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Abstract:

The purpose of this research is to search for the best (highest
performing) risk profile of agents who successively choose
among risky prospects. An agent’s risk profile is his attitude
to perceived risk, which can vary from risk preferring to risk
neutral (an expected-value decision maker) to risk averse.

We use the Genetic Algorithm to search in the
complex stochastic space of repeated lotteries. We find that
agents with a CARA utility function learn to possess risk-
neutral risk profiles. Since CARA utility functions are
wealth-independent, this is not surprising. When agents
have wealth-dependent, CRRA utility functions, however,
they also learn to possess risk profiles that are about risk
neutral (from slightly risk-averse to even slightly risk-
preferring), which is surprising.
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Informally, it is widely held that in an uncertain world, with
the possibility of the discontinuity of bankruptcy, the most
prudent risk profile is risk aversion. Indeed, “Risk aversion is
one of the most basic assumptions underlying economic
behavior” (Szpiro 1997), perhaps because “a dollar that helps
us avoid poverty is more valuable than a dollar that helps us
become very rich” (Rabin 2000). But is risk aversion the
best risk profile? Even with bankruptcy as a possibility?
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Informally, it is widely held that in an uncertain world, with
the possibility of the discontinuity of bankruptcy, the most
prudent risk profile is risk aversion. Indeed, “Risk aversion is
one of the most basic assumptions underlying economic
behavior” (Szpiro 1997), perhaps because “a dollar that helps
us avoid poverty is more valuable than a dollar that helps us
become very rich” (Rabin 2000). But is risk aversion the
best risk profile? Even with bankruptcy as a possibility?

To answer this question, we use two kinds of utility
function (the wealth-independent exponential utility
function, or Constant Absolute Risk Aversion CARA, and the
Constant Relative Risk Aversion CRRA function, which is
sensitive to the agent’s level of wealth) and run computer
experiments in which each agent chooses among three
lotteries, and is then awarded with the outcome of the
chosen lottery.
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technique from machine learning — the Genetic Algorithm
(Holland 1992) — to search for the best risk profile, where
“best” means the highest average payoff when chosing
among lotteries.



Repetition of this choice by many agents allows us use a
technique from machine learning — the Genetic Algorithm
(Holland 1992) — to search for the best risk profile, where
“best” means the highest average payoff when chosing
among lotteries.

Modelling the agent’s utility directly allows us to
avoid the indirect inference of Szpiro (1997), who argues that
the evolutionary learning technique of the GA does two
things: it allows wealth-maximizing agents to succeed even
is highly stochastic environments, and it allows the
emergence of risk aversion. Indeed, Szpiro argues that risk
aversion is the best risk profile to adopt in such an
environment.



2. Decisions under Uncertainty and Risk Profiles

The von Neumann-Morgenstern formulation of the decision-
maker’s attitude to risk is based on the observation that
individuals are not always expected-value decision makers.
That is, there are situations in which people apparently
prefer a lower certain outcome to the higher expected (or
probility-weighted) outcome of an uncertain prospect (where
the possible outcomes and their possibly subjective, or
Bayesian, probabilities are known).
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The von Neumann-Morgenstern formulation of the decision-
maker’s attitude to risk is based on the observation that
individuals are not always expected-value decision makers.
That is, there are situations in which people apparently
prefer a lower certain outcome to the higher expected (or
probility-weighted) outcome of an uncertain prospect (where
the possible outcomes and their possibly subjective, or
Bayesian, probabilities are known).

An example is paying an insurance premium that is
greater than the expected loss without insurance. On the
other hand, people will sometimes “gamble” by apparently
preferring a lower uncertain outcome to a higher sure thing:
this is risk-preferring.
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We can formalise this by observing that, by definition, the
utility of a lottery is its expected utility, or

U = ¥ piU(x;), (1)

where each (discrete) outcome X; occurs with probability p;,
and U(X;) is the utility of outcome X;. It is useful to define
the Certainty Equivalent X (or C.E.), which is a certain
outcome which has the identical utility as the lottery:

U(x)=U(L) = X p;U(x;). (2)

We can use the C.E. to describe the decision-maker’s
risk profile (Howard 1968). Define the Expected Value X of
the Lottery as:

X =3 piX;. (3)

When X = X then the decision-maker’s utility
function exhibits risk neutrality, when X < X then risk
aversion, and when X > X then risk preference.
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Approximating the Certainty Equivalent
Expand utility U(. ) about the expected value Xx.
U(x,) = U(X) + (X, — X)U'(X) + 5 (X, — X)*U"(X)

The C. E. X of a continuous lottery is obtained by integration
over the probability density function (p.d.f.) f, (.):

U(x) = IdXoU(Xo)fx(Xo)

(4)
=U(X)+0+ 3 0*U"(X)
But, by expansion,
U(x) = U(x) + (x — x)U'(xX). (5)
Therefore, from equations (4) and (5),
X-X=30" 55 (6)

2 U"(x)
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Risk aversion

Risk aversion is not indicated by the slope of the utility
curve: it’s the curvature: if the utility curve is locally —

I. linear (say, at a point of inflection), then the decision
maker is locally risk neutral.

2. concave (its slope is decreasing — Diminishing
Marginal Utility), then the decision maker is locally
risk averse;

3. convex (its slope is increasing), then the decision
maker is locally risk preferring.
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3. Utility Functions

We consider two types of utility function: those which exhibit
constant risk preference across all outcomes (so-called wealth-
independent utility functions, or Constant Absolute Risk Aversion
CARA functions), and those where the risk preference is a function

of the wealth of the decision maker (the Constant Relative Risk
Aversion CRRA functions).
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Wealth Independence

If an increase of all outcomes in a lottery by an amount A
increases the C.E. by A, then the decision maker exhibits wealth
independence:

U(x +A4)=U() = X p;U(x; + Q).

Acceptance of this property restricts possible utility functions to be
linear (risk neutral) or exponential, the wealth-independent, or
constant-absolute-risk-aversion (CARA) functions.

Acceptance of wealth independence leads to the characterisation
of risk preference by a single number, the risk aversion coefficient,

T.
Since CARA utility functions are wealth-independent, any aversion
to bankruptcy is thus precluded, by definition.
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3.1 CARA Utility Functions

When utility is linear in outcomes, the decision maker is risk-

neutral, across all outcomes, but such a simple constant-risk-profile
utility function is of no further interest. Instead, we consider the
exponential CARA functions, where utility U is given by

U(x)=1-eTT¥, (7)

where U(0) =0 and U(o0) = 1, and
where 7 is the risk aversion coefficient:

_U"(x)
U'(x)

, = (8)
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Risk Aversion with Exponential Utility

From equations (6) and (8), for exponential utility,

~

~ v _ | 2
X=X EO'T

which indicates that when 7 = 0, then X = X (risk neutrality),
when 7 > 0, then X < X (risk averse), and when 7 <0, then X > X
(risk preferring), with positive variance.

Summarizing this:

Sign of 7 Risk profile Curvature

r=0 risk neutral U'(x)=0
r>0 risk averse U'(x)<0
r <0 risk preferring U"(x)>0
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3.2 CRRA Utility Functions

We want a utility function which is not wealth-independent, to see
whether that will result in risk-averse agents doing best.

The Arrow-Pratt measure of relative risk aversion (RRA) is defined
as

Un(w) _
U'(w)
This introduces wealth w into the agent’s risk preferences, so that

lower wealth can be associated with higher risk aversion. Risk
aversion coefficient 7 is as in equation (8).

wry )]

pw) = -w

The Constant Elasticity of Substitution (CES) utility function:

I-p
Uw)=——, w>o, (10)
I-p
exhibits CRRA, equation (9).
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Risk Aversion with CES Utility

In the CRRA simulations, we use the cumulative sum of the
realisations of payoffs won in previous lotteries chosen by the
agent plus the possible payoff in this lottery as the wealth w in
equation (10).

Each agent codes for p.

From equation (6), the C.E. with CES utility is approximated by
P 2

¢ ~ x — 1
) G ¢ >

S

Iff 2 £ 0> 0 (or p/w > 0), then C.E. X < expected mean X, and
the decision maker is risk averse.

With w > 0, p > 0 is equivalent to risk aversion.
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Each lottery is randomly constructed: the two payoffs (“prizes”)
are randomly chosen in the interval from I to 2 X MAP, usually
100; and the probability is also chosen randomly. (Each lottery has,
of course, a single degree of freedom for probability). Each agent
calculates the expected utility of each of the three lotteries, using
its utility function (a function of its 7 or p/w), and chooses the
lottery with the highest expected utility. To do this, agents know
the prizes and probabilities of all three lotteries.
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Each lottery is randomly constructed: the two payoffs (“prizes”)
are randomly chosen in the interval from I to 2 X MAP, usually
100; and the probability is also chosen randomly. (Each lottery has,
of course, a single degree of freedom for probability). Each agent
calculates the expected utility of each of the three lotteries, using
its utility function (a function of its 7 or p/w), and chooses the
lottery with the highest expected utility. To do this, agents know
the prizes and probabilities of all three lotteries.

Then the actual (simulated) outcome of the chosen lottery
is randomly realised, using its probability. The winnings of the
Constant Absolute Risk Aversion agent (respectively, the wealth of
the Constant Relative Risk Aversion agent) is incremented
accordingly. Each agent chooses 1000 lotteries. At this stage there
is a population of agents, each of which has a average winnings or
a cumulative level of wealth, based on its risk profile and the
successive outcomes of its choices among the lotteries.
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2004) to search for the best risk profile. That is, we select the
best-performing agents to be the “parents” of the next generation
of agents, which is generated by “crossover” and “mutation” of
the chromosomes of the pairs of parents. Each of the new
generation of agents chooses the lottery with highest expected
utility a thousand times. Again, the best are selected to be the
parents of the next generation.



Searching with the Genetic Algorithm

We now use an implementation of the Genetic Algorithm (Gilbert
2004) to search for the best risk profile. That is, we select the
best-performing agents to be the “parents” of the next generation
of agents, which is generated by “crossover” and “mutation” of
the chromosomes of the pairs of parents. Each of the new
generation of agents chooses the lottery with highest expected
utility a thousand times. Again, the best are selected to be the
parents of the next generation.

We use the GA simulation in this search as an empirical
alternative to solving for the best (highest performing) risk profile
analytically. Note that Rabin (2000) asserts that “theory actually
predicts virtual risk neutrality.” We return to this paper in the
Discussion below.
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The Simulations with CARA Utility

Using NetLogo (Wilensky 1999), we model each agent as a binary
string which codes to its risk-aversion coefficient, 7, in the interval
+ 1.048576.

Each lottery is a two-prize lottery, where each prize is chosen from
a uniform distribution, between 1 and 2 X MAP (maximum
absolute prize), where MAP can be set up to 100 by the simulator,
and the single probability is chosen randomly from uniform [0,1].

Each agent chooses the lottery with the highest expected utility
from equations (1) and (7), based on its value of y. Then a
realised outcome is calculated for that lottery, based on its
probability.

Each agent faces 1000 lottery choices, and the cumulative winnings
that agent’s “fitness” for the Genetic Algorithm.
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See http://www.agsm.edu.au/lbobm/teaching/SimSS/NetLogo4-models/RA-CARA—
EU-312p.html for a Java aplet and the NetLogo code.

The windows captured from the NetLogo simulations show three
things clearly:

I. The mean (black) fitness grows quickly to a plateau after 20
generations or so;

2. the mean, maximum, and minimum risk-aversion
coefficients 7 (resp. black, green, red) converge to close to
zero (risk neutrality) over the same period, and

3. Any 7 deviation from zero up (more risk-averse) or down
(more risk-preferring) leads to the minimum (red) fitness in
that generation collapsing from close to the mean fitness.

These observations clearly show that CARA agents perform best
(in terms of their lottery winnings) who are closest to risk neutral

(r =0).

Too risk averse, and they forgo fair lotteries; too risk preferring and
they choose too many risky lotteries.
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The CRRA Results

See http://www.agsm.edu.au/lbobm/teaching/SimSS/NetLogo4-models/DRA-CRRA-EU-
revCD-312p.html for a Java aplet and the NetLogo code.

Despite our prior belief, the CARA agents do not learn to be risk
averse, but to be risk neutral. Is this because the wealth-
independent CARA utility function precludes bankruptcy?

We could, of course, put a floor on agent wealth, below which is
oblivion, but better to use a utility formulation that is not wealth
independent and repeat the search. We use the CES utility
functions (equation (10)) that exhibits CRRA.

The results are not surprising: the CRRA agents learn to be slightly
risk averse (or risk neutral or slightly risk-preferring with p < 0).

Remember: 7 = %, so dividing the p values by the high w values

attained implies corresponding minute values of 7 here.
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5. Discussion

Unlike the GA simulations of Szpiro (1997), we find that
the best-performing CARA agents are risk-neutral, not risk averse.
Because of the indirect way in which Szpiro modelled the risk
profiles of his agents (unlike a referee’s suggestion, footnote 3,
Szpiro’s model “only distinguishes between risk-averse automata
and all others”), explanation of the contradictory results is not
easy, but since our models allow any risk profile to emerge, we
argue that they are more general than Szpiro’s.
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argue that they are more general than Szpiro’s.

Should we be surprised that risk neutrality does better than
risk aversion in CARA utility functions? Rabin (2000) suggests a
reason why not, at least for small-stakes lotteries. He argues that
von Neumann-Morgenstern expected-utility theory is inappropriate
for reconciling actual human behaviour as revealed in risk attitudes
over large stakes and small stakes. If there is risk aversion for
small stakes, then expected-utility theory predicts wildly
unrealistic risk aversion when the decision maker is faced with
large stakes. Or risk aversion for large stakes must be accompanied
by virtual risk neutrality for small stakes.



Rabin argues that loss aversion (Kahneman and Tversky
1979), rather than risk aversion, is a better (i.e. more realistic)
explanation of how people actually behave when faced with risky
decisions. This suggests possibilities for further simulations,
although “loss aversion” suggests a prior conclusion.
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much research into reconciling actual human decision making with
theory (see Arthur 1991), we are interested in seeing what is the
best (i.e. most profitable) risk profile for agents faced with risky
choices.



Rabin argues that loss aversion (Kahneman and Tversky
1979), rather than risk aversion, is a better (i.e. more realistic)
explanation of how people actually behave when faced with risky
decisions. This suggests possibilities for further simulations,
although “loss aversion” suggests a prior conclusion.

But we do not appeal to empirical evidence or even to prior
beliefs of what sort of risk profile is best. Whereas there has been
much research into reconciling actual human decision making with
theory (see Arthur 1991), we are interested in seeing what is the
best (i.e. most profitable) risk profile for agents faced with risky
choices.

And we find that for wealth-independent CARA utility
functions (exponential) agents learn to become risk-neutral
decision makers in order to maximise their returns when choosing
among risky propositions. This is different from the risk-averse
agents that Szpiro (1997) observed. But for wealth-dependent
CRRA utility functions (CES) our agents often do learn to be
slightly risk averse, as expected, but not always.
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