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Abstract 
 
This paper presents a structural approach to model stochastic volatility in spot 
electricity prices. The peculiarities of electricity imply a complex structure, present 
both in price levels and volatility, which although critical for market and risk 
assessments, is neglected in stylised models and remains non trivial to model. In this 
methodology, prices are first detached from systematic components, such as economic 
fundamentals, risk measures, strategic and market design effects. Then, four 
alternative approaches are presented, where residual volatility is attributed to: i) the 
non-linear impacts of fundamentals, i.e. GLS heteroscedasticity, ii) the asymmetric 
volatility responses to lagged price shocks, i.e. a regression + TGARCH structure, iii) 
the evolution of the underlying price model due to market adaptation, i.e. time-varying 
regression effects and iv) the alteration of price structure during temporal market 
irregularities, i.e. regime-switching regression dynamics. Each alternative is motivated 
by different aspects of agent behaviour, but all derive stochastic volatility assuming a 
non-linear, structural specification for either the price formulation process (iii, iv) or 
the random shocks (i,ii). Implementation of this modelling to the UK market reveals 
strategic behaviour in agent reactions to shocks, with significant intra-day variation, 
and suggests that volatility inferences are sensitive to the assumed price model. For 
instance, GARCH effects diminish after adjusting for the time-varying price structure.  
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1. Introduction 
 

Following the worldwide trend of restructuring public utilities during the 1990s, 
electricity has emerged as an actively traded commodity in spot, forward and 
derivatives markets. The most mature markets are those of the UK and Scandinavia, 
which started their operation at the beginning of the 1990s, followed shortly by 
Australasia and several S. American countries, and towards the end of the decade, by 
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Spain, Germany, the Netherlands and some US States. Electricity prices have 
developed salient and general characteristics3, most notably that of spot volatility, 
orders of magnitude higher than in financial assets and other commodities. Induced4 
by physical constraints and perhaps by generators’ strategic behaviour, erratic 
volatility dynamics are present not only at the high-frequency level of trading periods 
but also the aggregated daily level, as illustrated for the UK in Figure 1. This 
volatility poses complications for hedging and security of supply, but may suggest 
profitable strategies for those agents who understand and can anticipate5 its 
complexity. Although the proper specification remains challenging, stochastic 
volatility models are fundamental for trading, production scheduling, derivatives 
pricing, capacity investments and generation asset evaluation. Furthermore, volatility 
models, if linked to economic fundamentals or strategic effects, can elucidate agent 
reactions to shocks, and thus, reveal aspects of market performance of interest to 
regulators.  

 
In the research literature, stylised stochastic models, inspired from financial 

markets and adapted to electricity, replicate some of the statistical price peculiarities 
but still, disregard the stochastic nature of volatility or do not clarify its causalities 
and structural properties. Thus, price models tend to introduce a jump component for 
spikes but, in order to facilitate analytical derivatives formulae, adopt the unrealistic 
assumption of constant volatility for the regular price process (Johnson and Barz, 
1999; Lucia and Schwartz, 2002). Although this simplification is corrected in Deng 
(2000), where volatility is specified as a stochastic, mean-reverting process, jump-
diffusion models do not disentangle the effects of mean-reversion and jump reversal 
(Huisman and Mahieu, 2001) implying a mis-specification of volatility. An alternative 
class of models to jump-diffusion, regime-switching models (Ethier and Mount, 1998; 
Huisman and Mahieu, 2001), postulate that volatility alternates stochastically, 
according to a Markovian process, between distinct values, estimated with 
probabilistic inference. In this stylised framework, volatility tends to be mis-specified 
due to implicit restrictions on the price process, such as stationarity under both 
regimes, instant reversion to normal levels after an episode or constant transition 
probabilities. In addition, the Markovian assumption could be restrictive given the 
nature of the occurrence of spikes, which could more explicitly be signified by a 
market variable, such as expected capacity surplus over predicted demand. 

  
Conventional forms of time-varying volatility, such as conditional 

heteroscedasticity models (GARCH), although intuitively appealing, derive erroneous 

                                                
3 These include mean-reversion to a long-run level, multi-scale seasonality (intra-day, weekly, 
seasonal), calendar effects, erratic extreme behaviour with fast-reverting spikes as opposed to “smooth” 
regime-switching,, non-normality manifested as positive skewness and leptokurtosis, unstable 
correlations with fuel prices due to the alternation of marginal plant technologies. 
4 Due to the instantaneous nature of the commodity, spot volatility cannot be smoothed with economic 
inventory but remains exposed to real-time uncertainties, technical or strategic, such as plant outages, 
interconnector failures or demand shocks. The effect of non-storability is amplified by the limited 
demand elasticity to price in the short-term and oligopolistic market structures. In this setting, portfolio 
generators have the ability to behave strategically and induce volatility in the spot market in order to 
create incentives for forward contracting and increase risk premia. Another potential source of 
volatility is the presence of multiple, parallel markets for electricity trading, with limited volume and 
inadequate hedging instruments to link electricity with fuel prices. 
5 This prospective becomes more appealing given the currently introduced volatility swaps, which pose 
the challenge of correct pricing.  



results for electricity prices (Duffie et. al., 1998), which is attributed to the presence 
of extreme values. These complications however, could be the result of a mis-
specified price process and are indeed reduced in the presence of a richer price 
specification, as in Escribano et al. (2001), where the price model specifies mean-
reversion, jump-diffusion and seasonality in the deterministic component and jump 
intensity. Applying GARCH modelling, Knittel and Roberts (2001) document 
asymmetric responses of volatility to positive and negative shocks and an inverse to 
financial assets leverage effect, but no explanation is suggested for this interesting 
idiosyncrasy. 
  

Albeit insightful for medium-term price simulations and derivatives pricing, 
stylised stochastic models, present limitations when adopted for market assessments 
or short-term trading. Retaining too high a level of analysis, the fundamental sources 
of spot volatility are not addressed and hence, our understanding of agent reactions to 
shocks and of the way information is processed remains limited. As the links of 
volatility to market fundamentals are ignored, a significant component of uncertainty 
is retained, which, if further modelled, could dramatically reduce short-term risk 
exposure. Stylised models disregard the stage of model validation and do not allow 
for market or agent specificities, such as the integration of private expectations into 
the econometric specification. This synthesis is however critical for short-term 
predictions and, given the information asymmetries prevailing in electricity markets, 
translates to an obvious strategic advantage. Although an empirical approach that 
models volatility responses to fundamentals has not emerged yet, empirical evidence 
alludes to the presence of a complex underlying structure.  Duffie et al. (1998) suggest 
that stochastic volatility models should account for6 price levels, trading volume and 
spreads between spot and forward prices, whereas Knittel and Roberts (2001) 
generally emphasise the need for structural price modelling. 
 

In this paper, we have adopted an econometric analysis of UK half-hourly spot 
prices, from June 2001 to April 2002, along with several fundamental and strategic 
variables, in order to model sources of stochastic volatility and clarify agent reactions 
to shocks. The extent to which market prices, after the introduction of the New 
Electricity Trading Arrangements (NETA) in 2001, were cost reflective, responded to 
risk measures, or manifested some forms of strategic pricing was discussed in 
Karakatsani and Bunn (2004). Despite the low price era, and its fundamental 
explanation, the daily price dynamics revealed that prices were particularly sensitive 
to margin variations and capacity withdrawal seemed plausible, throughout the day 
and most intensely around the evening demand peak. Still, market power was not 
exercised to its full potential. Extending this research on market efficiency, this paper 
specifies regression models for price evolution, of static, time-varying or regime-
switching specification, and focuses on the stochastic and structural properties of the 
residual volatility that relates to them. This approach perceives volatility as an 
intrinsic, unobservable measure of price movement intensity, linked to the flow of 
financial activity and information, and simultaneously a reflection of incomplete 
modelling.  

 

                                                
6 The first element can be represented with GARCH modelling, the second seems plausible and 

consistent with evidence in other energy markets, whereas the last requires some clarification, as 
forward bias is more an implication rather than a causal effect of volatility. 



After disentangling spot prices from systematic components, such as economic 
fundamentals, strategic, risk-reflecting and market design effects, four alternative 
sources of uncertainty are suggested to explain volatility behaviour; i) the impacts of 
market fundamentals on unconditional residual variance, ii) the asymmetric influences 
of lagged shocks on conditional residual variance, iii) the adaptation of price structure 
due to learning and iv) the occurrence of abnormal market states because of market 
power abuse. Each modelling approach provides an alternative interpretation for the 
non-linear nature of volatility and focuses on distinct statistical properties of the 
underlying process. The first two formulations impose complexity on the volatility 
specification, whereas the last two on the price formulation process. All reveal aspects 
of market performance and agent behaviour and have the potential to reduce short-
term risk compared to stylised models, as they allow agents to include their 
predictions for market fundamentals. All approaches are plausible depending on 
market conditions, whereas hybrids, albeit theoretically appealing, entail convergence 
complications. As half-hourly trading periods are differentiated w.r.t. technical, 
economic and strategic characteristics, they are modelled with separate price 
specifications. This allows appealing intra-day properties of volatility structure to 
emerge, which are obscured in aggregated analyses. 

 
In terms of methodology, the paper raises the issue of how sensitive to price 

specification volatility modelling is. The results suggest that, in the presence of 
multiple complexities in the price process, an adequate representation of price 
structure is crucial for the correct specification of volatility. Specifically, the apparent 
GARCH effects are concealed or exaggerated depending on the price model and seem 
to diminish, when the adaptive price structure or unconditional heteroscedasticity are 
accounted for. In a stylised framework, this indicates that modelling the dynamic 
structure of the price process (e.g. an autoregressive model with time-varying 
parameters) may describe volatility dynamics better than a price model with complex 
variance structure (e.g. AR + asymmetric GARCH).  

 
The paper is structured as follows. Section 2 introduces a rich regression model for 

spot electricity prices, based on which parsimonious specifications are derived, 
distinct for each load period. In section 3, the non-linear responses of unconditional 
residual variance to economic and strategic impacts are modelled followed by the 
autoregressive structure of conditional residual variance. In section 4, time-varying 
volatility is linked with the evolving structural impacts on prices, as market adapts to 
endogenous or exogenous changes. Section 5, investigates the reaction of volatility to 
temporal market abnormalities. Section 6 concludes the paper. 
 
2. Structural Price Specification  
 
    Volatility analysis is especially pertinent to the reformed UK spot market under the 
2001 New Electricity Trading Arrangements (NETA), which induced new risks for 
market participants, some of which are unhedgeable. Among the regulator’s deliberate 
intents was to increase the volatility in short-term markets, in order to reward flexible 
capacity and encourage forward contracts. Thus, we would expect a rather complex 
volatility process in the spot market, where agent behaviour would reflect both the ten 
year’s mature experience of wholesale power trading, and the new learning associated 
with the market mechanism change. 
 



2.1 Data Set 
 
The market regime preceding NETA, the “Pool”, was a compulsory spot market 

with uniform pricing, where dispatch was derived day-ahead with a cost-minimisation 
algorithm on offers submitted by generators. As prices were specified on a day-ahead 
basis, they were insensitive to real-time uncertainties and hence, not particularly 
volatile. Forward contracts allowed the diversification and hedging of spot price risk. 
NETA introduced a market institution with bilateral trading and discriminatory prices 
in a sequence of voluntary, un-administered markets with contract horizons up to 
several years ahead. More than 95% of electricity is currently traded forward in over-
the-counter markets. For adjustments of contractual positions close to real time, 
Power Exchanges (PXs) have emerged. These operate on a day-ahead basis up to Gate 
Closure, which was initially defined as 3½ hours before real time and reduced to one 
hour in July 2002. At Gate Closure, participants notify their final physical positions 
(FPN) to the System Operator. After this point and in order to retain system stability, 
the System Operator administers a balancing mechanism (BM), where generators and 
suppliers submit bids and offers to deviate from their declared positions at Gate 
Closure. Imbalances, i.e. deviations between notified and ex-post metered positions of 
firms are penalised with dual discriminatory pricing. This renders unhedgable risk 
with energy deficiency in the BM much more costly than energy surplus.  

 
In this bilateral environment, the structural properties of short-term markets were 

expected to influence prices in the preceding bilateral markets and seem the 
appropriate initial point for market analyses (Sweeting, 2000). The UKPX, analysed 
here, is the day-ahead spot market that provides half-hourly spot indicators, perceived 
as a replacement of the Pool Purchase Price. The functions of UKPX include physical 
delivery, adjustment of contractual positions, forward contracts and derivatives linked 
with the spot index. 

 
The data consists of half-hourly values for the UKPX spot prices and the 

explanatory variables of their variation.  For a given day, load Period 1 is defined as 
23.00-23.30 (prior to the day), period 2 as 23.30-0.00, period 3 as 0.00-0.30 and so on 
up to period 48 (22.30-23.00). The sampling period was specified as 6th June, 2001-1st 
April, 2002 including 300 days. Considering 10 months of data for each load period 
was sufficient to derive reliable estimates and induced sufficient stationarity in the 
demand and margin series. Although the reforms were implemented in 27th March, 
2001, the first 2 months of NETA were disregarded due to the pronounced market 
instability and the data quality issues that emerged. These mainly involved the 
occurrence of ‘artificial’ price spikes due to mistakes and numerical deficiencies of 
the price algorithm. June 2001 was suggested by industrial analysts as an appropriate 
initial point for representative analyses.  

 
The half-hourly price series7 displayed the typical empirical features of spot 

electricity markets, i.e. large volatility, positive skewness and excess kurtosis. The 
daily average prices, average daily price profile, inter- and intra-day volatilities, 
displayed in Figure 1, reveal the complexity of spot price dynamics, despite the 
                                                
7 Pilipovic (1998) showed that the logarithms of daily average electricity prices are normally 
distributed. In this high-frequency study, the emphasis was instead on half-hourly prices and thus the 
log transformation was not adopted. Despite its variance stabilizing properties, wherever applied, it did 
not alter the inferences and complicated the interpretation of the regression coefficients.  



relatively short sampling period. In Figure 2, half-hourly prices for selected periods 
illustrate the rich intra-day variation in price evolution and the additional modelling 
complexity that this poses as well as the potential for misleading inferences, when 
diurnal patterns are smoothed with averaging. Stationarity tests (Augmented Dickey-
Fuller and Phillips-Perron tests) for prices in each load period, after adjusting for 
serial correlation, rejected the presence of a unit root at the 5% significance level. The 
rejection of the random walk hypothesis motivated the detailed exploration of price 
structure. 
 
2.2 Influential Variables 
 

The modelling approach involves the formulation of a regression model for the 
evolution of spot prices, with static, time-varying or regime-switching specification, 
and the study or explicit modelling of the residual variance that emerges. A non-trivial 
issue is to define or quantify the factors reflected upon prices, such as economic 
fundamentals, plant constraints, strategic effects, risk perceptions, trading 
inefficiencies, learning, forward trading and market design implications.  
 

A proper specification8of Demand is crucial, both in itself as a fundamental driver 
of daily price variation, and in order to formulate a well-specified background from 
which to estimate properly other, perhaps more subtle, influences on price. In the 
context of electricity markets, demand can be perceived as an exogenous variable to 
price, because of the absence of demand elasticity in the short-term. In our 
application, the non-linear demand effect was identified as a quadratic polynomial. 
To reflect the timing of the spot market and in order to avoid endogeneity, Demand 
was defined as an expectation, the 12 p.m. day-ahead forecast conducted by the 
National Grid. Due to their high correlation, the coexistence of the two demand terms 
would lead to an ill-conditioned matrix. To resolve the collinearity, the demand 
polynomial was decomposed into two orthonormal functions. 

  
Furthermore, since the existence of a balancing mechanism in NETA could induce 

the backward migration of some pricing of plant dynamics into the preceding PX   
trading, the Slope and Curvature9 of demand were also considered.  More specifically, 
Demand Slope, the rate of change in demand, could be particularly influential and 
represent the periods when the more flexible plant is able to achieve higher prices. 
Demand Variation, due to temporal, weather and consumption patterns, imposes 
difficulties in load prediction and plant scheduling and eventually implies balancing 
costs. In addition, unanticipated demand paths influence agents’ risk attitudes and, 
given NETA’s asymmetric penalty for energy Imbalances, could encourage suppliers’ 
over-contracting. However, the notion of demand uncertainty is not obvious to 
quantify. Relevant measures include the unexpected demand derived from a 
predictive model or the historic volatility of demand. Here, it is assumed that market 
participants update their perceptions about demand fluctuations considering the 

                                                
8 Demand appears as a state-variable in equilibrium stochastic models (e.g. Eydeland and Geman, 
1998), a critical variable in threshold autoregressive models (Stevenson, 2001), a causal factor in neural 
networks and linear regression (e.g. Vucetic et al., 1999). The last specification involves a third order 
demand polynomial. 
9 Demand changes continuously but for simplicity, Demand Slope (Curvature) was approximated by 
the rate of change of demand (demand slope) in successive half-hour periods, i.e. by the first (second) 
differences of half-hourly demand measurements. 



sequence of the 7 most recent demand values for each period. This time-horizon was 
selected for meteorological reasons and ensures always the presence of all weekdays 
and a weekend in a trader’s database. Demand Volatility was then, defined as the 
coefficient of variation, i.e. (standard deviation/mean) in a weekly moving window. 
Due to large demand fluctuations across the year, this standardisation was essential in 
order to avoid misleading inferences. Demand Forecast Error10 by NGC is a cause for 
over or under-contracting and thus, imbalance. It was defined as Actual Demand 
minus the 12pm day-ahead Forecast.  

 
Market information and possible strategic effects were reflected in the following 

variables: 
 
i) Margin is a measure of excess generation capacity, defined as the aggregated  
       maximum possible output (the final notification at “gate closure”) minus the  
       day-ahead demand forecast from the National Grid. 
ii) Expected Imbalance, is defined as Indicated Generation minus Predicted  
       Demand at Gate Closure. 
iii)  Scarcity is derived from the Ratio=Margin/Demand  (Visudhiphan and Illic,  

2000) as: }0,max{ RatioRatioofQuartileLower − , where the lower quartile is 
calculated from the historic distribution of Ratio in each load period. This 
variable is intended to capture the steep impact of capacity surplus on price  

      after a threshold. 
 
Historic market conditions were captured by spot price for the same load period on 

the previous day and week as well as daily average price on the previous day. The 
latter created the desired link between by-period bidding and signals from the entire 
day. Price Volatility, an index of instability and risk, was defined similarly with 
demand volatility, as the coefficient of variation of prices in the preceding week. 
Finally, Spread was included, defined as the difference between the two balancing 
prices for insufficient and excess capacity11, and representing unhedgable risk in the 
balancing mechanism. As a measure of risk exposure, it could impact on forward 
premia and be manifested in spot prices. Although the value of spread on the day is 
derived after the spot price, Spread on the previous day could still signal relevant 
risks and influence bidding, particularly if there was a tendency in the market (due to 
speculators, regulator or grid activities) towards smoothing imbalance risk. 
Alternatively, one could define the differences PX-SSP and SBP-PX, two measures of 
arbitrage that reflect the value or cost of flexibility close to real-time. These indices 
are essential for contract evaluations and informative about the relative attractiveness 
of spot and balancing markets. 

 
Each load period displays a rather distinct price profile reflecting the daily 

variation of: demand, operational constraints and costs implied by different plant 
technologies, market depth and potential for market power. In order to control for 
these dissimilarities, the modelling was implemented separately for each load period. 
This was also inspired by the extensive research on demand forecasting which has 

                                                
10 The prediction error could, in principle, be correlated with demand and incur multi-collinearity, but 
this did not occur in our application. 
11 In the balancing mechanism, Spread is the difference between the System Buy Price (SBP) and the 
System Sell Price (SSP). 



generally favoured this multi-model approach for accurately forecasting daily demand 
(Bunn, 2000). The different demand profiles for weekends would be expected to 
induce systematic elements in the evolution of demand, margin and hence prices, and 
also a shift in the morning and night peaks, compared to weekdays. However, separate 
modelling of weekdays, Saturdays and Sundays suggested that the above issues did 
not alter the inferences, possibly due to a well-specified inclusion of demand and 
margin in our model.  Seasonality, however, was important as a proxy for the yearly 
pattern of fuel prices and approximated with a sinusoidal function peaking in winter.  

 
The linear regression model12 for spot prices is specified as:  

 
 jtjjtjt XP εβ +′= , ),0(~ jjt N σε  

 
where, jtP denotes the spot price on day t and load period j, t = 1,2,..,T and 
j=1,2,...,48, jβ  a 16x1 vector of parameters, jtX  a 16x1 vector of exogenous 
explanatory variables, defined after preliminary analysis as: jtX  = (1, P j(t-1), P j(t-7),  
Average P t-1, Spread )1( −tj , Price Volatility j(t-1), Demand jt (Linear, Quadratic Term), 
Demand Slope jt,  Demand Curvature jt, Demand Volatility j(t-1), Margin jt ,  Margin j(t-1), 

Scarcity jt , Time, Seasonal Component jt )
′
and jtε  a random and serially uncorrelated 

error term. 
 
This rich model revealed significant intra-day variation of the structural effects on 

prices (Karakatsani and Bunn, 2004). Therefore, in the volatility modelling that 
follows, distinct parsimonious models are selected for each trading period. These are 
not uniquely defined, as several specifications may be equally plausible for the data 
depending on the adopted optimality criterion and variable selection procedure (e.g. 
forward addition, backward elimination, two-direction stepwise, best subset 
selection). In addition, each volatility modelling approach poses different 
convergence complications even for the same load period. The formulations presented 
in the illustrative examples are the more robust for the particular setting. 
 
3. Heteroscedasticity Modelling 
 

After detaching prices from fundamental structure with a parsimonious model, 
questions are raised about the structural properties of residual variance, Var )( tε .  
This is an ex-post measure of price risk that reflects the model’s uncertainty around 
fitted prices. Alternatively, it can be interpreted as the predictive uncertainty of a 
trader who formulates his price expectations with the regression model and knows 

                                                
12 In the above model with stochastic regressors, standard assumptions include: 

i){ jtP , jtX } is jointly stationary and ergodic, which precludes trending regressors. 
ii) The regressors are predetermined, which excludes endogenous regressors but allows lagged 

      dependent variables.  
Under these assumptions, which were deemed to be plausible for the data, the OLS estimates are 
consistent and asymptotically normally distributed even under i.i.d., non- normal errors.  
 



apriori13 the model specification and the correct values of exogenous variables. In 
trading practice, an agent would apply the price model substituting the exogenous 
variables by his own predictions. If there is, in addition, an explicit relationship that 
links residual variance to market fundamentals and past shocks, the trader could 
derive also an estimate for his implicit price risk. 

 
Systematic components in residual variance could arise due to inadequacies of the 

price model or heteroscedasticity, conditional or unconditional, of the random shocks. 
Although it is not feasible to disentangle the effects of price model mis-specification 
and heteroscedasticity, it is possible to assess their compounded implications on 
residual variance and quantify its responses to market fundamentals and past shocks. 

 
3.1 Unconditional Heteroscedasticity 

 
To clarify the non-linear responses of residual variance to strategic and economic 

effects, Generalised Least Squares (GLS) modelling is adopted. This explicit 
modelling of unconditional price heteroscedasticity allows a formal exploration of 
volatility hypotheses and indicates how agents react to uncertainty under different 
market conditions. Correcting the restrictive assumption of homogeneity implicit in 
the OLS price model, GLS estimation should induce more reliable inferences 
regarding the significance, sign and magnitude of structural effects on price levels.  

 
The GLS regression model with non-spherical uncorrelated disturbances is specified 
as: 

jtjjtjt XP εβ +′= , 
),0(~ jnj N Σε , njtjjtjt IvgdiagvgVar ≠=Σ= )}({)()(ε  

where v denotes the covariate driving the variance, g(v) the variance function, Σ = 
)( εε ′E  the error covariance matrix. A critical issue is the selection of the function g, 

which should replicate non-linearities similar to those emerging due to non-convex 
marginal costs and strategic behaviour. Two functions seem appealing: 

 
i) The power formulation, defined as 2)()( bvvg += α , where a, b denote 

unknown parameters. The quadratic form allows for a rich volatility structure, not 
necessarily monotonic, which includes the linear dependence as a special case. 

ii) The exponential formulation, defined as tvevg =)( , where t is an unknown 
parameter, replicates monotonic, kinked effects on volatility.  

 
GLS modelling of spot prices across several trading periods suggested that residual 

variance presents an heterogeneous structure within the day. Still, clusters of periods 
with similar responses seemed to emerge according to their position in the demand 
curve and particularly the degree of demand stability or adjustment. This intra-day 
variation is illustrated with the peak load period 25 and the morning period 15, which 
represents a transitory stage for the demand curve when flexible plants start operating. 
The price models were parsimonious specifications selected with stepwise procedures 
from the rich model in section 2.2 and the profiles of residual volatility were explored 
                                                
13 The former assumption is plausible if the model equation is stable over time and derived from past 
data. The latter applies to traders with accurate information about future market fundamentals, which in 
our application reduces to the variable Capacity Margin. 



with the power specification, which proved here to be more robust to the selection of 
initial values, less sensitive to outliers and easier to converge than the exponential 
model. The estimates of the parameter α were effectively zero in all the presented 
examples, which revealed monotonic impacts of the considered covariates on 
volatility. The significance and signs of the variables in the price model were quite 
robust across variance specification, which suggested that an OLS model is a valid 
approximation of price dynamics, even if GLS effects are ignored.    

 
The results14 for period 25 are summarised in Table 1. Residual volatility 

responded positively to price signals, displaying a linear dependence on Lagged Price 
and a parabolic, less steep than quadratic, link to Expected Price. These positive 
effects suggested an inverse to the “leverage effect” documented in financial markets, 
a peculiarity of electricity prices to be discussed later. The increase15 in volatility as 
margin declines indicated the diversity of strategies and possibly arbitrariness of 
bidding under relative scarcity. Residual volatility and demand were almost inversely 
proportional and this hyperbolic link could be attributed to several modes of agent 
behaviour. The augmented uncertainty during low loads might signal the decline of 
prices to unexpected levels, below their fundamental value, possibly due to over-
supply. In contrast, high demand could motivate similar price expectations and 
perhaps easier collusion, which translated to more predictable prices in the context of 
a price model that addresses strategic effects.  

 
Alternatively, the demand effect could relate to the conservative bidding of flexible 

plants, which achieve excessive profits during the morning and evening peaks and 
simply wish to retain their operation in intermediate periods. If demand is low on a 
specific day, these stations’ reward declines even further, which possibly creates 
incentives for more aggressive and unpredictable bids between peaks.  Another 
conjecture is suppliers’ over-contracting under high demand, when exposure to 
imbalance prices is particularly penal, which induces more activity in the spot market 
and more representative prices. As opposed to the previous remarks, empirical 
evidence suggests the increase of price volatility with demand. This contradiction is 
only superficial, as the volatility measure analysed here is not the statistical price 
variance but the residual uncertainty after fundamental structure has been subtracted.   

 
Finally, instead of a structural volatility equation, serial correlation was assumed 

for the innovation terms tε  in the form of an AR(1) process, where 
cov( .,...,1,), 1 nttt =∀=− ρεε  This specification seemed plausible but autocorrelation 
diminished when a structural model was assumed for variance, which suggests that 
AR effects are simply a surrogate for omitted factors. The adequacy of a variance 
                                                
14 The parameters in the variance function are estimated with an iterative procedure by maximising the 
marginal likelihood of the residuals from the least-squares price model. The regression coefficients are 
subsequently estimated by maximum likelihood assuming that the variance structure is known, as 

proposed in McCullagh and Nelder (1989). The derived GLSβ̂  is simply the weighted-least-squares 

estimator: PXXXGLS
111 ˆ)ˆ(ˆ −−− Σ′Σ′=β   

with estimated covariance matrix: 11 )ˆ()ˆ(ˆ −−Σ′= XXarV GLSβ . 
 
15 The same signs of the coefficients associated with demand and margin are consistent, as the linear 
correlation between the two variables is low for this period (-0.29). 



specification can be assessed with the value of the Log Likelihood function and the 
Residual Standard Error (RSS).  

 
Table 1. PX Price, Period 25. Variance Structure from GLS Modelling. 
Price Model Pt ~ Constant + Pt-1 + MPt-1  + SBPt-1 + Price Volatility + 

Demandt + Demand Curvaturet  +  Margin t+ εt 

Volatility Model Var (εt) = g (v) = v2b 

Covariate v Coefficient (2b) Log Likelihood  RSE 
Expected Price 1.62 -725.89 0.23 
Demand t -0.88 -730.22 28.16 
Margin t -0.44 -729.84 22.12 
P t-1 1.06 -726.80 0.54 
Autocorrelation ( ρ ) 0.26 -736.32 2.77 

 

Inferences about the variance structure in period 15 are summarised in Table 2. 
The effects of Margin and Demand remained negative, as in period 25, but their 
magnitudes were considerably different, with the former portraying a limited impact 
of the order of ¼ root and the latter a more dramatic, almost inverse quadratic effect. 
One interpretation is that flexible plants, which start their operation at this stage and 
require a premium for the implicit risk, behave in a more predictable manner as 
demand increases, possibly because cost implications are more dramatic or collusion 
easier. Finally, Expected and Lagged Price displayed negative effects on residual 
volatility, which implies more uncertainty around low prices, the opposite condition 
of the peak period 25. This dissimilarity in the response of volatility to price signals 
possibly arises from the different position of the two periods in the demand curve. 
Firm behaviour seems to be dominated by profit maximisation in period 15 vs. 
operating constraints in period 25.  
 

Table 2. PX Price, Period 15. Variance Structure from GLS Modelling. 

Price Model Pt ~Constant+Pt-1 + Pt-7 + Demand t+ Demand Slope t+ Margin t + 

Margin t-1 + εt 

Volatility Model Var (εt) = g (v) = v 2b

Covariate v Coefficient (2b) Log Likelihood RSE 
Expected Price - 0.62 -708.80 5.42 
Demand t - 1.8 -705.87 27 
Margin t -0.28 -709.59 9.89 
Pt-1 -0.32 -709.02 3.66 
Autocorrelation ( ρ )  0.52 -698.27 2.73 

 
3.2 Conditional Heteroscedasticity  
 

The previous modelling suggested that unconditional heteroscedasticity is a 
plausible explanation for the erratic volatility dynamics. The volatility responses to 
fundamentals tended to be non-linear and reversed sign within the day reflecting 
dynamic operating constraints and firm strategies or inadequacies of the price model. 
It should be emphasised that, after accounting for the impact of fundamentals on 
volatility, GLS residuals presented no significant GARCH structure. This implied that 



the autoregressive volatility structure, observed in practice, is eliminated, if a 
fundamental explanation for variance is postulated. Although a surrogate for omitted 
factors, conditional heteroscedasticity is still an appealing price property for trading 
and consistent with the realised paths of electricity prices, often characterised by 
periods of high instability followed by periods of relative tranquillity. This volatility 
clustering implies some predictability, which could be enhanced when accounting for 
asymmetries and non-linearities in the response of volatility to news. The occurrence 
of jumps however, prohibits the applicability of GARCH models. Duffie et al. (1998) 
conclude that erroneous results, such as integrated volatility processes, are usually 
derived due to the bias introduced by extreme prices.  

 
Such undesirable effects are constrained however, if regression-GARCH modelling 

is adopted, as GARCH effects are then explored in regression disturbances and not 
pure prices. Detached from systematic components, which may present extreme 
values for certain values of the covariates, regression residuals are smoother, even 
during spikes, and allow conventional volatility modelling. The regression-GARCH 
approach introduces implicitly a distinction between unexpected shocks outside the 
model boundary, which reflect news and create volatility, and extreme values of 
influential variables, possibly anticipated and persistent for a time period, which 
induce high prices. 
 
The regression model with GARCH (1,1) normal errors is defined as: 

 
=tP  ttX εβ +′  
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where Pt is the spot price in a specific load period (the subscript j is omitted for 
simplicity), tε  an i.i.d. serially uncorrelated innovation process, stationary under the 
condition ,121 <+ aa   with conditional variance )()( 1

2
1 −− == ttttt IEIVarh εε , a 

time-varying, positive and measurable function of 1−tI , the information set at time t-1. 
In order to account for the leptokurtosis of electricity prices, a standardized Student's t 
distribution is assumed for tu . 
 

Having defined the Regression-GARCH model, the volatility properties of spot 
electricity prices are explored with different specifications for the conditional mean 
and conditional variance. The equations, displayed in Table 3, vary w.r.t. adequacy of 
price description and complexity. The naïve price model I, conventional in financial 
practice, implies that prices follow a leptokurtic distribution fluctuating randomly 
around a long-run mean value. To reflect mean-reversion, model II imposes an 
AutoRegressive (AR) process with optimal number of lags w.r.t. to the AIC criterion. 
Equation III postulates a regression model intended to capture systematic price 
structure. Among the variance equations, IV implies a symmetric GARCH (1,1) 
structure for the residuals of the price model, i.e. assumes that positive and negative 
disturbances have the same impact on th . Model (V) imposes the Threshold GARCH 
(1,1) structure, introduced by Zakoian (1994), which allows for asymmetric effects of 
positive and negative lagged shocks on the conditional standard deviation. Positive 



news ( )01 >−tε  have an effect of 1α  on th , whereas negative news have an effect 
of γα +1 . The price and variance equations are estimated jointly, as the former 
involves lagged values of the response. The likelihood function16 is maximized via 
dual quasi-Newton. The starting values for the regression parameters are obtained 
from OLS estimation or Yule-Walker equations when autoregressive parameters are 
present. 
 
Table 3. Price and Variance Specifications in GARCH Modelling. 

Price Model Variance Model 
tt cP ε+=                    (I) 12

2
110 −− ++= ttt haah εα                       (IV) 

ttt PLcP ε++= )(     (II) 

ttt XP εβ +=          (III) 
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In the above, L denotes a distributed lag polynomial and 1−tS  the indicator 

function: 


 <

= −
− otherwise

if
S t

t ,0

0,1 1
1

ε
. 

 
Implementation of the modelling to UK spot prices showed that the specifications 

postulated for price do affect the identification of volatility dynamics and may even 
suggest conflicting conclusions. As an illustration, Tables 4- 5 present GARCH 
results for two peak periods with particularly volatile dynamics. For period 25, the 
optimal AR(6) model did not converge and was replaced by an AR(4). GARCH 
effects, revealed under other price specifications, proved insignificant after removing 
the structural component of prices. For period 35, the regression price model implied 
significant volatility asymmetry, which was however insignificant under AR models. 
To facilitate convergence, the optimal AR (24) was substituted by the robust AR(1) 
specification.  

 
The results could be summarised as follows: 

 
i) Within the Regression + GARCH model, the complications documented by 

Duffie et al. (1998) diminish. This could be attributed to the fact that high prices 
frequently emerge from the same structural model as regular prices but for extreme 
values of the covariates. Whereas the regression model could anticipate to some 
extent the abnormal price level, a non-structural model could erroneously perceive 
high prices as large shocks and thus, bias the estimation. More specifically, two types 
of results emerged. For some load periods, when a regression price specification was 

                                                
16 The Log likelihood function under the t error distribution is: 
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where Γ  is the gamma function and 

v  denotes the degrees of freedom in the conditional t distribution, an additional parameter to be 

estimated.   

 



assumed, a strong autoregressive structure was detected in the variance. However, 
GARCH effects seemed insignificant or the model failed to converge, when prices 
were instead described with an AR process. In other cases, the opposite result was 
observed. The persistence of extreme but anticipated market conditions (e.g. high 
demand), which induced a series of high prices, was interpreted as persistence of 
random shocks by simplistic GARCH models. The above observations suggest the 
sensitivity of volatility inferences to the price model. 

 
ii) Model I was entirely inadequate and led to erroneous results, such as explosive 

variance. Imposing an optimal AR model (II) was often sufficient to avoid 
unreasonable estimates, possibly because autocorrelation had a strong presence in the 
new market due to learning and trading inefficiencies. As it was expected, residual 
uncertainty was reduced significantly17 when price levels were modelled with a 
structural formulation. This was reflected both in long-term (asymptotic variance) and 
short-term  (impact of lagged shocks on conditional variance) measures of 
uncertainty. This could be partially attributed to the fact that realised values of 
exogenous variables, such as Margin, were used in the price model. Still, simulations 
of expected Margin suggested that this property of regression-GARCH modelling is 
retained in forecasting settings. This finding is crucial for day-ahead trading, as 
forward prices convey little information about intra-day spot price fluctuations, 
especially when reported only as aggregated indices (peak/baseload). 

 
iii) In several trading periods, conditional variance seemed to respond 

asymmetrically to positive and negative past shocks. The negativity of the parameter 
γ suggested that the inverse of the leverage effect identified in financial assets applies 
to electricity prices. This means that positive disturbances have a stronger impact on 
volatility than negative ones, as documented in Knittels and Robert (2000) for 
California prices. One possible explanation is that in the case of stocks, low prices 
increase the leverage exposition of the firm and have a direct impact on the 
perceptions of stockholders; in contrast, in the case of electricity, prices higher than 
expected may attract regulatory intervention or new entry, both undesirable outcomes 
for generators and sufficient to create temporal uncertainty. An alternative 
interpretation suggests that as prices exceed their anticipated levels, often due to 
market power abuse, there is a lack of consensus about the true value of the 
commodity and a tendency towards more aggressive bidding. Speculators attracted by 
potential profits add to this dispersion of expectations, which causes more intense 
price fluctuations than during lower prices.  

 
iv) When a covariate was introduced into the GARCH equation, such as Demand 

or Margin, the coefficients were insignificant or convergence was infeasible.  
 
 

 
 

                                                
17 Even when they involved more variables, AR+GARCH models indicated more volatile innovation 

processes than Regression +GARCH models. The more the extreme prices predicted by the regression 

model, the more dramatic the deviations in the results were.  
 



 
Table 4. GARCH Modelling for PX Price, Period 25. 
Price Equation Model (I) Model (II) Model (III) 
Variance Equation 2

12
2

110
2

−− ++= ttt haah εα    (IV) 

oα  3.01 (0.03) 2.46 (0.01) 3.87   (0.002) 

1α  0.39 (0.003) 0.29 (0.007) 0.28   (0.015) 

2α  0.46 (0.006) 0.46 (0.002) 0.17   (0.2) 

t-distribution (df) 23.56 6.21 10.75 
Asymptotic St.Deviation 4.60 3.20 2.63 

 
Table 5. GARCH Modelling for PX Price, Period 35. 
Price Equation Model (I) Model (II) Model (III) 
Variance Equation                     12

2
11

2
110 −−−− +++= ttttt haSah εγεα (V) 

oα  6.76        (0) 0.51 (0.06) 1.22         (0.01) 

1α  1.25        (0) 0.26   (0.02) 0.17          (0.02) 

2α  0.17        (0) 0.82        (0) 0.92             (0) 

γ -0.86  (0.03) -0.18  (0.10) -0.51       (0.007) 
t-distribution (df) 5.27 3.02 3.42 
Asymptotic St. Deviation 24.56 7.53 2.12 

 
 
4. Evolution of Price Structure  
 
4. 1 Motivation  

 
This section intends to assess whether the evident time-varying spot volatility 

reflects an evolving price structure, result of a highly repeated auction and continuous 
agent adjustments to changes in market structure and rules. A dynamic fundamental 
price analysis is thus proposed to reveal the direction towards which prices evolve, 
such as more cost-reflecting, risk-related or strategically abused levels. In order to 
follow the complex process of market adaptation, the structural price models assumed 
in previous sections are re-specified here with time-varying parameters.  

 
An apriori assessment of the market orientation is not obvious. The half-hourly 

interactions among market participants and between them and the system operator 
induce learning, which reveals profitable strategies but simultaneously motivates 
more efficient reactions by the system operator. Under the new uncertainties, induced 
by NETA, individual actors or groups (generators vs. suppliers, speculators, 
generation technologies, NGC) update their utility functions, risk aversion parameters 
and strategies. It is however questionable whether the adjustments of several parties 
with conflicting interests are counteracted or move towards a similar direction, which 
attitude dominates and how the orientation of the entire market evolves as a result of 
these dynamic interactions. Assessing price convergence without a fundamental 
analysis might be misleading in the presence of seasonality, contradictory or unstable 
market signals, and multiple exogenous or endogenous shocks affecting trading.  
 



4.2 Time-Varying Parameter Regression Model 
 
In order to follow the evolution of structural effects on prices and hence, clarify the 

time-heterogeneity of volatility, a Time-Varying Parameter (TVP) regression model is 
specified: 

     jtjtjtjt XP εβ +′=                           Measurement equation 

jttjjt v+= − )1(ββ                            Transition equation 
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In the above state-space formulation, the regression coefficients are not unknown 

constants but latent, stochastic variables that follow random walks. This specification 
was plausible for several load periods, as indicated by stability18 tests (typically at 
significance levels of 5-10%). This result is intuitive as many shocks during the 
sampling period had a permanent or cumulative rather than diminishing effect in 
market adaptation. Such shocks include rule modifications, regulator’s 
announcements about the length of the Balancing Market and a new rule for price 
calculation, policies regarding renewables, mergers and acquisitions in the electricity 
industry in addition to the Enron collapse.   

 
The state-space model was estimated with discrete Kalman Filter. The filter 

recursions indicate how a rational economic agent would revise his estimates of the 
model parameters in a Bayesian fashion within an environment of uncertainty, as new 
information becomes available. In our context, the recursions indicate how the market 
as a whole evolves attaching varying importance to fundamentals. The Kalman Filter 
Algorithm for the TVP model is described in Appendix I. 

 
It should be emphasised that TVP models are differentiated from the ARCH class 

of models implemented in 3.2 with respect to the features of uncertainty they intend to 
capture (Kim and Nelson, 2001). In the latter type of models, changing uncertainty 
about the future is focused on the conditional heteroscedasticity in regression 
disturbances. In time-varying regression however, an agent’s uncertainty about the 
future arises partially from future random terms. It also reflects uncertainty about 
current parameter values and the model’s ability to link the present to the future. The 
uncertainty about current regression coefficients results in the changing conditional 
variance of price. This decomposition of uncertainty is captured in the equation for 
the variance of the conditional forecast error: 2

1111 jtjttjttjttjt XPXH εσ+′= −−−− , where 

1−tjtP  represents the degree of uncertainty associated with an inference on jtβ  
conditional on information up to time t-1.  

 
 
 
 

                                                
18 Two types of stability tests were performed; the homogeneity test (Brown, Durbin, Evans, 1995) 
against the alternative hypothesis of unstable regression coefficients and the Engle and Watson (1985) 
against the alternative hypothesis of random walk coefficients 



4.3 Dynamics of Price Structure  
 
Implementation of the TVP modelling to NETA elucidated several aspects of the 

market evolution process. Although clusters of periods with similar patterns of 
structural evolution emerged, intra-day variation was still considerable. This indicated 
that the fragmentation of trading across periods allowed the persistence of different 
structural trends within the day and delayed market convergence. Even when the 
variances of the effects were not statistically significant, the dynamic estimation 
procedure uncovered subtle details of the adaptation process, which were neglected 
when a static regression model was assumed. In general, adjustment effects remained 
strong up to December 2001 and were still present one year after the introduction of 
NETA. The analysis indicated a gradual shift of market orientation towards more 
sophisticated trading and possibly more cost-based prices with greater responsiveness 
to perceived risks. In contrast to the erratic dynamics of demand effects, the 
decreasing impact of margin was evident and signified a trend towards less strategic 
bidding, at least in the conventional sense. Some evidence of capacity withholding, 
implied by the negative effect of Lagged Margin, also diminished in January 2002. 
The decline of strategic impacts and autocorrelation indicated that the initially 
prevailing inefficiencies in the reformed market were progressively being eliminated 
to a large extent. 

 
Typical stochastic patterns of the evolving price structure are illustrated with 

periods 25 and 35.  The price models selected were again the more robust for the 
specific setting. Table 6 reports model formulae and parameter estimates for the 
illustrative models.  Figures 3-4 depict Kalman Filter the dynamic regression 
coefficients conditional on information up to time t-1. The recursions illustrate how 
price sensitivities to various factors were revised during the sampling period. It is 
apparent that a significant proportion of price variation is due to the evolution of 
regression coefficients in the price equation.  

 
In specific, the impact on spot price of price signals from the previous day and 

week decreased over time for various load periods. This aspect of bidding behaviour, 
displayed in Figures 3a-b and 4a-c, indicated increasing limitations in price 
forecasting with autoregressive models. One plausible interpretation is that bidding 
became progressively more sophisticated or more based on private data rather than 
historical prices. This was consistent with the market tendency towards vertical 
integration and within-firm trading for risk management. The alternative conjecture 
that the market became more efficient and gradually cancelled price autocorrelation 
seems quite unrealistic given the persistence of relative illiquidity. In contrast with 
past prices, the role of historic PX volatility increased dramatically for some peak 
periods. As Figure 3g illustrates, in period 25 the volatility impact on price, reflecting 
forward premia, tripled in March 2002 compared to July 2001. Even if the initial 
estimates were sensitive to the selected prior, the increasing trend was still obvious. 
This implied that the hedging of risk via the day-ahead market became more 
expensive over time in response to the unpredictable SBP and primarily, credit risks. 
The Enron collapse and the first signs of generators’ bankruptcies created an insecure 
trading environment, where risks were converted to more expensive pricing. An 
alternative plausible view is that generators tended to exploit progressively suppliers’ 
exposure to penal imbalance prices, at least occasionally. A final component 
manifested in this dynamic behaviour is the regulatory risk induced with NETA and 



demystified over time with the discussions about a new pricing scheme and the 
reduction of Gate Closure to one hour.  

 
The response of prices to Margin evolved in a fairly uniform fashion across 

periods. As Figures 3g and 4g illustrate, the partially strategic effects of Margin 
declined systematically, despite the possibly favourable winter conditions and reached 
in March 2002 approximately 60% and 18% of their initial values in periods 25 and 
35 respectively. This decline of strategic elements in day-ahead pricing could imply 
that the market is converging gradually to a competitive state given overcapacity and 
fragmented suppliers’ more active role, generators’ market structure or their intention 
to eliminate inefficiencies in the fear of eminent reforms. Standardisation of 
coefficients further revealed that for several periods margin ceased to be the most 
influential factor of spot prices after December 2002. In this respect, the market 
gradually reached more cost-based outcomes. The pattern displayed in Figure 4h 
arose in several periods and clarified the enigmatic effect of Lagged Margin on prices. 
Although negative in the beginning, as expected, the coefficient reversed sign during 
the winter, possibly manifesting capacity withholding. This non-competitive element 
of pricing was inverted in January 2002.     

 
The evolution of the demand effect was particularly volatile without a consistent 

pattern across periods. The evident intra-day and annual instability reflected the 
absence of central cost-minimising dispatch and the implied mixture of different 
technologies, the alternation of marginal capacity across the year, the path of fuel 
costs and the variability in operational costs such as start-up, which under NETA 
would be internalised in bids conditional on daily scheduling. In periods of peak 
demand, such as 35, the impacts of the quadratic demand term increased dramatically 
in response to weather conditions and declined abruptly after January 2002 (Figures 
20, 21).  In shoulder periods however, such as 25, patterns were different. (Figures 3e, 
3f). Both the linear and quadratic components of demand were mostly negative and 
extremely volatile but diminished or converged to zero. Although periodic cycles 
could be distinguished, a seasonal interpretation was not apparent. The most plausible 
speculation is that as spot prices were collapsing, flexible generators were becoming 
more reluctant to compromise with low prices for shoulder periods in order to retain 
their presence in the evening peak. As a result, demand was becoming less influential 
on bidding. 

 
As discussed in section 3.2, strong ARCH effects were detected when price models 

with fixed coefficients were assumed. Serial correlation was not detected however in 
the squared forecast errors of the TVP specifications after adjusting them for the 
conditional TVP heteroscedasticity ( 1/

2/1
1/ −−Η tttt n ). This implies that the existence of 

GARCH effects could be due to the varying structural components of price levels. 
Figures 5-6 illustrate conditional standard deviation for periods 25 and 35, estimated 
from the previous TVP regression models and the corresponding Regression-GARCH 
models. Regarding the latter, asymmetric effects of positive and negative shocks, in 
the form of TGARCH (1,1), were significant for period 35 but not 25, where GARCH 
(1,1) was sufficient. It should be noted that the TVP estimates are apriori volatility 
expectations, based on information up to t-1, whereas the GARCH estimates are 
derived ex-post. Still, within the TVP framework, uncertainty is significantly reduced. 
TVP models seem to uncover much more subtleties of the volatility process, 



particularly in unstable time periods.  Day 1 is slightly different in the two classes of 
models, as TVP required more observations for filter initialisation. 

 
Table 6. PX Price, Periods 25 and 35. Parameter Estimates for the Time-Varying 
Regression Model.  
Period 25 Period 35 

2
εσ  0.75 2

εσ  2.4 

Variable 
kvσ  Variable 

kvσ  

Intercept 0.20 Intercept 0.03 
Pt-1               0.012* Pt-1               0.12* 
Pt-7 0.0026 Pt-7 0.19* 
Spot Volatility           0.0075* MPt-1 0.008 
Demand- Linear 0.27* Demand- Linear 0.54* 
Demand-Quadratic 0.011 Demand-Quadratic 0.63* 
Margint 0.00038* Margint 0.000032* 
Demand Volatility     0.00036 Margint-1 0.000012* 
Demand Curvature 0.00009 Demand Curvature 0.0005 

The asterisk denotes a variance significantly different than zero at the 95% level.   
 

5. Discontinuities in Price Structure  
 

5.1 Motivation 
 
The previous analysis suggested strategic manipulation of capacity to a certain 

extent throughout the day, but most intensely around the evening demand peak. This 
reveals some kind of selective agent behaviour, which induces discontinuous 
volatility, and may also appear within a single trading period. To uncover the 
stochastic dynamics of such selective behaviour, the magnitude of any strategic 
effects and their implications on volatility, regression regime-switching is adopted at 
the high frequency level. The more heuristic approach of simply analysing extreme 
prices would be insufficient, as price effects should be assessed after controlling for 
various fundamentals, i.e. in the context of a structural model, rather than purely from 
their levels. 

 
One of the peculiarities of spot electricity prices is that they exhibit regular patterns 

disrupted by recurrent but aperiodic, fast-reverting “spikes”, which induce severe 
financial risks. These extreme prices signify temporal market irregularities, such as 
unexpected weather/demand, technical shocks (e.g. plant/interconnector failures, 
contingencies in transmission networks), strategic behaviour, trading inefficiencies 
(e.g. illiquidity), cross-commodity leakages (e.g. fuel price explosion) or 
accumulation of credit risks. Each of the above causalities is linked with different 
attributes of the commodity (e.g. non-storability, demand inelasticity to price) or the 
market design and structure19.  

 
                                                
19 Specifying the source of irregularity in each case would require an analysis of the values of the 
covariates in every abnormal case. Such a detailed evaluation exceeds the purposes of this study. 
 



The modelling question explored in this section is whether the discontinuous price 
structure, arising from the temporal irregularities discussed above, could be 
sufficiently captured with a few structural regimes with distinct volatilities. In the 
context of electricity prices, regime-switching has been adopted to replicate the erratic 
market alternations between “normal” and “abnormal” equilibrium states of supply 
and demand. Existing models refer to daily average prices and often assume an 
autoregressive process under both regimes (Ethier and Mount, 1998; Deng, 2000), 
which introduces estimation bias, as it does not disentangle mean-reversion from 
spike reversal and incorrectly imposes stationarity on the irregular price process. A 
continuous-time process that corrects this mis-specification is derived by Kholodnyi 
(2000), where self-reversing non-Markovian spikes are added to a Markovian regular 
price process. The mis-specification is also eliminated in discrete time by (Huisman 
and Mahieu, 2001) with the assumption of three regimes, a regular state of mean-
reverting price, a jump regime that creates the spike and a jump reversal regime that 
ensures with certainty price reversion to their previous normal level. This regime-
transition structure is however restrictive, as it does not allow for consecutive spikes. 
This constraint is relaxed by de Jong and Huisman (2002), where a stable mean-
reverting regime is proposed and an independent spike regime of log-normal prices, 
which implies closed-form solutions for option pricing.  

 
 In contrast to these stylised multiple-regime models, regime-switching is adopted 

here within a regression model and at a high-frequency level, separately for each 
trading period. This structural specification allows the replication of more realistic 
price paths for intra-day trading and primarily, addresses issues of market 
performance and agent conduct. In principle, the proposed modelling presents the 
following properties: 

 
i) It provides a more adequate description and potentially short-term prediction of 

price dynamics. In particular, it resolves the limitations of a static model by deriving 
properties such as: skewness and leptokurtosis (due to the mixture of price 
distributions) and discontinuous shifts in price levels and volatility. 

ii) It clarifies the structural profiles of dissimilar and recurrent pricing regimes. If 
systematic structure is identified in extreme prices, this means that their magnitude is 
not arbitrary but reflects a recurrent generators’ reaction to market abnormalities, 
whenever these arise and irrespectively of their exact causality. Depending on the 
plausible interpretations of the latent market state (which relates to market 
specificities and model formulation), the modelling could indicate how often and for 
how long on average: a) Short-term strategic effects persist given the fear for 
regulatory intervention and new entry, b) A temporary shock in demand or supply 
inflates prices, c) The market remains illiquid before agents get attracted by price 
levels and induce activity. 

iii) It reveals the stochastic dynamics of regime-switching based on fundamentals 
rather than solely price levels and thus, allows a more accurate evaluation of the risks 
induced by price spikes. 

 
 
 
 
 
 



5.2 Regime - Switching  Regression Model  
 

The regression model with first-order Markov regime-switching is specified as: 
 

tStt t
XP εβ +′=  

where, ),0(~ 2
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tP  denotes the spot price in a given load period on day t, St the latent regime, 

},...,2,1{ nS = the set of possible states tX  a kx1 vector of exogenous explanatory 
variables at t, 

tSβ  a kx1 vector of regression coefficients, 2
tSσ the error variance in 

regime tS  and ijp the transition probability between states i and j. 
 
The above model proposed by Hamilton (1990), assumes that the market at each 

time point is in one of n possible states, indexed by an unobservable discrete variable 
tS , which alternates stochastically according to a first-order Markovian process. St is 

as an additional endogenous variable in the model and exogenous to the included 
fundamentals. Each market regime is characterised by a distinct regression price 
model, i.e. the model parameters are a function of the prevailing state at each time 
point. In other words, tS  indicates which price model applies at t. A regime shift 
occurs whenever the underlying market framework changes. The changes are not 
restricted to shifts in the intercepts or the impacts of the variables but could also be 
shifts in the residual variances, the non-explained part of the volatility. In this sense, 
the model is a method to capture stochastic volatility. It should be emphasised that 
prices are not apriori classified into distinct regimes. Both their categorisation (i.e. the 
identification of the latent state at each point) and the equation of their magnitude are 
endogenously derived with probabilistic inference. The estimation algorithm20 is 
outlined in Appendix II.  

 
Having described the structural model with Markov regime-switching, some 

remarks follow on our application. 
 
i) The hidden market state could be assigned several interpretations depending on 

market specificities and the variables included in the structural price models. In our 
case, the irregular regime could reflect temporal market efficiencies, both in the 
economic and trading sense, such as illiquidity, extreme movements in fuel prices and 
abusive strategic behaviour of individual generators, not captured by the aggregated 
strategic variables.  

ii) The model suggests that the extreme variation in electricity prices emerges due 
to the alternation of market regimes, which differ in the nature of significant 

                                                
20 A desirable feature of the model would be to disentangle the mean-reverting component anticipated 
in the regular price process from the jump-reversal process. Adopting an estimation procedure similar 
to the one implemented by de Jong and Mahieu (2002) would separate the autocorrelation within the 
normal regime from the jump towards a spike as well as the reversion after that. The results presented 
here are derived with conventional probabilistic inference followed in earlier papers. The 
contamination of the normal process from spikes was not expected to be an issue given the rich 
structure of the model and the focus on fundamentals rather than autocorrelation dynamics. 
 



influential factors or the magnitudes of their effects. For instance, economic 
fundaments could dictate pricing in normal states, whereas strategic effects prevail in 
abnormal states. This speculation would not exclude spikes arising from fundamentals 
such as demand/supply shocks, as frequently in electricity markets, actual capacity 
scarcity is only moderate but agents react strategically and cause a price explosion.   

iii) The serial correlation in the stochastic evolution of the latent state, implied by 
the Markov assumption, is appealing in the presence of a regulator and speculators, 
market rules and plant constraints, which pose a limit to the persistence of extreme 
prices and imply a consistent probabilistic structure for St. Particularly in NETA, 
extreme deviations from regular prices could not persist for long given the 
overcapacity. It could be argued that the constant transition probabilities assumed for 
St are restrictive for an adapted market and could instead be time-varying, i.e. linked 
to a covariate. However, static transition probabilities were specified for reasons of 
statistical validity, as the price model postulated a rich structure with implicit time 
effects and tS  should be exogenous to the included fundamentals. 

  
5.3 Modelling Results 

 
The introduction of regime-switching to the regression model captured more 

precisely the complex stochastic behaviour of high-frequency electricity prices. The 
implicit assumption was that dissimilar pricing profiles emerged due to changes in the 
influential factors or the magnitude of their impacts, in response to diverse market 
conditions. Indeed, the analysis revealed significant structural components in pricing 
under both market states. For the normal regime, the structural insights achieved with 
the one-regime regression model were retained to a large extent and more adequate 
representations were derived, as spikes were endogenously classified to a different 
regime. Evidence for systematic structure was also identified in the irregular regime, 
where strategic factors proved to be significant and much more influential, whereas 
cost-fundamentals limited compared to normal market conditions. The fact that 
causalities were uncovered behind the level of irregular prices exceeded the insights 
of the stylised literature and has significant implications for price forecasting. The 
conventional assumption of regime-switching within an AR model, instead of a 
regression one, was inadequate, in most load periods, to replicate the involved price 
dynamics arising from the interface of financial and physical trading.  

  
The regimes derived with probabilistic inference were differentiated by price level, 

‘low’ and ‘high’, although this criterion was not constraining. For instance, a 
moderate price was occasionally assigned to the irregular regime, if its value was 
perceived peculiar given the underlying market conditions. Similarly, relatively high 
values were assigned to the regular regime, whenever they seemed to arise naturally 
from the regular price process for extreme values of the covariates. Allowing for two 
regimes was often sufficient to capture non-modelled shifts in the market 
environment.  Occasionally, a particularly small set of extremely high prices was 
classified into the irregular regime causing unreliable estimation. The specification of 
three regimes resolved this issue resulting to two categories of irregular prices: a set 
generated from the same structural equation and a minority of spikes that did not 
comply with the former, at least in the context of the model. The relative frequency of 
these two irregular regimes could be viewed as a proxy for ‘partially explainable’ 
versus ‘unanticipated’ spikes within the model boundary. An anticipated feature of the 
emerged regimes is that they did not persist for long periods. As suggested by the 



smoothed state probabilities, price tranquility was interrupted by fast-reversing spikes. 
The high frequency of the irregular state was consistent with the interpretation that St 
represented temporal, but highly influential and recurrent changes in the trading 
environment. This aspect does not characterise the switching dynamics of the less 
volatile, economic time-series, where regimes tend to be longer reflecting 
fundamental changes in the macro-economic environment.   

 
The multiple-regime modelling is illustrated with typical examples derived from 

the spot market for trading periods 25 and 35. Reduced regression specifications were 
selected in order to facilitate the convergence of the algorithm and ensure reliable 
estimates in the infrequent irregular category. Despite their simplicity, the regression 
models retained primary elements of price structure. For the spot price, these 
involved: first-order autocorrelation as an indication of trading heuristics/inefficiency, 
historic spot volatility as a risk measure, predicted demand as an economic factor, 
margin and lagged margin as potentially strategic effects. The dissimilarity between 
normal and irregular regimes was clearly manifested in the intercepts terms. Beyond 
this divergence, statistically significant and appealing price structure was detected in 
extreme states. All effects were significant in at least one mode, but the magnitudes of 
the coefficients displayed great variation. Tables 7 and 9 illustrate the varying 
significance and magnitude of coefficients across regimes for the illustrative periods. 
Tables 8 and 10 summarise transition dynamics. Adding regime-switching to the 
static regression models, increased the R2 from 62% and 79% to 74% and 92% 
respectively for the illustrative periods. The latter was over-estimated to some extent 
due to the small size of the third regime. Figure 7 displays actual versus fitted values 
and Figure 8 relative residuals (residuals over actual prices) across the sampling 
period. 

 
The following discussion focuses on the structural insights into the extreme market 

state, which were qualitatively consistent across periods. This suggested that players 
implemented strategies repeatedly or reacted to market irregularities in a similar way 
in order to induce profits. In specific, for period 25 the margin effect under 
irregularities was three times more intense than normally, which reveals a substantial 
escalation of scarcity rents. This particular sensitivity of abnormal prices to margin 
could partially confound the lower values of margin on irregular days, but as this did 
not seem to be the case, it could be attributed to a large extent to strategic bidding. 
Analogously, the negative linear component of demand was inflated compared to the 
normal regime. This indicated that under unconventional conditions, flexible 
generators were more inclined to compromise on prices in order to retain the 
possibility of operating in the evening peak, an option that was becoming more 
profitable under a spike regime. As opposed to the normal regime, historic price 
volatility was not significant under the extreme conditions. This suggested that the 
spikes were not induced by risk-aversion and rational trading behaviour, at least as 
measured in the model. The autocorrelation parameter for the normal regime was 
magnified compared to the one-regime regression model of section 2, possibly 
reflecting a surrogate for the disregarded variables in this simplified model. Neither 
the ergodic probability of the irregular regime (0.31) nor its probability of persistence 
(0.34) was minor. Its expected duration was greater than one day suggesting that the 
assumption of instantly reverting spikes, frequently employed in the industry, is quite 
restrictive. 

 



For the particularly volatile period 35, three latent states were assumed leading to 
the emergence of a normal price regime (denoted as II) and two irregular ones (I, III), 
the last of which captured the most extreme prices. The transition dynamics of regime 
III revealed persistence to the same state with probability 0.09, shift to the smoother 
regime I with probability 0.80 and abrupt reversion to normal levels (II) with 
probability 0.04. This switching pattern suggests a two-stage spike reversal to normal 
prices. In the irregular regimes, the effects of both Margin and Lagged Margin were 
inflated, implying abusive bidding and capacity withholding. The impact of the latter 
in regime I was double and in regime III ten-fold the regular value under regime II. 
The impact of demand was retained significant in regime I but with a sign reversal, 
which could signal strategic behaviour even in periods of low demand.  

 
The systematic exercise of strategic behaviour of generators, when temporal 

irregularities arise, implies discontinuities in the volatility process. Indeed, volatility 
is multiplied by a factor of 2 or 3 during abnormalities, as shown below.  

 
Table 7. PX Price, Period 25. Price Structure with a Two-Regime Regression 
Model. 

Variable Irregular 
Regime (I)

Regular 
Regime(II)

Intercept 36.82*21 11.47* 
Lagged PX -0.10 0.44* 
PX Volatility  5.55 10.87* 
Demand – Linear -33.57* -8.89* 
Demand – Quadratic -0.42   1.12 
Margin -0.0014* -0.0005* 
σ 1.12 0.42 

R2 0.74 
 

Table 8. PX Price, Period 25. Transition and Ergodic Regime Probabilities. 
Regime  I II 

I 0.34    0.30 
II 0.66  0.70 
Ergodic Probabilities  0.31 0.69 

 
Table 9. PX Price, Period 35. Price Structure with a Three-Regime Regression 
Model. 
Variable Irregular 

Regime (I)
Regular 
Regime (II) 

Irregular 
Regime (III) 

Intercept 40.72* 7.30* -18.10* 
Lagged PX 0.04 0.61*  1.4 
Demand – Linear -63.6* 16.09* 28.90 
Demand – Quadratic 115.3* 21.03*  15.82 
Margin -0.0028* -0.0007* -0.0025* 
Lagged Margin 0.001* 0.0005* 0.005* 
σ 1.97 0.82 2.8 

                                                
21 Asterisk denotes significance at the 95% confidence level. 



R2 0.92 
 

Table 10. PX Price, Period 35. Transition and Ergodic Regime Probabilities. 
Regime  I II III 
I 0.33    0.07 0.80 
II 0.57 0.90 0.13 
III 0.10 0.03 0.09 
Ergodic Probabilities  0.14 0.82 0.04 

 
6. Conclusions 
 

Spot electricity prices exhibit unusual volatility, orders of magnitude higher than 
financial assets and other commodities. Because spot price changes have a number of 
structural components, conventional price volatility models derive erroneous results 
(e.g. GARCH), whereas specifications that perceive variance as constant or a simple 
stochastic process (jump-diffusion, autoregressive regime-switching) facilitate 
analytical solutions in derivatives evaluation, but are inadequate to evaluate 
accurately short-term price dynamics and risks. This paper models explicitly the 
stochastic behaviour of volatility that relates to an underlying structural price 
specification, provides causal explanations for its emergence as well as a 
methodology to reduce short-term trading risk. The volatility measure modelled has 
an appealing interpretation; that of residual variance after detaching prices from 
fundamental structure. This represents the descriptive, ex-post, uncertainty of a 
rational expectations price model and is also a proxy for the predictive uncertainty of 
an agent who derives his price expectations from the econometric model and his prior 
beliefs about the influential factors of price variation. To clarify the nature and 
dynamics of volatility, four modelling approaches are proposed. Each captures 
distinct causal or stochastic aspects of the price and volatility process, such as 
heteroscedasticity, conditional or unconditional, of random shocks, evolution of the 
underlying price structure and discontinuities in price structure due to temporal 
market irregularities. Some results and comments are summarised below. 
 
i) Each modelling approach motivates a convolution of fundamental, strategic and 
behavioural interpretations of volatility, which seem consistent with plant dynamics. 
Each is plausible depending on market conditions and agents’ information, whereas a 
hybrid entails computational complexities. This multiplicity of plausible models is 
consistent with the view that electricity prices are only one of multiple equilibria and 
suggests that agents may not converge quickly to the same expectations model. The 
inevitable heterogeneity of expectations possibly induces additional volatility to that 
implied by non-storability and strategic behaviour.  

 
ii) Volatility structure displayed significant intra-day variation. This indicates that 
agent responses to information arrivals are a function of plant operating constraints 
and strategic potential, both varying within the day.  
 
iii) GLS modelling revealed non-linear responses of residual variance to strategic and 
economic impacts, which partially explains the erratic price movements. 

  



iv) The convergence limitations of GARCH models reported in the literature were 
resolved when a structural model was assumed for prices and a leptokurtic 
distribution for the errors. GARCH effects (including the parameter of asymmetry) 
are concealed or exaggerated depending on the adequacy of the price model. This 
sensitivity can lead to mis-perceptions of the underlying price risk and mis-pricing of 
financial instruments.  The analysis further indicated an inverse to the leverage effect 
typical in financial markets, which could relate to regulatory presence. 

  
iv) Time-varying regression modelling revealed the dynamic structure of prices, as 
agents continuously update their strategies. The concept of market adaptation 
provides an adequate explanation for stochastic volatility, as GARCH effects diminish 
after adjusting prices for TVP heterogeneity. Dynamic price modelling seems more 
appropriate for highly evolving or unstable markets, such as those emerging after 
reforms or regulatory interventions.  

 
vi) A structural price model with multiple, stochastically alternating, regimes clarified 
price uncertainty under temporal market abnormalities, when strategic behaviour 
dominates pricing. The quantification of volatility under extreme conditions is 
appealing for Value-At-Risk calculations.  

 
vii) The applicability of these structural volatility specifications are contingent upon 
agents integrating their expectations about market fundamentals into a formal model 
which, given the information asymmetries in electricity markets, may well be quite 
diverse. The models could, however, be reduced to a stylised formulation, if an 
autoregressive model is assumed as the rational expectations price model. 
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Appendix I 
 

The Kalman Filter Algorithm for the above TVP model consists of the following: 
 
Step 1: Prediction  
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Step 2: Updating 
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Step 3: Smoothing 
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The estimate of tβ  based on information up to time t, i.e. ttβ , is defined as an 

optimal combination of the prior on tβ , i.e. 1−ttβ and the forecast error 1−ttn , the 

weight being the Kalman gain K. Hence, for starting values of 1−oβ , 1−oP 22 and 

assuming that the values of 2
εσ  and Σ are known23, recursive estimates are derived for 

the mean and variance of the state vector tβ  using observations on tP and tX  
 
 
 
                                                
22 As prior estimates of the parameters did not exist, the initialisation of the filter was not trivial.  The 

coefficients derived from the static regression models were selected as initial values for the vectors 

jβ  and a diffusion prior was assumed for the initial variances.  Due to the non-linearities implicit both 

in the data and the optimisation problem, sensitivity of the solution to the initial values is by theory 

inevitable. Although the results were fairly robust to a wide range of values, they should still be 

interpreted with caution. 
23 In economics, the values of the above time-invariant parameters are seldom known. They can be 

estimated however, maximising the following log likelihood function, which is based on the 

forecasting errors and their conditional variance: 
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Appendix II 
 
Estimation of Regime-Switching Regression Model 
 
As the underlying regime is unobserved, the distribution of price conditional on past 
information can be expressed as: 
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where s
ttp τ+ is similarly defined. Whenτ is negative, s

ttp τ+ represents a forecast of the 
probability that regime s will be realized in period τ . When τ is 
positive, s

ttp τ+ represents a smoothed or updated inference of the probability that that 
regime s was in fact realized τ periods ago.  
 
Although the state variable St is unobservable, it is possible from the estimated 
transition probabilities and regime-dependent models to derive a probabilistic 
inference about its latent value for each time point t in the sample. This inference is 
compounded in the filtered or smoothed state probability f

sp = )( Tt IsSP = , 

expressing the probability of the market being in regime s on day t, conditional on TI ; 
the set that contains all the available information on prices  and structural variables in 
the sample. 

 
 

Parameter estimates could be derived with Maximum Likelihood Estimation (MLE) 
by constructing the log likelihood function ∑ − ),(log( 1 θtt IPf and setting the scores 
to zero. Hamilton (1990) shows that the ML estimates can be obtained using an 
application of the Expectation Maximisation algorithm of Dempster, Laird and Rubin 
(1977). In the expectation step (E), the unobserved states tS �are estimated by their 
smoothed probabilities Tt

sp̂ . The conditional probabilities ),Pr( 1−l
t PS θ are 

calculated with a filter and smoother using the estimated parameter vector 1−lθ of the 
last maximization step instead of the unknown true parameter vector. In the 
maximization step (M), an estimate of θ is derived as a solution of the FOCs of ML 
estimation, where the conditional regime probabilities ),Pr( θPSt  are replaced by 

the smoothed probabilities Tt
sp̂  ( 1−lθ ) of the last expectation step. Thus, the 

dominant source of non-linearities in the FOCs is eliminated.  
 
For the regime-switching structural model, the application of the EM algorithm results 
in the following set of recursive equations for iterations l=1,2,…. 
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where XpX Tt
s

s ⋅= ˆ , PpP Tt
s

s ⋅= ˆ . 
 
The recursion begins by selecting an initial parameter vector 0θ computing Tt

sp̂ , then 
computing 1θ and so until convergence is achieved. The recursive nature of the 
estimation algorithm arises because of the need to construct s

Ttp̂ , (which depends on 
1−lθ ) before computing lθ . From the transition probabilities ergodic probabilities are 

derived, which refer to the steady-state i.e. long-term probability distribution of tS . 
Expected (fitted) prices and variances of the estimators are calculated as: 
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Figure 1. Inter-Day and Intra-Day Price and Volatility Profiles for Spot Prices   
               during 6 June 2001 - 1 April 2002. 

 
Figure 2. Half-Hourly Spot Prices for selected periods during 6 June 2001 –  

           1 April 2002. 
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Figure 3. Time-Varying Regression Coefficients for Spot Prices in Period 25.  
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Figure 3. Time-Varying Regression Coefficients for Spot Prices in Period 25. 
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Figure 4. Time-Varying Regression Coefficients for Spot Prices in Period 35. 
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Figure 4. Time-Varying Regression Coefficients for Spot Prices in Period 35. 
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Figure 5. Conditional Standard Deviation with TVP modelling for Spot Prices in   
                Periods 25 and 35. 
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Figure 6. Conditional Standard Deviation with GARCH modelling for Spot Prices in  
                Periods 25 and 35. 
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Figure 7.  Actual (Dark Line) vs. Fitted Spot Prices in Periods 25 and 35 with Markov   
                 Regime-switching  Regression Modelling. 
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 Figure 8. Relative Residuals in Periods 25 and 35 from Markov Regime-switching Regression   
                 Modelling. 

 

 


