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Abstract

LIGOPOLISTIC pricing decisions—in which

the choice variable is not dichotomous as in the

simple Prisoner’s Dilemma but continuous—
have been modeled as a Generalized Prisoner’s
Dilemma by Fader and Hauser. In the two MIT
Computer Strategy Tournaments, they sought to obtain
an effective generalization of Rapoport’s Tit for Tat in
the three-person repeated game. Holland’s genetic
algorithm and Axelrod’s representation of contingent
strategies provide a means of generating new strategies
in the computer, through machine learning, without an
open tournament.

The paper discusses how findings from two-
person tournaments can be extended to the Generalized
Prisoner’s Dilemma, in particular how the author’s
winning strategy in the Second MIT Competitive
Strategy Tournament could be bettered. The paper
provides insight into how oligopolistic pricing
competitors can successfully compete, and underlines
the importance of “niche” strategies, successful against
a particular environment of competitors.

Bootstrapping, or breeding strategies against
their peers, provides a means of examining whether
“repetition leads to cotperation”: we show that it can,
under certain conditions, for simple and extended two-
and three-person PD repeated games. The paper
concludes with a discussion of the relationship between
Selten’s trembling-hand perfect equilibrium and
Maynard Smith’s evolutionarily stable strategies, with
practical simulations of successful and unsuccessful
“invasions” by new strategies.

1. Competition among the Few

HE OLIGOPOLY problem can be stated as: with a

small number of competitive sellers, what is the
equilibrium pattern of price and quantity across these
sellers, if any? Cournot, in his celebrated example of
mineral-water producers (1838), envisaged that competing
firms would decide their production levels, and that a
market-clearing price would occur from the aggregate of
their supply facing a market demand. He characterized
equilibrium in this market as occurring when the output of
each firm is the best response to the other firms’ outputs;

that is, the equilibrium level of output for each firm depends
on the actions of its competitors, and no single firm can
increase its profit by using a different output level. This
strategic feature distinguishes oligopolistic equilibria from
those of pure competition and monopoly. Cournot’s
analysis was explicitly for static, one-shot markets.

In a review of Coumnot’s book fifty years later,
Bertrand (1883) argued that price—rather than quantity—
was the variable set by firms, in which case, as he
demonstrated, competition between sellers of homogeneous
goods results in the competitive price and quantity, even if
there are only two sellers. If the products are differentiated,
then the seller who quotes a higher price still sells some
quantity, and the price-setting equivalent of Cournot’s
equilibrium is an example of a Nash equilibrium in a non-
codperative game, where the firm’s output level is its (pure)
strategy. Any strategy combination is a Nash equilibrium if
each player’s optimal strategy belongs to the appropriate
strategy set (that is, is attainable by the player) and if it is
impossible that any single player can obtain a higher payoff
through the use of a different strategy, given the strategy
choices of the remaining players.

A market of three sellers, each facing an elastic
demand and selling a differentiated output, can be modeled
as a three-person Generalized Prisoner’s Dilemma (GPD):
each seller’s profits would be maximized by a codperative,
high price, but competition drives the price down towards
the Pareto-inferior, non-codperative, Nash price and hence
each seller’s total profits down, even though with elastic
demand the market grows. Will repetition break this logic?
Three-person GPD tournaments at MIT (Fader and Hauser
1988) and the AGSM were run to see whether entrants’
strategies could generalize Rapoport’s Tit for Tat (codperate
on the first round and then mimic one’s opponent’s previous
move) from the two-person to the three-person repeated
game.

In this paper we revisit the price wars of the GPD
tournaments armed with the techniques of machine-learning
known as the genetic algorithm (GA), which can—with the
appropriate modeling of strategy selection—obviate the
need for submitted strategies. Section 2 gives a brief history
of research into games and oligopoly behavior. Section 3
discusses Axelrod’s method of modeling strategies in
repeated games as bit-string mappings between each
player’s state and that player’s next move or action, which
enables the GA to search for solutions efficiently. Section 4
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reports results of niche strategies against unchanging
environments of strategies. Section 5 introduces the idea of
bootstrapping to obtain an optimum optimorum, given the
implicit constraints of the particular model, and reports
results of this in two- and three-person games. Section 6
discusses concepts of stability, and examines the stability of
stable strategies when confronted with invaders. Section 7
concludes with a discussion of future research work on
market strategies.

2. Game Theory and Strategic Behavior

ICRO-ECONOMICS has recently been enriched by

studies of strategic behavior among small numbers of
competitors, in oligopolistic markets (see Friedman 1983,
for instance). Following Cournot, these have been in terms
of the dynamic adjustment of the competitors’ behaviors,
and have been facilitated by the insights from game theory
(Schelling 1984; Ulph 1987). Strategic behavior is
important because in competition among few agents the
individual agent is neither powerless (pure competition) nor
powerful (monopoly), and the interaction among
competitors cannot be readily described in a closed form.

The strategic behavior of two competitors has been
extensively studied in simple two-person games, the most
productive of which has been the Prisoner’s Dilemma (PD)
(Diekmann and Mitter 1986)—although, as Rapoport (1988)
reminds us, there are hundreds of other strategically
unequivocal ordinal 2 X 2 games to be explored. In its one-
shot version the PD demonstrates how the logic of self-
interest, in the absence of trust or enforceable pre-
commitment, results in a Cournot-Nash solution of non-
cotperation that is Pareto-inferior to the codperative
solution.

In a single PD game, the dominant (pure) strategy is
to defect, despite a higher payoff for codperation, because of
the reward of cheating and the penalty of being cheated. In
a repeated PD game of unknown length, however, the higher
payoff to cobperation may result in strategies different from
the Always Defect of the single game, because of the
possibility of punishing defection provided by later rounds.
By breaking the logical imperative of mutual defection
inherent in the static, one-shot PD, the repeated PD—in
which the players repeatedly face each other in the same
situation—can admit the possibility of learning on the part
of the players, which may result in mutual codperation or
some mixed strategy on their part, as they learn more about
the type of behavior they can expect from each other and
build up a set of commonly held norms of behavior.

An early analysis of successful strategies in the
repeated PD (Luce and Raiffa 1957, pp.97-102) suggested
that continued, mutual cobperation might be a viable
strategy, despite the rewards from defection, but for twenty
years no stronger analytical results were obtained for the
repeated PD.

In the late 1970s, political scientist Robert Axelrod,
in an investigation of the emergence of codperative behavior
and social norms in Hobbesian societies, hit upon the idea of
exhaustively pitting strategies for the repeated PD by coding
them into computer algorithms. He called for entries of
strategies (for the repeated PD) coded as computer
algorithms, and ran successive tournaments that attempted

to reveal the “best” (highest scoring) strategy (Axelrod
1984, Axelrod and Dion 1988). In essence the tournaments
were an attempt to search the strategy space by asking
researchers in diverse disciplines to devise and submit
strategies.
As is now widely known, Axelrod’s tournaments
revealed that one very simple strategy is very difficult to
better in the repeated PD: Rapoport’s Tit for Tat. When
pitted against a “nasty” strategy, such as Always Defect, it
does almost as well, itself defecting on every round but the
first, but at the cost of the aggregate score. When played
against itself, each player’s aggregate score is a maximum,
since every round will then be mutual codperation, a result
which resembles collusion, although each player’s decisions
are made independently of the other’s.
Axelrod’s tournaments and later tournaments
modeling a three-person price war (Fader and Hauser 1988)
were an attempt to pit as wide a variety of strategies against
each other as possible, in order to derive more robust results
and insights than would follow with a small set of strategies,
although knowledge of Tit for Tat’s success in the two-
person tournaments may well have conditioned later
strategies, as Nachbar (1988a) argues, questioning the
robustness of the results.
Mathematically, the problem of generating winning
strategies is equivalent to solving a multi-dimensional, non-
linear optimization with many local optima. In population
genetic terms, it is equivalent to selecting for fitness.
Indeed, in a footnote, Cohen and Axelrod (1984, p.40)
suggest that
One possible solution may lie in employing an
analogue of the adaptive process used in a pool of
genes to become increasingly more fit in a complex
environment. A promising effort to convert the main
characteristics of this process to an heuristic
algorithm is given by John Holland (1975). This
algorithm has had some striking preliminary success
in the heuristic exploration of arbitrary high
dimensionality nonlinear functions.

Such a research program was also suggested—albeit in more

general terms—by Aumann (1985, pp.218-219) and by

Binmore and Dasgupta (1986, pp.6-7, 12-14).

Axelrod has since used the GA to “breed” strategies
in the two-person repeated PD game (Axelrod 1987). He
reports that the GA evolved strategy populations whose
median member was just as successful as Tit for Tat, whom
they closely resembled. (In 95% of the time, the evolved
rules make the same choice as would Tit for Tat in the same
situation.) In some cases the GA was able to evolve highly
specialized adaptations to a specific environment of
strategies which perform substantially better than does Tit
for Tat in that situation. Miller (1988) and Marks (1988)
have both extended Axelrod’s recent work, and examine
how the GA can be used in the breeding of strategies to such
problems as the two-person PD with uncertainty (“noise”)
(Nalebuff 1987). This paper examines examples of
oligopolistic markets, such as the three-person PDs of the
price war (Fader and Hauser 1988).

The advent of GAs (and machine leamning) means
that a much more exhaustive set of potentially winning
strategies can be generated by a single researcher, without
the combined efforts of many competitors. This is because,
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within any given degree of “strategic complexity”, any
potential strategy is grist to the GA’s mill, and will
eventually be tested if it is a contender for best strategy,
given the environment of competitors.

3. Modeling Oligopolistic Behavior
3.1 Modeling Strategies in Repeated Games

N ORDER to use the GA, we follow Axelrod (1987) in

modeling strategic behavior as bit-string mappings, by
first determining what the possible actions of the players are
for any round; let us assume that the finite set of actions, S;,
for player i is unchanging and identical across players.
Then player i’s decision before each round is to choose an
action (which may be a scalar or a vector) s; from the set §;
of possible actions. If the competitive interaction among
players is strategic, then each player’s performance in each
round is a function of his opponents’ moves as well as his
own. In the absence of information about the other players’
decisions for the next round of play until they reveal their
hands, their previous moves—which are known with
certainty since we assume a game of perfect and complete
information—provide the best information about their
forthcoming moves. It is possible to look back at as many
rounds as desired; we shall designate strategies that look
back only one round as one-round-memory strategies, and
so on! Note that Tit for Tat is a one-round-memory
strategy, and hence evidence that against many different
strategies a long memory is not necessary for profitability.

In a strategic competition the action s; must be
contingent upon what the player expects his opponents to do
themselves in the next round, an expectation which is a
function of their moves in the past. So long as the action set
for each player is finite, there is a finite set of events, Q;,
defined by the past actions of players over a given number
of rounds.

If we denote the event or state of history that player i
experiences before round ¢ as g;(¢) € Q;, then we can model
the decision of which action s;(¢) to make at round ¢ as a
mapping from state ¢;(¢) to action s;(¢) € S;. The state of
player i one round later, ¢;(¢ + 1), will include all the actions
made in round ¢, and the consequent action of player i in
round ¢ + 1 will be a function of g;(¢ + 1).

These two steps for player i can be written as

5;(8) = filq: ()], ¢y
where f; is the action function f;: Q; — S; and,
qi(t+1)=g;[q:(r), s;(), j#i, 2

where & is the next-state (or transmon) function g;: Q; x§;
— Q;, j #i. The next-state function is conceptually snmp]e
enough: in a one-round-memory strategy the previous state

1. Aumann (1985, p.218) speaks of “states” of mind that depend
“only on the previous state and the previous action of the other
player”; the player’s action then depends only on the new state.
He also speaks of limiting the complexity of a strategy by
limiting its memory, and presents (Appendix 5.5) a zero-
round-memory strategy, called “memory zero”.

q:(t) (= g;(t)) was simply the set of all players’ actions in
round ¢—1; q,(t+1) (= q;(t+1)) is simply the set of all
players actions in round ¢ For strategies with longer
memories, the state g;(f) can be thought of as a stack: the
most recently occurring round’s actions at the bottom, the
oldest round’s actions at the top; the next-state function
pushes in the latest actions at the bottom and discards the
forgotten round’s actions.

Of course, we could include elements other than the
players’ actions in each player’s state g;(¢). For instance,
the cumulative scores (undiscounted) were available to the
programmers in the MIT tournaments. One possible strategy
might be simply to ape the last round’s action of the player
with the highest cumulative score—to ride on his coat tails.
The state might simply be the move of the most successful
player last round, in which case the action function would
be a simple one-to-one mapping.

What is described in this paper is a search in strategy
space for a mapping from historic state to next action—the
action function f;(*)—which results in the highest score in a
repeated game. This corresponds to determining the most
successful solution to a repeated oligopolistic game. One
question to be answered will be the extent to which the
dynamic nature of the game results in a cobperative
solution, when the one-shot PD dictates the non-cobdperative
Cournot-Nash solution.

3.2 Strategies as Bit String Mappings

Consider a game in which each player has to choose one of
four possible courses of action (they could be prices
themselves or they could be more complicated procedures
for determining a price)>. We can represent these 4
possibilities with a binary number of length 2 bits (where 00
is 0,01is 1, 10 is 2, 11 is 3). Now, the action function f;()
is a mapping from historical state to next-round action, so
for each possible state there must correspond a 2-bit length
of the binary string. If there are two other players, each also
facing 4 possible actions (leading to 4 possible moves per
player), then a one-round-memory strategy must allow for a
posmble number of states equal to 4° = 64. The general rule
is that the number of contingent states equals m’”, where
there are p players each with m possible moves per round
and where each individual looks back r rounds.

In the example above, the complete mapping f;(*)

2. The action function maps from contingent state to next-round
action. We have spoken of the action as identical with the
player’s next-round move, but this is not necessarily so; the
action could be a procedure to calculate the next-round move.
For example, there could be two actions: (1) next-round move
= arithmetic mean of all players’ last-round prices, or (2) next-
round move = geometric mean of all players’ last-round prices.
The number of possible actions is less than the number of
possible moves in this case. Of course, this is simply a model
of a two-state decision process: use the binary string to
determine the second-stage process for determining the next-
round move. [t demonstrates, however, that there is no reason
why the number of a player’s possible moves should be equal
to the number of his possible actions. Indeed, the action could
be a vector: a numbered process plus a parameter, for instance.




must associate a 2-bit length of binary string with each of 64
sssible contingent states. If we are to have a unique
serespondence, with no overlapping segments, then the
wnimum length of a binary representation of the action
gnction mapping f;(+) must be 64 x2=128 bits. This
sapping string will not alter through the repeated game, but
#= lengthening history will result in varying contingent
poves. Depending on the competitive environment (the
sooonents’ strategies), each mapping string f;(+) will result
a score: the cumulative profit resulting from the
sames of the rounds of the game. Thus, we are using the
discounted limit-of-means criterion to select with—with a

gte game, we are simply comparing the means of the

Although the mapping strings lend themselves to
emputer simulation and machine learning, they do not
seadily reveal to the human eye the class of strategies they
model (nice, nasty, grudging, forgiving, generous, etc.). As
pon as a string gets much over 16 bits long, such
scognition is difficult. Perhaps using constructs from the
peory of finite automata will assist (Miller 1988, Marks
B8R): perhaps there is no way to characterize a complex
mtegy: the only way to understand it is to watch its
ior in a repeated game.

This representation allows us to use the GA to
bvelop what is in effect a machine-learning process to
search for strings which are ever more successful at playing
e game. As explained by Schaffer and
Brefenstette (1988), our process can be classified as an
sxample of the Pitt approach to machine learning (Smith
$981), in which each string is evaluated for evolutionary
55 (its score in the repeated game), and this score is used
control the selection of strings used to generate a new set
# strings. The particular GA we use is Grefenstette’s
GENESIS (1987).

3. Niche Strategies

ONSIDER a repeated PD game: each player has two
X choices: cobperate C or defect D, so the choice can be
seoresented by a single bit: 0 for C and 1 for D. With a
me-round memory, and only considering the moves of each
player, the event space contains four possibilities (CC, DC,
€D, or DD), where XY means that one’s last move was X,
gme's opponent’s was Y. With four events, each mapping to
single bit to determine the next move, the bit string will be
bits long, resulting in 2* =16 possible strategies. For
Smstance, the string (0111) means that one will codperate if
Both players cooperated last round, otherwise one will
‘gefect; the string (0011) is Tit for Tat: one mimics one’s
gpponent’s last move; (1111) means always defect,
‘whatever one’s opponent’s last move.

Marks (1988) reports on machine-learning solutions
of a repeated two-person PD (Figure 1) with three-round
memory, replicating Axelrod (1987). The values are
gl'nminmi by T>R>P >S, and in general by
28 > T+S. In this model, there are 64 (= 4%) possible
‘states, corresponding to the 4 possibilities of action in each
of the last 3 rounds. Since the action (C or D) can be
‘modeled by a single bit, the complete mapping can be
modeled by a string of length 64, corresponding to
2™ = 10%° possible combinations. An additional 6 bits are
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Figure 1. The Simple Prisoner’s Dilemma
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used to model the “phantom memory” of unplayed rounds
for the first three rounds, following Axelrod (1987).

We used Axelrod’s “niche” environment of five rules
(Axelrod 1984, p.199) and sought a “better” (higher
scoring) strategy than Tit for Tat. We used his values of T =
S,R=3,P=1,and § =0. With 151-round games, our
benchmark scores in this niche were:

Always Defect: 223.980
Always Cooperate: 369.768
Tit for Tat: 382.392

Tit for Tat outscored both the ultra-nice Always Codperate
and the ultra-nasty Always Defect. After breeding a
population of fifty 70-bit-string strategies for 2000
generations—a total of 100,000 trials, each trial resulting in
a weighted average of the scores of 151 rounds of the
repeated symmetric PD against each of the five “niche”
strategies—the best individual strategy scored 394.0348,
and appeared after trial 79,083, in the 1,581st generation.
Since two of Axelrod’s five niche strategies were non-
deterministic, the apparent superiority of the new strategy
may not be statistically significant, but nonetheless provides
an insight into the structure of a possibly Tit-for-Tat-
dominating strategy.

On examination the winning structure was very
similar to a three-round-memory Tit for Tat. (Recall that Tit
for Tat requires only a single-round memory.) The
difference is that a codperative C on the part of the opponent
following two defections D in the immediately preceding
rounds is not sufficient to elicit a codperative C from the
strategy: two successive Cs are required. “Grudging Tit for
Tat”—as the strategy was dubbed—would forgive a single
defection by its opponent if it was followed by a C, as
would Tit for Tat, but two Ds would require two Cs before it
would also codperate again.

Miller (1988) also reports an attempt to use the GA to
breed niche strategies against Axelrod’s environment; he
models strategies as finite automata, rather than the action
functions described above, which can model *trigger”
strategies, but are difficult to extend to three-person games.
Miller also considers bootstrapping evolution.

5. Bootstrapping Evolution

AXELROD (1987) pointed out that any strategies bred
using the GA would be highly adapted to the particular
“niche” defined by the rules of their competitors. Thus,
each simulation session would be unique, up to the level of
definition of the niche rules. And yet the literature of
repeated games has been concerned with examining the
extent to which repetition results in codperation. The GA
can be used to explore the extent to which this is true, for
particular games as models of market interactions.

In the one-shot PD game the Coumot-Nash non-
codperative equilibrium dominates the Pareto-superior
codperative solution. This result generalizes to n-player
games and provides a rationale for price wars when there are
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a small number of sellers of differentiated products, as the
MIT tournaments modeled. With a simple game played
between two opponents for more than a single round, the
possibility of responding to an opponent’s defection in the
previous round with a defection in this and later rounds
raises the possibility that the threat of defection may induce
mutual coSperation. But for games of finite duration with
low discount rates (we can use the mean of all rounds for the
game score or the discounted present value of the rounds’
results) this hope is dashed by the end-game behavior, or
what Selten (1975) called the “chain-store paradox”. There
is a discontinuity for infinitely repeated games (or
supergames): the Folk Theorem (Aumann 1986) tells us
that any individually rational payoff vector can be supported
in infinitely repeated games, for sufficiently low discount
rates. (For high discount rates the threat of future
punishment may not be sufficiently great to offset the gain
from defecting now.)

In order to explain the apparent evidence of
codperative behavior among oligopolists in the real world,
among experimental subjects in clinical trials, and among
strategy simulation tournaments—all of them examples of
finite repetitions—researchers have sought relaxation of the
underlying assumptions in the finite game. Radner (1980,
1986) assumed a type of bounded rationality similar to
satisficing. Kreps et al. (1982) assumed incomplete
information—they relaxed the assumption that rationality is
common knowledge (Aumann 1976) among the players.
Neyman (1985) and Radner (1986) argued that limited
complexity of players’ strategies, and Harrington (1987)
argued that limited complexity of players’ beliefs, could
result in the emergence of codperation. Friedman (1971)
and Sorin (1986) showed that a sufficiently high discount
rate was sufficient. Fudenberg and Maskin (1986) extended
the proofs in the infinitely repeated case to games of three or
more players.

As Binmore and Dasgupta (1986) suggest, an
evolutionary competition among game-playing programs®
provides an avenue for linking prescriptive game theory
with descriptive game theory: in the long run not quite all
of us are dead, only those who were unsuccessful in the
repeated game—some genes (combinations of zeroes and
ones in the binary string) of those who scored well survive
in their descendents. This provides a learning model in
which it is the generations of populations of strategies that
learn, not individuals, which are immutable strings of bits.
Samuelson (1988) provides a theoretical framework for
examining the processes of the evolution of strategies, at
least for finite, two-person normal-form games of complete
information. He proves that, under certain properties of the
evolutionary process, equilibrium strategies will be

3. Fujiki and Dickinson (1987) describe using the GA to generate
programs written in Lisp to “solve” the repeated PD—this is
much more complex than our binary strings. Using a
“grammar” of possible strategies, they found that against
Axelrod’s environment (Axelrod 1984) the strategy known as
Tit for Two Tats scored best, and that when bootstrapping the
best strategy was the “trigger” strategy of cobperating until
first defected against, and then always defecting.

supported that are “trembling-hand perfect” (Selten 1975,
1983; Binmore and Dasgupta 1986), a subset of
Coumot-Nash equilibrium.

Our results support the contention that “repetition
breeds coOperation”, at least for two-person games with
unique Nash-Cournot equilibria. Our method is to “breed”
populations of strategies (our binary mapping strings),
where each individual strategy in a population of strategies
is pitted against all other strategies (or combinations of
strategies in three-person games) to obtain a “fitness” score
for each strategy. This bootstrap breeding, together with the
GA’s search properties, should result in “evolutionary”
convergence to the optimum optimorum of all possible
strategies. (There is some doubt whether all loci will be
optimally selected for: an individual emerging into a
population of similar strategies will not experience much
opportunity to respond to hugely different strategies, and
over time there may be genetic drift, as the descendents lose
some traits previously strongly selected for.* The
consequences of this for the possibility of invasions are
discussed below.)

As a consequence of the GA’s processes, we speak of
convergence to behavior, not to structure: when, amongst
themselves, the population of strategies all play the same
action for the duration of each repeated game and for all
possible combinations, we say that the population has
converged. We examine in Section 6 the resistance of these
converged populations to the introduction or invasion of
new strategies from outside.

5.1 The Simple Prisoner’s Dilemma

In a simple, two-person, symmetric PD with perfect
information and the Axelrod payoffs in a repeated game
amongst one-round-memory strategies (using a 6-bit string:
4 bits for the contingent states, and 2 bits for the phantom
memory used in the first round of a 22-round game), the
population of 50 individuals converged® from a
random distribution of bit strings to a population supporting
the codperative equilibrium (C,C) in 22 generations.

The bootstrap evolution was repeated for:two-round-
memory strategies, with their more subtle strategic
possibilities. (They use a 20-bit string: 16 bits for the 4 x 4
contingent states, and 2 x 2 bits for the phantom memory.)
The population of 100 individuals converged from a random
distribution to the uniform co6perative behavior of (C,O)in
61 generations.

4. It has been suggestsd (Goldberg and Smith 1987) that the
recessive genes of diploid genotypes are a reservoir of stored
information that proved fit in earlier environments, and that
GAs which included diploidy and dominance will thus perform
better in “noisy” environments than does GENESIS, which
utilizes haploid genotypes.

5. By converging to a uniform population, we mean that the
process first attains a uniform population of strings—there may
be subsequent generations which are non-uniform, as the
recombinant operators generate new individuals, as further bits
and bit combinations are tested—not the time of apparent
stability, some generations later.
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5.2 Extended Prisoner’s Dilem(na Games equilibrium of (L, L) cannot be supported.

A more realistic PD might allow players to sha de their It can be shown that a game of a fixed number of

: J : . 3 rounds N will result in a score equal to that obtained in 2
gﬁ:ﬁg‘ggg&iﬁ%g&?ﬂfg gg &Zogis:?pﬁeacgms. “gg: game of uncertain length, where w is the probability that any

d 3 : : . round is not the last. This probability can in turn be shown
instance, the Tow players payoff matrix of Figure 2 1S 8 ¢4 pe equivalent to an implicit discount rate 7. This enables

us to relate the length N of a fixed-rounds game to an

A B C D implicit discount rate 7. A payoff of R units for an N-round
A 125,21 1833 9 39 0,45 game equals NR units. The expected payoff of a game in
B | 33,18 23,23 13,28 3,33 which the probability of continuing iS W is
c| 309 2813 17,17 621 R(1+w+wkew? 4o y=R/(1-w). Equating these,
pl| 45,0 33,3 2L6 9,9 we see that w=(N-1)/N. If we think of w as a discount
Figure 2. An Extended Two-Person Prisoners Dilemma fa:“(’;’_wﬂ;ﬂ, s ;"{‘/’1(‘:,“_ ‘li;sc‘(’,‘lfg:s — a’iso‘sbegg’:t';inzzl

by considering NR as the present value of an infinite flow of

superset of the simple PD payoff matrix, and allows a greater R discounted at r per period.)
variety of strategies, even only with one-round memory, Thus, games of fixed length 22 are equivalent in a
which is reflected in the longer mapping string. With 4  risk-neutral world to games of uncertain length with
possible actions, each action must be coded with a 2-bit W= 21/22=10.9545, which implies an implicit discount rate
segment, and there are 16 possible states with one-round r=1/21= 4.76% per round. As reported above, with this
memory, corresponding to the 4 x4 payoff matrix above. implicit discount rate and using average scores, a population
The strings must be 36 bits long: 2% 42 for the next action, of 25 random 36-bit strings converged to the cobperative
plus 2 x 2 strings for the phantom memory. Starting from  solution of (L,L) in 33 generations. With an explicit
random strings, a population of 50 strategies converged t0 additional discount rate of 80% per round in the 22-round
cobperative behavior (A,A) after 419 generations of games, the codperative equilibrium was not supported: an
bootstrapping, using 22-round games. identical population of 25 random strings converged to the
Following Sonnenschein (1986), we consider a more Pareto-inferior Cournot-Nash solution of (M,M) in 31
interesting two-person game with three alternative actions, generations. This is in accord with Sonnenschein’s

call them L, M, and H. The payoff matrix of Figure 3 argument.
§.3 The MIT Competitive Strategy Tournaments

L M H 0 The simplest three-person game is a repeated PD with one-
15,15 5,21 3 10 5,-50 round memory. Each round corresponds to one of eight

L )
M1 21,5 12,12 2,5 12, -50 possible states (ccc, cCp, ¢DC, CDD, DCC, DCD, DDC,
H | 10,3 52 0,0 5,-50 DDD), where XYZ means that one’s last move was X, one’s
o | -50,5 =50, 12 -50,5 50, -50 first opponent’s was Y, and one’s second opponent’s Z.
B 1 " Since, in the simple PD, one’s choice is dichotomous, the
fgure 3. Profits: Monopoly L, Cournot M, and Competitive H mapping string from state to action need only be 8 bits long.

An example is the string (01110111), which models one’s
reveals that (M, M) is the unique Nash equilibrium: given strategy of codperating (0) only when both of one’s
that one’s opponent plays M, the best that one can do  opponents cobperated in the last round (whatever one did
oneself is to play M too. (Note that because we must use  oneself), otherwise defecting (1).

two bits to code for action, we have 0 include payoffs for a in November 1984, the MIT Marketing Center in the
fourth possibility, O—large negative payoffs will select Sloan School of Management announced a_three-person
against this possibility.) repeated game, In which participants were invited to submit

A bootstrapped population of 25 one-round-memory a strategy, the outcome of which was one’s price in the next
strategies (36-bit strings) converged from random to the round of the repeated game, given complete knowledge of
cobperative solution (L, L) after 33 generations of 22-round one’s own previous moves (prices), one’s own cumulative
games, showing that repetition can lead to the Low score (total profits, undiscounted), and the previous moves
output-high profit equilibrium. and scores of both other players (Fader and Hauser 1988).

An alternative score to the average payoff per game .  One reason was to explore how Axelrod’s two-person
the discounted present value of the payoffs. Sonnenschein results generalize to more complex and managerially
(1986) shows that when the discount rate per round is relevant situations.

high—he uses Y%—the present value of the future costs The model is of sales of differentiated goods. All
imposed by one’s opponent in response t0 one’s prezmptive  three players faced identical payoffs #;:
defection is less than the immediate gains from a defection. 7, = 3375 (Pi-1) P3s P?.zs P25 — 480, 3

That is, a defection from (L,L) by one player will garner Kb : i

him 6 units now, at the cost of 3 unis per future round  where i #j #k. This corresponds to a constant-elasticity-
forgone indefinitely if his opponent defects in the next and of-demand, constant-returns-to-scale differentiated triopoly
succeeding rounds. The present value of an annuity of 3 (Fader and Hauser 1988). The payoff of equation (3) results
umits discounted at % is 4 units. So the present value of the  in @ ‘“cobperative” price of P°=$1.50, the joint
payoff is increased by defection, and the colperative maximization price (Shubik 1980), which would result from
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collusion, and in a “defect” price of P* = $1.40, the non-
cobperative Cournot-Nash price, which maximizes the
payoff independent of the others’ prices. Two other prices
are the two-player coalition price, P¢, which maximizes the
profits of two colluding firms independent of the third firm’s
price, P°=$1.44; and the “envious” price, P¢, which
maximizes the firm’s share of total profits, P¢ = $1.36.

In 1986, a new tournament was announced, in which
the profit function was:

7‘,'=200(8—6P;+Pj+1’k)(1’;-1)—180, @)

with i # j # k. This profit function corresponds to a linear-
demand, differentiated triopoly. This new function was
chosen because it does not yield unique values of the
Cournot-Nash price, P*, or the two-person coalition price,
P¢, which means that creating and maintaining two-person
coalitions will be harder.

Both contests may be considered as oligopoly
markets, with three sellers who compete with price: if they
could collude, then the joint maximization price, P°,
maximizes the profit of each, but independent profit-
maximization results in the Coumot—Nash price, P*. The
price war has strong elements of the PD: defection (price
cutting) dominates collusion (pricing at the joint-
maximization level), at least in the one-shot game, but if the
game continues then the threat of a continuing price war
may result in all three choosing the joint maximization
price, or near to it.

We could model each player’s action as choosing a
price in cents between $1.36 and $1.51, 16 possible actions.
Each action can be coded by a 4-bit binary number, 0000 —
$1.36 and 1111 — $1.51. We could model the possible
states as the triple of prices from the previous round: a one-
round memory. With three players and 16 possible prices,
there are 16® =4,096 possible states. The mapping string
for this model would be 16® x 4 = 16,384 bits long, which
models 2!6:3% = 10%%32 possible strategies.

In practice, we might want to use some knowledge of
the structure of the payoffs to reduce both the number of
possible actions and the number of distinct states. For
instance, we might reduce the number of actions from 16 to,
say, the 4 price points: P°, P*, P*, and P¢, perhaps with a
further “shading” action: up a little, down a little, or steady.
This would need 2 bits for the price, and another 2 bits for
the shading. (This would provide enough bandwidth for 2*
= 16 actions again, even though we only use 4 x 3 = 12—
could this redundancy be used?) We could similarly look at
123 possible states: for each player, is he in (at, above,
below) one of the four price-point regions? This gives 4 x 3
possibilities per player, so the number of possible states is
123 =1,728. This means a string of length 1,728 x 4 =
6,912, which models 26912 = 10298 possible strategies, still
a heap of possibilities!

If we abandon shading, then there are 4 possible
actions (which require 2 bits), and 4° = 64 possible states or
events, resulting in a string of length 64 x 2 = 128 bits,
which models 2'2% = 10% possible strategies. To simplify
the problem, we consider only a dichotomous three-person
game, in which each player has to choose whether to price at
the cotperative level ($1.50: C) or at the non-codperative
level ($1.40: D). In this case the bit string will be 8 bits
long, plus 3 bits for the phantom memory.

The payoff matrix of Figure 4 has been calculated
from the payoff function of equation (4), from the second
MIT tournament—although the payoffs for the same price
combinations are very similar for the function of equation

CYESIDSE R D)
Cl20]110f10f O
D | 28 2020 ] 12

c D

Figure 4. First Player’s Payoff Matrix

(3). In Figure 4 the payoff to defecting with one other
player results in the same payoff ($20) as does the three-way
collusion of (C,C,C); in Figure 5 this has been reduced
slightly. For both Figures, Player 1 chooses the row, Player

cC D
C|l120])10[j10f O
D [28 (15[ 15| 12

G D

cC D

Figure 5. First Player’s Payoff Matrix

2 the column, and Player 3 the matrix.

A bootstrapped population of 25 one-round-memory
strategies (11-bit strings) playing 22-round three-person PD
games converged from random to the one-shot Nash non-
codperative behavior of (D,D,D): this took 31 generations
for the payoffs of Figure 4 and 23 for Figure 5. A
bootstrapped population of 50 two-round-memory strategies
(70-bit strings) playing 22-round three-person PD games
also converged from random to (D,D,D), taking 27
generations for the payoffs of Figure 5.

These results were at first disturbing: the GA was
apparently not finding the global optimum. The discussion
above of implicit discount rates, however, tells us that the
implicit rate » of a 22-round game is 4.76% per round.
Perhaps this rate is too high to support the cobperative
(C,C,C) behavior as an equilibrium? The length of the
repeated game was increased three-fold to 66 rounds,
lowering the implicit rate r to 1.54% per round, and the
answer was: yes. An identical random population of the 25
one-round-memory strategies converged to the codperative
equilibrium after 35 generations, again using the payoffs of
Figure 5. Apparently both the theory of repeated games and
the GA are vindicated,

6. Invasion and the Trembling Hand

ARLY work by biologists on the emergence of

cobperation in animal populations (Maynard Smith
1982) was also concerned with the evolutionary stability of
strategies (or genetically determined behavior traits): their
ability to survive in the face of an “invasion” by other
strategies. Our formulation allows precise and unambiguous
simulations to be made of such occurrences by use of a
non-random initial population of strategies that has been
seeded with any desired ratio of incumbents to specific
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invaders. The invaders can be any of the strategies possible
within the particular formulation used.

Moreover, the “convergence” spoken of above is
related to the general concept of the ability of a population,
over several generations, to respond to the emergence of
new strategies—by the genetic recombinations of mutation
and cross-over or by exogenous invasion—either by
successfully out-competing the new strategies, which will
die without issue, or by interbreeding with the successful
newcomers, so that, over several generations, the successful
genes spread through the new generations of offspring.

Binmore and Dasgupta (1986, pp.16-19) argue that
the equilibrium concept (Selten 1975) that Selten calls
perfect equilibrium but that they call trembling-hand
equilibrium® is relevant to the discussion of stability to
invasion—it is also relevant to the convergence of the GA’s
evolutionary process towards a uniform payoff (that is,
uniform behavior in the present generation). Roughly
speaking, a Nash equilibrium for any game is a trembling-
hand equilibrium if each of its component strategies remains
optimal even when the opponents’ hands “tremble” as they
select their equilibrium strategies.

Consider a two-person symmetric game, the scores of
which will be inputs to the GA in generating the new set of
offspring strategies. Suppose a population of individual
strategies A is invaded by a small number of strategies B.
Let £ be the proportion of Bs in the total population of Bs
and As. It will then be as though each player were facing an
opponent using a mixed strategy—choosing A with
probability (1 - £) and B with probability e—as Binmore
and Dasgupta argue, the opponent may be regarded as a
player who selects A “but with a trembling hand”. We
discuss the results of deliberate introductions of Bs into
populations of As below.

Maynard Smith’s evolutionarily stable equilibrium
demands that

UlA, (1-€)A+eB] > U|[B, (1 -¢)A +¢eB],

for all sufficiently small ¢, where U (X, Y) is the score of X
against Y. If A is an evolutionarily stable strategy (ESS),
then a population of As is immune to invasion by a small
group of Bs. Boyd and Lorberbaum (1987) argue that no
pure strategy can be evolutionarily stable in a repeated PD.
They argue that no strategy whose behavior during the nth
round is uniquely determined by the history of the game up
to that point is evolutionarily stable (that is, has a higher
expected fitness than any rare invading strategy) if w, the
probability of not ending the game, is sufficiently large.
That is, if w is sufficiently large—if the game continues for
a sufficient number of rounds without discounting—then no
strategy can be best against all opponents. Nachbar (1988b)
and Friedman (1988) have examined the relationship
between ESS and Nash equilibrium in both static and

6. They prefer trembling hand to perfect in order to clearly
distinguish the concept from another of Selten's: subgame-
perfect (Binmore and Dasgupta 1986, fn.18). All trembling-
hand equilibria are subgame perfect, but the converse is not
true. See also Selten (1983).

dynamic processes. A closer study of the convergence and
stability of our evolutionary processes demands a closer
study of the mechanisms of the GA, and perhaps an
acceleration of convergence through better selection
mechanisms. This must await a later paper.

6.1 Invasion of an Extended Prisoner’s Dilemma

We have reported above the bootstrapping of the repeated
game whose payoff matrix is shown in Figure 3, and its
sensitivity to the number of rounds per game (that is, to the
probability w of not stopping before the next round). As
reported, with the high explicit discount rate of 80% per
round, the cobperative equilibrium was not supported in a
bootstrap evolution of 25 random one-round-memory
strategies (36-bit strings). After convergence to the non-
codperative equilibrium of (M, M), the explicit discount
rate was switched to zero. For 20 further generations the
non-codperative equilibrium appeared stable.

6.2 Invasion of the Three-Person Game

Several simulations of invasion were performed with the
three-person games of Figures 4 and 5, using one-round-
memory strategies (11-bit strings). In both cases, with 22-
round games, an initial population of 24 ultra-nice Always
CoOperate strategies (00000000000) was successfully
invaded by a single ultra-nasty Always Defect
(11111111111); it took 39 generations for convergence to
(D, D, D) with the payoffs of Figure 4, and only 23
generations with those of Figure 5.

Using the payoffs of Figure 5, an initial population of
24 Always Cobperates was seeded with a single strategy
(10000000000) that defects when everyone has cotperated
on the previous round, but otherwise coOperates. After 7
generations all strategies were alternating between C and D,
but after 18 generations the invasion was complete: all
strategies were at the non-codperative equilibrium,
(D, D, D).

As remarked above, we found that lengthening the
number of rounds from 22 to 66 permitted support of the
codperative equilibrium (C, C, C), but when we repeated
the invasion of 24 Always CoOperates by one Always
Defect we obtained convergence to the non-codperative
equilibrium, which demonstrates again that although a larger
number of rounds (and hence a higher value of w) enables
support of the codperative solution, it does not ensure its
emergence, the final convergence still being a function of
the initial population of strategies.

7. Conclusions

HERE has been much recent theoretical work on the

outcomes of repeated games, both infinite and finite. In
particular, researchers have sought to answer the question:
does repetition in the finite game result in a greater degree
of codperation than will occur in a one-shot game? This
work does have policy implications: if the conditions for
codperative behavior to emerge as a stable equilibrium of
repeated encounters (“games”) in the absence of outside
enforcement are not too restrictive, then apparent market
collusion may be just that: apparent. If the conditions are
not too restrictive, then codperative or collusive behavior in
markets will not be sufficient evidence of clandestine
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agreements to collude. These conclusions are not new.
What is new with this paper is a method for cutting through
the theoretical (and very technical) expositions: we have
provided a means of modeling strategies in repeated games,
the degree of complexity of which is only limited by the
imagination of the modeler. The GA of machine learning
provides a technique for efficiently selecting from the
immense number of possible strategies those that perform
best, as scored in the repeated game. Moreover, the number
of players is no conceptual limit—as computing speeds
increase, the complexity of problems amenable to solution
will become ever more realistic. Optimal solutions to the
MIT tournaments will be published in a future paper.

The GA is a parametric optimization technique, but
the parameters are coded as binary strings, and so permit a
much greater range of possible solutions than are possible
with calculus-based methods. Indeed, a program for future
research is to characterize families of strategies
parametrically, so that optimal strategies can be sought, with
fewer constraints than traditional techniques. The
contingent-action strategies we have considered here is one
possibility, Fujiki and Dickinson’s LISP “grammar” is
another.

Utilizing these modeling techniques and the GA for
solving the selection of optimum strategies, we have
reported results similar to Axelrod’s for the simple
symmetrical two-person PD. We have used
“bootstrapping”—breeding strategies against their peers—to
examine the emergence in repeated games of stable
equilibria, whether codperative (as in infinite supergames)
or non-codperative (as in the one-shot PD). We find that, so
long as discounting is sufficiently low (both explicitly in the
scoring function and implicitly from the game length),
codperative equilibria are supported, as theory would
suggest.

To what extent is the convergence of the machine-
learning search process of the GA a model of real-world
equilibrating behavior? Given the simplicity of our models,
probably only slight, but this convergence is related to
theoretical notions of stability in evolutionary processes and
to the susceptibility of populations of strategies to the
invasion of new strategies, whether spontaneously generated
by the recombinant operations, or exogenously introduced.
Since explicit examination of the changing membership of
the population of strategies is possible, the convergence
process—including the fitness scores of specific
strategies—can be closely monitored. This awaits future
study. This paper reports on successful and unsuccessful
invasions of exogenously introduced strategies.

The author’s hope is that this paper demonstrates that
the research programs outlined by both Aumann (1985) and
Binmore and Dasgupta (1986) are underway—Holland’s GA
provides a powerful tool for the continued study of
strategies for repeated games. The strategies cannot collude
since they are nothing more than stimulus-response
machines, and yet even in three-person interactions, such as
oligopoly markets, codperative behavior can occur.

There is no conceptual reason—although CPU time
may provide a constraint—why these modeling and solution
techniques cannot be used for examining games which are
closer to market situations. Nalebuff (1987) has asked how
robust Tit for Tat would be in the case in which there was

not perfect information about one’s opponent’s past moves,
or at least in which the players mistakenly believed that they
possessed perfect information about each other’s past
moves. So long as the simulation provided sufficient
statistical power for selection of bits in the mapping string,
and given that the model could accommodate strategies of
sufficient subtlety, the machine-learning techniques should
provide an answer to Nalebuff’s challenge. Indeed, Miller
(1988) has bred finite automata strategies in noisy games.

We have discussed above relaxing three of the
features of simple models: (a) strategies with longer than
one-round memories, () games with more than two
possible actions per player, and (c) games with more than
two players. With each of these relaxations our models
(slowly) come closer to modeling reality. A further
relaxation might (Midgley 1988) be (d) partitioning the
players into two or more groups, each with a distinct payoff
matrix or function—this raises the interesting question of
how the market system will behave with each group facing a
changing set of opponents (in a three-person game) and
facing a distinct payoff function. There may not be
convergence to a stable equilibrium, but then that may
model the real world.
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