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Abstract :

The purpose of this research is to search for the best (highes t
per for ming) risk profile of agents who successivel y choose
among risky prospects. An agent ’s risk profile is his attitude
to perceived risk, which can var y from risk prefer ring to risk
neutr al (an expect ed-value decision maker) to risk averse.
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Abstract :

The purpose of this research is to search for the best (highes t
per for ming) risk profile of agents who successivel y choose
among risky prospects. An agent ’s risk profile is his attitude
to perceived risk, which can var y from risk prefer ring to risk
neutr al (an expect ed-value decision maker) to risk averse.

We use the Genetic Algorit hm to search in the
comple x stochas tic space of repeat ed lott eries. We find that
agents with a CARA utility function learn to possess risk-
neutr al risk profiles. Since CARA utility functions are
wealt h-independent, this is not sur pr ising. When agents
have wealt h-dependent, CRRA utility functions, however,
they also learn to possess risk profiles that are about risk
neutr al (from slightly risk-averse to even slightl y risk-
prefer ring), which is surpr ising.
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1. Introduction

Infor mally, it is widel y held that in an uncertain world, with
the possibility of the discontinuity of bankruptcy, the most
pr udent risk profile is risk aversion. Indeed, “Risk aversion is
one of the most basic assumptions underlying economic
behavior” (Szpiro 1997), perhaps because “a dollar that helps
us avoid poverty is more valuable than a dollar that helps us
become ver y rich” (Rabin 2000). But is risk aversion the
bes t risk profile? Even with bankr uptcy as a possibility?
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Infor mally, it is widel y held that in an uncertain world, with
the possibility of the discontinuity of bankruptcy, the most
pr udent risk profile is risk aversion. Indeed, “Risk aversion is
one of the most basic assumptions underlying economic
behavior” (Szpiro 1997), perhaps because “a dollar that helps
us avoid poverty is more valuable than a dollar that helps us
become ver y rich” (Rabin 2000). But is risk aversion the
bes t risk profile? Even with bankr uptcy as a possibility?

To answer this ques tion, we use two kinds of utility
function (the wealt h-independent exponential utility
function, or Constant Absolut e Risk Aversion CARA , and the
Cons tant Relative Risk Aversion CRRA function, which is
sensitive to the agent ’s level of wealt h) and run comput er
exper iments in which each agent chooses among three
lott eries, and is then awarded with the outcome of the
chosen lott ery.
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Repetition of this choice by many agents allows us use a
technique from machine learning — the Genetic Algorit hm
(Holland 1992) — to search for the best risk profile, where
“bes t” means the highest average pay off when chosing
among lott eries.
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Repetition of this choice by many agents allows us use a
technique from machine learning — the Genetic Algorit hm
(Holland 1992) — to search for the best risk profile, where
“bes t” means the highest average pay off when chosing
among lott eries.

Modelling the agent ’s utility directl y allows us to
av oid the indirect inference of Szpiro (1997), who argues that
the evolutionar y lear ning technique of the GA does two
things: it allows wealt h-maximizing agents to succeed even
is highly stochas tic environments, and it allows the
emergence of risk aversion. Indeed, Szpiro argues that risk
av ersion is the best risk profile to adopt in such an
environment.
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2. Decisions under Uncer tainty and Risk Profiles

The von Neumann-Morgens t ern for mulation of the decision-
maker ’s attitude to risk is based on the observation that
individuals are not alw ays expect ed-value decision maker s.
That is, there are situations in which people apparentl y
prefer a lower cer tain outcome to the higher expect ed (or
probility-weight ed) outcome of an uncertain prospect (where
the possible outcomes and their possibly subjective, or
Bayesian, probabilities are known).
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The von Neumann-Morgens t ern for mulation of the decision-
maker ’s attitude to risk is based on the observation that
individuals are not alw ays expect ed-value decision maker s.
That is, there are situations in which people apparentl y
prefer a lower cer tain outcome to the higher expect ed (or
probility-weight ed) outcome of an uncertain prospect (where
the possible outcomes and their possibly subjective, or
Bayesian, probabilities are known).

An example is paying an insurance premium that is
great er than the expect ed loss without insurance. On the
ot her hand, people will sometimes “gamble” by apparentl y
prefer ring a lower uncer tain outcome to a higher sure thing:
this is risk-prefer ring.
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We can for malise this by obser ving that, by definition, the
utility of a lott ery is its expect ed utility, or

(1)U (L) =Σ p iU (x i ),

where each (discret e) outcome x i occur s wit h probability p i ,
and U (x i ) is the utility of outcome x i .
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We can for malise this by obser ving that, by definition, the
utility of a lott ery is its expect ed utility, or

(1)U (L) =Σ p iU (x i ),

where each (discret e) outcome x i occur s wit h probability p i ,
and U (x i ) is the utility of outcome x i . It is useful to define
the Cer tainty Equiv alent x̃ (or C.E.), which is a certain
outcome which has the identical utility as the lott ery:

(2)U (x̃ ) ≡ U (L) =Σ p iU (x i ).

We can use the C.E. to descr ibe the decision-maker ’s
risk profile (Howard 1968). Define the Expected Value x of
the Lottery as:

(3)x =Σ p i x i .

When x̃ = x then the decision-maker ’s utility
function exhibits risk neutrality, when x̃ < x then risk
av ersion, and when x̃ > x then risk preference.
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Approximating the Certainty Equiv alent

Expand utility U (. ) about the expect ed value x .

U (x0) ≈ U (x ) + (x0 − x )U ′(x ) + 1
2

(xo − x )2U ′′ (x )
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Approximating the Certainty Equiv alent

Expand utility U (. ) about the expect ed value x .

U (x0) ≈ U (x ) + (x0 − x )U ′(x ) + 1
2

(xo − x )2U ′′ (x )

The C. E. x̃ of a continuous lott ery is obt ained by int egration
ov er the probability density function (p.d.f.) fx (. ):

(4)
U (x̃ ) = ∫dx0U (x0)fx (x0)

≈ U (x ) + 0 + 1
2
σ2U ′′ (x )

But, by expansion,

(5)U (x̃ ) ≈ U (x ) + (x̃ − x )U ′(x ).

Therefore, from equations (4) and (5),

(6)
x̃ − x ≈ 1

2
σ2 U ′′ (x )

U ′(x )

∴ x̃ ≈ x + 1
2
σ2 U ′′ (x )

U ′(x )
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Risk aversion
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Risk aversion

Risk aversion is not indicat ed by the slope of the utility
cur ve: it’s the cur vature: if the utility curve is locall y —

1. linear (say, at a point of inflection), then the decision
maker is locall y risk neutral.

2.
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Risk aversion

Risk aversion is not indicat ed by the slope of the utility
cur ve: it’s the cur vature: if the utility curve is locall y —

1. linear (say, at a point of inflection), then the decision
maker is locall y risk neutral.

2. concave (its slope is decreasing — Diminishing
Marginal Utility), then the decision maker is locall y
risk averse;

3. conve x (its slope is increasing), then the decision
maker is locall y risk preferring.
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Risk-averse, risk-neutr al, and risk-prefer ring exponential
utility functions.
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3. Utility Functions

We consider two types of utility function: those which exhibit
cons tant risk preference across all outcomes (so-called wealt h-
independent utility functions, or Constant Absolut e Risk Aversion
CARA functions), and those where the risk preference is a function
of the wealt h of the decision maker (the Constant Relative Risk
Av ersion CRRA functions).
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Wealt h Independence

If an increase of all outcomes in a lott ery by an amount ∆
increases the C.E. by ∆, then the decision maker exhibits wealt h
independence:

U (x̃ +∆) = U (L′) =Σ p iU (x i +∆).
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Acceptance of this proper ty restricts possible utility functions to be
linear (risk neutral) or exponential, the wealt h-independent, or
cons tant-absolut e-risk-aversion (CARA) functions.

< >



Risk Aversion R. E. Marks © 2008 Page 12

Wealt h Independence

If an increase of all outcomes in a lott ery by an amount ∆
increases the C.E. by ∆, then the decision maker exhibits wealt h
independence:

U (x̃ +∆) = U (L′) =Σ p iU (x i +∆).

Acceptance of this proper ty restricts possible utility functions to be
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of risk preference by a sing le number, the risk aversion coefficient,
γ.

< >



Risk Aversion R. E. Marks © 2008 Page 12

Wealt h Independence

If an increase of all outcomes in a lott ery by an amount ∆
increases the C.E. by ∆, then the decision maker exhibits wealt h
independence:

U (x̃ +∆) = U (L′) =Σ p iU (x i +∆).

Acceptance of this proper ty restricts possible utility functions to be
linear (risk neutral) or exponential, the wealt h-independent, or
cons tant-absolut e-risk-aversion (CARA) functions.

Acceptance of wealt h independence leads to the charact erisation
of risk preference by a sing le number, the risk aversion coefficient,
γ.

Since CARA utility functions are wealt h-independent, any aversion
to bankr uptcy is thus precluded, by definition.
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3.1 CARA Utility Functions

When utility is linear in outcomes, the decision maker is risk-
neutr al, across all outcomes, but such a simple constant-r isk-profile
utility function is of no further interes t.
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3.1 CARA Utility Functions

When utility is linear in outcomes, the decision maker is risk-
neutr al, across all outcomes, but such a simple constant-r isk-profile
utility function is of no further interes t. Ins t ead, we consider the
exponential CARA functions, where utility U is given by

(7)U (x ) = 1 − e−γx ,

where U (0) = 0 and U (∞) = 1, and
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3.1 CARA Utility Functions

When utility is linear in outcomes, the decision maker is risk-
neutr al, across all outcomes, but such a simple constant-r isk-profile
utility function is of no further interes t. Ins t ead, we consider the
exponential CARA functions, where utility U is given by

(7)U (x ) = 1 − e−γx ,

where U (0) = 0 and U (∞) = 1, and
where γ is the risk aversion coefficient:

(8)γ ≡ −
U ′′ (x )

U ′(x )
.
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Risk Aversion with Exponential Utility
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Risk Aversion with Exponential Utility

Fr om equations (6) and (8), for exponential utility,

x̃ ≈ x − 1
2
σ2γ

which indicates that when γ = 0, then x̃ ≈ x (r isk neutr ality),
when γ > 0, then x̃ < x (r isk av erse), and when γ < 0, then x̃ > x
(r isk prefer ring), with positive var iance.
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Risk Aversion with Exponential Utility

Fr om equations (6) and (8), for exponential utility,

x̃ ≈ x − 1
2
σ2γ

which indicates that when γ = 0, then x̃ ≈ x (r isk neutr ality),
when γ > 0, then x̃ < x (r isk av erse), and when γ < 0, then x̃ > x
(r isk prefer ring), with positive var iance.

Summar izing this:

Sign of γ Risk profile Curvature

γ = 0  risk neutral U ′′ (x ) = 0
γ > 0  risk averse U ′′ (x ) < 0
γ < 0  risk prefer ring U ′′ (x ) > 0
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3.2 CRRA Utility Functions

We want a utility function which is not wealt h-independent, to see
whet her that will result in risk-averse agents doing best.
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3.2 CRRA Utility Functions

We want a utility function which is not wealt h-independent, to see
whet her that will result in risk-averse agents doing best.

The Arrow-Pr att measure of relative risk aversion (RRA) is defined
as

(9)ρ(w ) = −w
U ′′ (w )

U ′(w )
= w γ

This introduces wealt h w int o the agent ’s risk preferences, so that
lower wealt h can be associated with higher risk aversion. Risk
av ersion coefficient γ is as in equation (8).
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3.2 CRRA Utility Functions

We want a utility function which is not wealt h-independent, to see
whet her that will result in risk-averse agents doing best.

The Arrow-Pr att measure of relative risk aversion (RRA) is defined
as

(9)ρ(w ) = −w
U ′′ (w )

U ′(w )
= w γ

This introduces wealt h w int o the agent ’s risk preferences, so that
lower wealt h can be associated with higher risk aversion. Risk
av ersion coefficient γ is as in equation (8).

The Constant Elasticity of Substitution (CES) utility function:

(10)U (w ) =
w 1−ρ

1 − ρ
, w > 0,

exhibits CRRA, equation (9).
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Risk Aversion with CES Utility

In the CRRA simulations, we use the cumulative sum of the
realisations of payoffs won in previous lott eries chosen by the
agent plus the possible payoff in this lott ery as the wealt h w in
equation (10).
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Risk Aversion with CES Utility

In the CRRA simulations, we use the cumulative sum of the
realisations of payoffs won in previous lott eries chosen by the
agent plus the possible payoff in this lott ery as the wealt h w in
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In the CRRA simulations, we use the cumulative sum of the
realisations of payoffs won in previous lott eries chosen by the
agent plus the possible payoff in this lott ery as the wealt h w in
equation (10).

Each agent codes for ρ.

Fr om equation (6), the C.E. with CES utility is approximat ed by

x̃ ≈ x − 1
2

ρ

w
σ2

If f 1
2

ρ

w
σ2 > 0 (or ρ/w > 0), then C.E. x̃ < expect ed mean x , and

the decision maker is risk averse.

With w > 0, ρ > 0 is equiv alent to risk aversion.
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4. The Simulations

Each lott ery is randoml y cons truct ed: the two pay offs (“pr izes”)
are randoml y chosen in the inter val from 1 to 2 × MAP, usuall y
100; and the probability is also chosen randoml y. (Each lott ery has,
of course, a single degree of freedom for probability). Each agent
calculat es the expect ed utility of each of the three lott eries, using
its utility function (a function of its γ or ρ/w ), and chooses the
lott ery wit h the highes t expect ed utility. To do this, agents know
the prizes and probabilities of all three lott eries.
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lott ery wit h the highes t expect ed utility. To do this, agents know
the prizes and probabilities of all three lott eries.

Then the actual (simulated) outcome of the chosen lott ery
is randoml y realised, using its probability. The winnings of the
Cons tant Absolut e Risk Aversion agent (respectivel y, the wealt h of
the Cons tant Relative Risk Aversion agent) is increment ed
according ly. Each agent chooses 1000 lott eries.
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100; and the probability is also chosen randoml y. (Each lott ery has,
of course, a single degree of freedom for probability). Each agent
calculat es the expect ed utility of each of the three lott eries, using
its utility function (a function of its γ or ρ/w ), and chooses the
lott ery wit h the highes t expect ed utility. To do this, agents know
the prizes and probabilities of all three lott eries.

Then the actual (simulated) outcome of the chosen lott ery
is randoml y realised, using its probability. The winnings of the
Cons tant Absolut e Risk Aversion agent (respectivel y, the wealt h of
the Cons tant Relative Risk Aversion agent) is increment ed
according ly. Each agent chooses 1000 lott eries. At this stage there
is a population of agents, each of which has a average winnings or
a cumulative level of wealt h, based on its risk profile and the
successive outcomes of its choices among the lott eries.

< >



Risk Aversion R. E. Marks © 2008 Page 18

Searching with the Genetic Algorit hm

We now use an implement ation of the Genetic Algorit hm (Gilber t
200 4) to search for the best risk profile. That is, we select the
bes t-performing agents to be the “parents” of the next gener ation
of agents, which is gener ated by “crossover” and “mutation” of
the chromosomes of the pairs of parents. Each of the new
gener ation of agents chooses the lott ery wit h highes t expect ed
utility a thousand times. Ag ain, the best are select ed to be the
parents of the next gener ation.
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We now use an implement ation of the Genetic Algorit hm (Gilber t
200 4) to search for the best risk profile. That is, we select the
bes t-performing agents to be the “parents” of the next gener ation
of agents, which is gener ated by “crossover” and “mutation” of
the chromosomes of the pairs of parents. Each of the new
gener ation of agents chooses the lott ery wit h highes t expect ed
utility a thousand times. Ag ain, the best are select ed to be the
parents of the next gener ation.

We use the GA simulation in this search as an empir ical
alt ernative to sol ving for the best (highes t per for ming) risk profile
anal yticall y. Not e that Rabin (2000) asserts that “theor y actuall y
predicts virtual risk neutrality.” We retur n to this paper in the
Discussion below.
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The Simulations with CARA Utility

Using NetLogo (Wilensky 1999), we model each agent as a binary
string which codes to its risk-aversion coefficient, γ, in the inter val
± 1.048576.
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Each lott ery is a two-pr ize lott ery, where each prize is chosen from
a unifor m dis tribution, between 1 and 2 × MAP (maximum
absolut e pr ize), where MAP can be set up to 100 by the simulator,
and the single probability is chosen randoml y from unifor m [0,1].
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from equations (1) and (7), based on its value of γ. Then a
realised outcome is calculated for that lott ery, based on its
probability.
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Using NetLogo (Wilensky 1999), we model each agent as a binary
string which codes to its risk-aversion coefficient, γ, in the inter val
± 1.048576.

Each lott ery is a two-pr ize lott ery, where each prize is chosen from
a unifor m dis tribution, between 1 and 2 × MAP (maximum
absolut e pr ize), where MAP can be set up to 100 by the simulator,
and the single probability is chosen randoml y from unifor m [0,1].

Each agent chooses the lott ery wit h the highes t expect ed utility
from equations (1) and (7), based on its value of γ. Then a
realised outcome is calculated for that lott ery, based on its
probability.

Each agent faces 1000 lott ery choices, and the cumulative winnings
that agent ’s “fitness” for the Genetic Algorit hm.
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The CARA Results

See http://www.agsm.edu.au/∼ bobm/teaching/SimSS/NetLogo4-models/RA-CARA-
EU-3l2p.html for a Jav a aplet and the NetLogo code.

The windows captured from the NetLogo simulations show three
things clearly:

1.
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(more risk-prefer ring) leads to the minimum (red) fitness in
that gener ation collapsing from close to the mean fitness.
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(more risk-prefer ring) leads to the minimum (red) fitness in
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These observations clearly show that CARA agents perform bes t
(in ter ms of their lott ery winnings) who are closes t to risk neutral
(γ = 0).
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See http://www.agsm.edu.au/∼ bobm/teaching/SimSS/NetLogo4-models/RA-CARA-
EU-3l2p.html for a Jav a aplet and the NetLogo code.

The windows captured from the NetLogo simulations show three
things clearly:

1. The mean (black) fitness grows quic kly to a plat eau af ter 20
gener ations or so;

2. the mean, maximum, and minimum risk-aversion
coef ficients γ (resp. black, green, red) converge to close to
zero (risk neutrality) over the same period, and

3. Any γ deviation from zero up (more risk-averse) or down
(more risk-prefer ring) leads to the minimum (red) fitness in
that gener ation collapsing from close to the mean fitness.

These observations clearly show that CARA agents perform bes t
(in ter ms of their lott ery winnings) who are closes t to risk neutral
(γ = 0).

Too risk averse, and they forgo fair lott eries; too risk prefer ring and
they choose too many risky lott eries.
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The CRRA Results

See http://www.agsm.edu.au/∼ bobm/teaching/SimSS/NetLogo4-models/DRA-CRRA-EU-
revCD-3l2p.html for a Jav a aplet and the NetLogo code.
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See http://www.agsm.edu.au/∼ bobm/teaching/SimSS/NetLogo4-models/DRA-CRRA-EU-
revCD-3l2p.html for a Jav a aplet and the NetLogo code.

Despit e our prior belief, the CARA agents do not lear n to be risk
av erse, but to be risk neutral. Is this because the wealt h-
independent CARA utility function precludes bankruptcy?
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We could, of course, put a floor on agent wealt h, below which is
oblivion, but better to use a utility for mulation that is not wealt h
independent and repeat the search.
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We could, of course, put a floor on agent wealt h, below which is
oblivion, but better to use a utility for mulation that is not wealt h
independent and repeat the search. We use the CES utility
functions (equation (10)) that exhibits CRRA.
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The CRRA Results

See http://www.agsm.edu.au/∼ bobm/teaching/SimSS/NetLogo4-models/DRA-CRRA-EU-
revCD-3l2p.html for a Jav a aplet and the NetLogo code.

Despit e our prior belief, the CARA agents do not lear n to be risk
av erse, but to be risk neutral. Is this because the wealt h-
independent CARA utility function precludes bankruptcy?

We could, of course, put a floor on agent wealt h, below which is
oblivion, but better to use a utility for mulation that is not wealt h
independent and repeat the search. We use the CES utility
functions (equation (10)) that exhibits CRRA.

The results are not sur pr ising: the CRRA agents learn to be slightl y
risk averse (or risk neutral or slightly risk-prefer ring with ρ < 0).

Remember : γ =
ρ

w
, so dividing the ρ values by the high w values

att ained implies corresponding minute values of γ here.

“
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5. Discussion

Unlike the GA simulations of Szpiro (1997), we find that
the bes t-performing CARA agents are risk-neutr al, not risk averse.
Because of the indirect way in which Szpiro modelled the risk
profiles of his agents (unlike a referee ’s sugges tion, footnote 3,
Szpiro’s model “only dis tinguishes between risk-averse aut omata
and all other s”), explanation of the contradict ory results is not
easy, but since our models allow any risk profile to emerge, we
argue that they are more gener al than Szpiro’s.
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5. Discussion

Unlike the GA simulations of Szpiro (1997), we find that
the bes t-performing CARA agents are risk-neutr al, not risk averse.
Because of the indirect way in which Szpiro modelled the risk
profiles of his agents (unlike a referee ’s sugges tion, footnote 3,
Szpiro’s model “only dis tinguishes between risk-averse aut omata
and all other s”), explanation of the contradict ory results is not
easy, but since our models allow any risk profile to emerge, we
argue that they are more gener al than Szpiro’s.

Should we be sur pr ised that risk neutrality does better than
risk aversion in CARA utility functions? Rabin (2000) sugges ts a
reason why not, at leas t for small-s takes lott eries. He argues that
von Neumann-Morgens t ern expect ed-utility theor y is inappropr iate
for reconciling actual human behaviour as revealed in risk attitudes
ov er large stakes and small stakes. If there is risk aversion for
small stakes, then expect ed-utility theor y predicts wildly
unrealis tic risk aversion when the decision maker is faced with
large stakes. Or risk aversion for large stakes mus t be accompanied
by vir tual risk neutrality for small stakes.
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Rabin argues that loss aversion (K ahneman and Tversky
19 79), rat her than risk aversion, is a better (i.e. more realis tic)
explanation of how people actually behave when faced with risky
decisions. This sugges ts possibilities for further simulations,
alt hough “loss aversion” sugges ts a prior conclusion.
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explanation of how people actually behave when faced with risky
decisions. This sugges ts possibilities for further simulations,
alt hough “loss aversion” sugges ts a prior conclusion.

But we do not appeal to empir ical evidence or even to prior
beliefs of what sort of risk profile is best. Whereas there has been
much research into reconciling actual human decision making with
theor y (see Arthur 1991), we are int eres t ed in seeing what is the
bes t (i.e. most profit able) risk profile for agents faced with risky
choices.

< >



Risk Aversion R. E. Marks © 2008 Page 23

Rabin argues that loss aversion (K ahneman and Tversky
19 79), rat her than risk aversion, is a better (i.e. more realis tic)
explanation of how people actually behave when faced with risky
decisions. This sugges ts possibilities for further simulations,
alt hough “loss aversion” sugges ts a prior conclusion.

But we do not appeal to empir ical evidence or even to prior
beliefs of what sort of risk profile is best. Whereas there has been
much research into reconciling actual human decision making with
theor y (see Arthur 1991), we are int eres t ed in seeing what is the
bes t (i.e. most profit able) risk profile for agents faced with risky
choices.

And we find that for wealt h-independent CARA utility
functions (exponential) agents learn to become risk-neutr al
decision maker s in order to maximise their retur ns when choosing
among risky propositions. This is different from the risk-averse
agents that Szpiro (1997) obser ved. But for wealt h-dependent
CRRA utility functions (CES) our agents often do lear n to be
slightl y risk averse, as expect ed, but not alw ays.
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