of degree of validation V : a weighted average
of inaccuracy α and incompleteness γ:

(3)V ≡ v (1 −α) + (1 −v )(1 − γ)

∴ V = v
m(Q)

m(M)
+ (1 −v )

m(Q)

m(S)

(4)∴ V = m(Q)



v

m(M)
+

1 −v

m(S)




The value of the weight v , 0 ≤ v ≤ 1, reflects the tradeoff
between accuracy and completeness.
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Trade-offs

Possible to reduce incompleteness by generalising the
model and so expanding the domain of set M until S is a
proper subset of M, as in case d.

Or by narrowing the scope of the historical behaviour to
be modelled, so reducing the domain of S.
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Possible to reduce incompleteness by generalising the
model and so expanding the domain of set M until S is a
proper subset of M, as in case d.

Or by narrowing the scope of the historical behaviour to
be modelled, so reducing the domain of S.

Also be possible to reduce inaccuracy by restricting the
model through use of narrower assumptions and so
contracting the domain of M.

If M is sufficiently small to be a proper subset of S, as in
case c., then the model will never exhibit anhistorical
behaviour.
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Trade-offs

Possible to reduce incompleteness by generalising the
model and so expanding the domain of set M until S is a
proper subset of M, as in case d.

Or by narrowing the scope of the historical behaviour to
be modelled, so reducing the domain of S.

Also be possible to reduce inaccuracy by restricting the
model through use of narrower assumptions and so
contracting the domain of M.

If M is sufficiently small to be a proper subset of S, as in
case c., then the model will never exhibit anhistorical
behaviour.

But not guaranteed to maintain a non-null intersection Q,
and it is possible that the process results in case a., with
no intersection.
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Look in the Right Place

Reminiscent of the economist looking for his lost car keys
under the street light (M), instead of near the car where he
dropped them in the dark (S).

Advocates of simulated solutions, such as Judd (2006),
have argued that it is better to “have an approximate
answer to the right question, than an exact answer to the
wrong question,” to quote Tukey (1962).

< >



Lecture 2 R.E. Marks © 2007 Page 39

References:

• P.S. Albin, ed. 1998. Barriers and Bounds to Rationality: Essays on Economic Complexity and
Dynamics in Interactive Systems. PUP, Princeton. Introduction by D.K. Foley.

• R. Axtell, The complexity of exchang e , The Economic Journal, 115 (June), F193−F210, 2005.

• S. Durlauf, Complexity and empirical economics, The Economic Journal, 115 (June), F225−F243, 2005.

• J.M. Epstein, Agent-based computational models and generative social science, Complexity, 1999.

• J.M. Epstein, Remarks on the Foundations of Agent-Based Generative Social Science, Handbook of
Computational Economics, Volume 2: Agent-Based Modeling, edited by Leigh Tesfatsion and Kenneth
L. Judd, Amsterdam: Elsevier Science, 2006.

• T. Grüne-Yanoff, The Explanatory Potential of Artificial Societies, Models and Simulations (Paris,
2006).

• A. Hailu & S. Schilizzi, Are Auctions More Efficient Than Fixed Price Schemes When Bidders Learn?
Australian Journal of Management, 29(2): 147−168, December 2004.

• R. Leombruni & M. Richiardi, Why are economists sceptical about agent-based simulations? Physica
A 355: 103−109, 2005.

• S.M. Markose , Computability and evolutionar y complexity: markets as complex adaptive systems
(CAS), The Economic Journal, 115 (June), F159−F192, 2005.

• R.E. Marks (2007), Validating Simulation Models: A General Framework and Four Applied Examples,
Computational Economics, for thcoming.

• D.F. Midgley, Marks R.E., and Kunchamwar D. (2007) The Building and Assurance of Agent-Based
Models: An Example and Challenge to the Field, Journal of Business Research, Special Issue:
Complexities in Markets, 60: 884−893.

• R.M. Pacella (2005), DARPA Grand Challenge, Popular Science, October.

• A.J. Robson, Complex evolutionar y systems and the Red Queen, The Economic Journal, 115 (June),
F211−F224, 2005.

< >



Lecture 2 R.E. Marks © 2007 Page 40

• Simon, H.A. 1982. Models of Bounded Rationality. Cambridg e , MA: MIT Press.

• Simon, H.A. 1987. Rationality in Psychology and Economics. Rational Choice: The Contrast Between
Economics and Psychology, Hogar th, R.M. and Reder, M.W. eds. Chicago: University of Chicago
Press.

• S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT Press, September 2005.

• M. Wooldridg e & N. R. Jennings, Intelligent Agents: Theory and Practice, Knowledg e Engineering
Review, 1995.

<




