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Abstract: 
In this paper we describe an evolution-based method for evaluating auction 
mechanisms, and apply it to a space of mechanisms including the standard first- and 
second-price sealed bid auctions. We replicate results known already in the Auction 
Theory literature regarding the suitability of different mechanisms for different 
bidder environments, and extend the literature by establishing the superiority of 
novel mechanisms over standard mechanisms, for commonly occurring scenarios. 
Thus this paper simultaneously extends Auction Theory, and provides a systematic 
method for further such extensions. 
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1. 
u
aA
Introduction 
ctions are an important class of mechanisms for resolving multi-agent 
llocation problems of various types. There exists a substantial body of work 

(see Klemperer 1999 for a review) regarding the theory underlying auctions, most 
of which focuses on the problem of how to design them so as to achieve some 
desired outcome for the auctioneer. In situations where the auctioneer plays the role 
of seller, this outcome is often revenue maximization, and many results of a 
qualitative nature are known regarding the suitability of different mechanisms 
under different assumptions on the economic scenario under consideration. 

In parallel with this work, researchers have begun investigating how to design 
autonomous agents capable of participating in auctions (Preist, Byde & Bartolini 
2001, Anthony, Hall, Dang & Jennings 2001, Boutilier, Goldszmidt & Sabata 
1999b, Byde, Preist & Jennings 2002, Cliff & Bruten 1998, Walsh, Das, Tesauro & 
Kephart 2002). Often such study is motivated by the possibility that suitable 
autonomous agents will be superior to humans in making (possibly quite complex) 
economic decisions, and indeed Das, Hanson, Kephart and Tesauro (2001) report 
human experiments to substantiate this possibility. When the agents acting in 
markets are non-human, the space of potential market designs increases markedly, 
since mechanisms that might seem ‘nonsensical’ or difficult to interpret for humans 
can be considered. 

Recently, a few papers have begun to address the confluence of these ideas, 
taking inspiration from the Auction Theory work on mechanism design, extending 
it into new design spaces that might have been infeasible before, and adding a 
degree of automation to the design process: for example, Cliff (2002) describes an 
application of Genetic Algorithms (Holland 1975) to the choice of a continuous 
parameter Qs governing the probability that a seller will be chosen to shout in a 
given round of a stylised continuous double auction. 

This paper continues the direction of such work, examining a space of auction 
mechanisms that includes the standard first- and second-price auctions, using GAs 
applied to a multi-agent system to evolve good players for each mechanism under 
consideration. We find that under several classes of non-pathological conditions 
(e.g. bidders are risk-averse, and are unaware of how many players they will face in 
a given auction), there exist exotic sealed bid mechanisms which are expected to 
return significantly higher revenue to the auctioneer than either the first- or second-
price sealed bid mechanisms. See section 4 for more details. 

The paper is laid out as follows: in the next two sections we discuss the 
methods used, introducing relevant Game Theory concepts as needed. In section 4 
we describe the results of our experiments. In section 5 we describe in more detail 
the relationship between these results and others in the literature, and we conclude 
in section 6. 

2. Auction Theory 
2.1 Terms and Notation 
In this paper we study sealed-bid auctions, in which a good is put up for sale, and 
each potential buyer submits a bid to the auctioneer; the auctioneer chooses a 
winner, and allocates payments to each agent. In most variants of this type of 
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auction, the good is awarded to the buyer who submits the highest bid, and only the 
winner pays. In a first-price auction, the winner’s payment is equal to her bid; in a 
second-price auction, the winner’s payment is equal to the second highest bid. 

In order to analyse how bidders might be expected to behave in such auctions, 
we need to specify how they are motivated, that is, what is the good worth to each 
agent. 

We use a model in which agents are only interested in their own awards and 
payments, and there is some intrinsic monetary ‘value’ v associated to the good. 

All outcomes can therefore be represented by a single number, the monetary 
gain the agent makes. This is v–x for a win with payment x, and –x for a non-win 
with the same payment. The risk preferences of agents are differentiated by use of a 
von Neumann-Morgenstern utility function u, so that an agent strictly prefers a 
selection of possible outcomes xi with corresponding probabilities pi, over a second 
selection of possible outcomes yj with corresponding probabilities qj, if and only if 

 Σ i pi u(xi) > Σj qj u(xj). (1) 

In this representation, assuming twice-differentiability of u, an agent for which 
u’’(x) = 0 is known as risk-neutral; if u’’(x) < 0, the agent is risk-averse, and if 
u’’(x) > 0, the agent is known as risk-seeking (see figure 1). 

Figure 1 
Typical Utility Functions for a Risk-Seeking, Neutral and Averse 

Agent 

 

 
 

The value of a good to an agent can be independent of the value of the good to 
other agents, or it can be derived from information about how other agents value 
the good. 

In the former case we say that the agent has a private value for the good, and 
in the latter case that there is some common value component. We treat both these 
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cases by postulating that each bidder receives a ‘signal’, and that the value of the 
good to the agent is some specified function of all the agents’ signals. Since a 
bidder only necessarily knows her own signal, her decision problem may in general 
involve guess work about the worth of the good. 

2.2 Revenue for the Auctioneer 
In this paper we study mechanisms from the point of view of the amount of money 
they are expected to make the seller. Perhaps the most important result in this area 
is the Revenue Equivalence Theorem (see Krishna 2002), which states that if 
(concerning the environment): 
 • all agents are risk-neutral; 
 • all bidders’ signals are picked from a common, known distribution; 
and, if (concerning the mechanism): 

• in equilibrium, the good always goes to the bidder with the highest signal; 
• any bidder whose signal is the lowest possible expects to make nothing; 

then, the expected revenue to the seller is the same, independent of the mechanism. 
This rather surprising result means that, subject to these hypotheses, it doesn’t 

matter what type of auction a seller runs, he should expect to make the same 
amount of money whatever the mechanism. But of course there are many different 
auction mechanisms in use, of extremely variable type, because at least one of the 
hypotheses on which the Revenue Equivalence Theorem rests is often violated. It is 
known, for example, that most people are not risk-neutral,1 and in the case when 
the bidders are risk-averse, it makes more sense for a seller to run a first-price 
auction. 

A method commonly used to establish an ordering on auctions for different 
types of buyer, is to treat the problem as a non-cooperative game, and solve for the 
game’s Nash equilibrium. The difficulty with doing this is that the equations used 
to define such an equilibrium might well be intractable. In this paper we pursue an 
alternative method for determining an ordering: we simulate a population of 
buyers, and play the game many times with random selections from this population. 
The resulting averaged returns for the seller are estimates of the true expected 
return. As such, the results they give are not as satisfactory as those derived from 
Game Theory. 

3. Methods 
The basic methodology pursued was to instantiate a group of agents according to 
various environmental and agent-preference parameters, and let them compete in a 
specified auction according to specified strategies, logging the utility extracted by 
each agent as a result. 

Since many of the environmental parameters require some degree of 
randomisation in the agent instantiation (e.g. randomised private value for the 
good), this procedure was repeated a large number of times, so as to generate an 

 
1. Most people tend to act in a risk-averse manner in their daily lives. 
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estimate of the expected utility to an agent of using a given strategy in a given 
context. 

3.1 Context Parameterisation: Environment, Preferences and Mechanism 
We chose to investigate a space of mechanisms very similar to the first- and 
second-price sealed bid auctions specified earlier. 

3.1.1   Definition 1.   Let w = (w1, …, wn) be a vector of n real numbers. A w-price 
auction is a sealed bid auction in which the highest bidder wins the good, and pays 

 Σj wj bidj / Σj wj (2) 

where N is the minimum of n and the number of bidders, and bid1, bid2, … are the 
bids, ordered highest to lowest. 

In this paper we examine a one-dimensional sub-space of w-price auctions, 
namely those of type w = (1–w2, w2). In this parameterization, w2 = 0 is a standard 
first price auction, w2 = 1 a standard second-price auction, and all other values of 
w2 correspond to non-standard auction types that have not previously been studied. 

The space of agent preferences and environmental variables which we 
explored was motivated by examining exceptions to the Revenue Equivalence 
Theorem; we allowed variable group size, variable risk preference, and correlated 
(non-independent) bidders’ signals. In addition, we allowed the degree of 
commonality in values to be altered. 
 1. The number of agents in each trial was either an arbitrary fixed number, or 

was chosen with uniform probability from a set of consecutive integers bigger 
than 2. In most experiments the fixed number was chosen to be 6, and the 
range {2, 3, 4, 5, 6}. 

 2. The signals (t1, …, tn) of a group (a1, …, an) of bidders were chosen to be a 
weighted sum of a shared random signal and a sequence of independent 
random signals, with each such signal coming from a uniform distribution on 
[0,1].2 Thus independent variables S, X1, …, Xn were generated, and the signal 
ti for agent ai was chosen to be cS + (1–c)Xi, where c, between 0 and 1, 
parameterises the degree of correlation between agents’ signals. 

 3. The calculation of the utility extracted from winning the good depends on two 
properties of the agents involved: their risk preferences, and the degree of 
commonality in value. For risk, we chose to use Constant Absolute Risk 
utility functions: 

 uα(x) = 






=

≠1)−

0

0(e1

α

α
α

α

x

x

  (4) 

                                                 
2. We also performed experiments with the family of distributions 

 Bm,k(x) = m · xm–k (1 – x)k  (m – 1k – 1) (3)  
(for k = 0,…,m). The results generated with these distributions were not qualitatively different from those 
generated for the uniform distribution. 
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  α is zero for risk-neutral agents, negative for risk-averse agents and positive 
for risk-seeking agents. Figure 1 plots these functions for α = –1, 0, 1. 

  To model common value, we assumed that the monetary value to agent ai of 
winning the good was given by d×(Σj vj)/n + (1–d) vi, where d is a parameter 
controlling the degree of common value, with d = 0 representing purely 
private values, and d = 1 purely common values. Thus the utility reward to 
agent ai of winning the good at bid b, conditional on signals tj for all players, 
was 

 uα(d(Σj tj)/n + (1–d) vi – b). (5) 

3.2 Strategy Optimization 
The above variables w2, c, d, α specify the context in which the agents have to act, 
but not how they should act in that context. The most challenging piece of analysis 
in Mechanism Design is always figuring out how a bidder is likely to behave. The 
standard Game Theory approach is to enumerate all strategies that an agent might 
pursue, and determine a Nash equilibrium: a strategy from which deviation is not 
rational, that is, which is expected-utility maximizing given that the other agents’ 
behaviour is fixed. 

As mentioned before, this process is often impossible, either because of the 
intractability of the strategy space, or because the equations which need to be 
solved to determine a deviation-proof strategy are too complex. 

In this paper we take an empirical approach to finding good strategies, 
whereby each agent in a population of bidders is equipped with a bidding function 
which can be modified through evolution to adapt to the necessities of the game. 
As the agents play the game, successful strategies are bred preferentially, and thus 
the entire population improves. There is constant pressure to improve, because if an 
agent’s deviation from the norm gives it a slightly higher expected utility, then it 
will be slightly more likely to breed than average, and so its genes will be 
preferentially reproduced into the next generation. 

The main drawback to this approach is that it can neither be guaranteed that 
the population will evolve a good strategy within a reasonable period of time, nor 
that the solution on which the population eventually converges is a global rather 
than local optimum. Thus we gain formal simplicity at the cost of computation. We 
run the entire process of evolution many times independently, and reduce the effect 
of mutation as time goes by, so as to encourage convergence. 

The link between genomes and bidding function was as follows: A gene 
consisted of a sequence (g1, g2, …, gk) of real-valued ‘control points’ assigned to 
evenly spaced input signals (0, 1/k, …, 1). The bid output for an input signal t was 
generated by interpolating between the control points: 

 bid(t) =  (6) 
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This representation was chosen over others (e.g. power series representation, GP 
etc.) because it combines useful features of the domain, while placing very few 
restrictions on the space of all such functions. Specifically, 
 • Stability: These functions are stable under small random mutations: changing 

the data ci does not make a huge difference to the output values generated by 
the bid function. 

 • Locality: A change in a value gl has no effect on the function for signals 
above (l+1)/n or below (l–1)/n, so each g value, or sequence of g values, 
represents a partial solution for a certain input range. 

In addition, the functions generated are guaranteed to be continuous. These data gl 
were then mutated and recombined according to a standard Genetic Algorithm, 
where the fitness of a given genome was determined relative to other genomes by 
participation in a sequence of randomised games. Specifically, the evaluation of a 
population of genomes was according to the following algorithm: 
For each of a large number of iterations { 

while (not all agents have played in this round) { 
select some as-yet-unplayed agents to play a game 
generate random signals for the agents 
get bids for each agent, according to their genome 
select a winner and determine payments  
accumulate the corresponding utility rewards 

} 
} 

An agent’s fitness was equal to its accumulated utility from all the games. This 
process is modular with respect to the contextual parameters specified in section 0. 
The Genetic algorithm was simply 
generate a population of N random genomes 
for each generation { 

assess the fitness of every individual by playing a large number of 
games as above 

rank the genomes by this fitness measure 
repeat N times { 

select two genomes from the old population, favouring highly 
ranked genomes 

select a random point in the genome, and combine the first 
half of one with the second half of the other with pre-
selected probability 

mutate each of the genes by an amount picked from a pre-
selected distribution3 

place this new genome into the new population 
} 

} 

Thus we did not necessarily preserve the fittest individual from each generation.  
Notice that the fitness function is stochastic, so genomes can gain unfair 

advantage from being lucky (in the selection of their signals, for example). Notice 
 

3. The mutation probability was constant (at 0.8), and the maximal size of the mutation µ was reduced as 
time went on, being given, in generation G, by µ = µ0(G0/(G0 + G))λ, for fixed µ = 0.05, G0 = 20, and λ = 
1.5. 
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also that the fitness is measured relative to other agents. This means that the most 
successful agent strategy is not necessarily that which gives greatest expected 
return, since it may (for example) be incentive compatible in such an environment 
to deliberately disadvantage oneself if in doing so one’s opponents are even more 
disadvantaged. An example of this is that agents with very low signals are (in most 
environments) incented to bid higher than their valuation: they are very unlikely to 
win the good (and hence have negative surplus), whereas they are much more 
likely to decrease the winner’s surplus, and hence increase their own relative 
fitness. 

Thus this process finds good players at the repeated competitive game, not at 
the one-shot game. It is hoped (and we shall demonstrate, in some cases) that this 
effect is very small, so that conclusions about the one shot game can still be made; 
it is worth noting that in real auctions with real players (humans or corporations), 
exogenous effects such as these are commonplace. 

4. Results 
Shown below in figure 2 is a graph showing the genes of the best individual in a 
population of 360, plotted against generation number, for an example evolutionary 
run for risk-neutral agents with independent private values, competing in a second-
price auction. In this context, the optimal bidding strategy is to bid one’s signal, so 
given that k=5 (i.e. the genome consists of 5 control values), the expected-utility-
maximizing genome is (0, 0.25, 0.5, 0.75, 1.0). As can be seen, the best individual 
is initially far from perfect, and varies greatly over the first few generations, since 
mutation is (relatively) high, and the population very diverse. As time wears on, 
however, the population discovers a bidding strategy that is close to optimal: the 
final population’s best individual’s bid is always within 5% of its optimal value. 

Figure 2 
Genome for Best Individual in an Example Evolutionary Run, Plotted as a 

Function of Generation Number. The Population is Initialised to Random Rational 
Strategies (i.e. agents in the initial population cannot lose money, initially) 
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We first verified the method by calculating revenue landscapes for situations where 
the ordering of first and second price auctions is qualitatively known. When players 
are risk-neutral, signals independent, and the number of players fixed, the Revenue 
Equivalence Theorem says that all our mechanisms will generate the same 
expected revenue. Figure 3 plots expected seller revenue against w2 (in black). 
These results were obtained by evolving a population of 360 agents for 200 
generations.4 The average auctioneer revenue at generation 200 was measured and 
the entire process repeated 200 times in order to average out effects from a 
particular evolutionary run. 

The two lines in grey, above and below the plotted curve of average revenue, 
are plus and minus one standard deviation relative to the average, and give an 
indication of the magnitude of experimental uncertainty. 

As can be seen, there is no experimentally significant difference in revenue 
between any of the mechanisms in the risk-neutral independent private values case. 

Figure 3 
Sample Revenues for Risk-Neutral Agents Operating in Groups of Fixed Size 
6, Versus Coefficient w2 of Second-Highest Bid in Payment. Left-Hand Side is 

First Price Auction, Right-Hand Side is Second-Price Auction 

 
 
As mentioned in section 0, when we modify the above by having risk-averse 
buyers, the first price auction becomes preferred. Figure 4 shows this effect. 

                                                 
4. The number 200 was chosen by empirically finding a sufficiently high number for the evolution process 

to reach equilibrium in a selection of test cases. 
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Figure 4 
Average Revenues for Risk-Averse Agents Operating in Groups of 

Fixed Size 6 

 
 

As Milgrom and Weber (1982) demonstrate, when values are correlated,5 we 
expect that the second-price auction will give greater revenue. Figure 5 
demonstrates this effect occurring. 

Figure 5 
Average Revenues for Risk-Neutral Agents in Fixed-Size Groups 

with Values that are 50% Correlated 

 
 

                                                 
5. In fact Milgrom and Weber (1982) discuss not correlation but affiliation between bidders’ signals. It can 

be shown that the joint signal distributions we have chosen to use in this paper satisfy this stronger 
affiliation condition. 
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Much more interesting than confirming known results, is investigating regions of 
the environment space where there are no clear cut results. For example, if buyers 
have partial common values, and are risk averse, then either first or second price 
could be optimal for the seller, depending on the magnitude of the two effects. 

Figure 6 shows the situation when bidders are risk-averse, with parameter 
α = –10, and have a common value coefficient of 0.5. In this case, the first-price 
auction is clearly superior to the second-price auction. More surprisingly, a 
(0.3,0.7)-price auction is superior to both first- and second-price auctions. 

Figure 6 
Average Revenues for Risk-Averse Agents (α = –10) in Fixed-Size 

Groups with Values that are 50% Common 

 
 
Figure 7 shows the same situation when the common value coefficient is 0.9, and 
risk aversion is –15. 

In this case, second-price is superior to first-price, and once again a w-price 
auction is superior to both. These auction forms, in which the winner pays a 
weighted average of his own and the second player’s bid are not studied in the 
literature, but in this common scenario, can be revenue maximizing, depending on 
the nature of the agents playing the game. The optimality of non-standard auctions 
in this risk-averse, partial common-value setting persists if the number of agents is 
variable, as is seen in figure 8. 
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Figure 7 
Average Revenues for Risk-Averse Agents (α = –15) in Fixed-Size 

Groups with Values that are 90% Common 

 

Figure 8 
Average revenues for risk-averse agents (α = –15) with values that 
are 90% common, when group size is random in the range [2,6]. 
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In both of these scenarios, the graph of utility versus w2 is flat (see figure 9): the 
agents themselves are indifferent as to which auction they participate in. Thus 
selecting a revenue-maximizing value of w2 need not antagonize bidders, however, 
as Bergman and Tennenholtz (2002) show, we should expect the real dynamics of 
auction choice on the part of bidders to be affected by more than just expected 
revenue: the variance of payments is crucial also. Clearly more work is needed to 
understand population dynamics in this new environment. 

Figure 9 
Graph of Expected Utility Earned by Each Agent as a Function of w2 

for the Equilibrium Strategy in the Scenario Described in Figure 7 

 
 

5. Related Work 
Auction Theory is a mature field, with a substantial literature. We shall not attempt 
an exhaustive review here; interested readers are referred to Klemperer (1999) for 
an overview. 

The use of agents to investigate economic phenomena via simulation is a 
much newer field, known, broadly, as Agent-based Computational Economics 
(Tesfatsion & Judd 2006), a sub-field of which is concerned with designing agents 
that can operate in on-line auctions or negotiations. See, for example Anthony et al. 
(2001), Byde, Preist and Jennings (2002) with respect to 1–1 negotiation; Cliff and 
Bruten (1998), Preist and van Tol (1998), Gjerstad and Dickhaut (1998), Das et al. 
(2001), Tesauro and Bredin (2002) with respect to continuous double auctions; 
Preist, Bartolini and Philips (2001), Preist, Byde and Bartolini (2001), Byde (2001) 
with respect to sequences of English Auctions and Boutilier, Goldszmidt and 
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Sabata (1999b, 1999a) with respect to sequences of sealed bid auctions. Walsh et 
al. (2002) gives an example of an approach to stretching the methods of Game 
Theory to deal with the sorts of large multi-stage games that economic agents 
participate in. 

When it comes to investigating novel auction types automatically, or semi-
automatically, the citations are much thinner on the ground. A general discussion of 
automated mechanism design appears in Conitzer and Sandholm (2002), which 
deals with issues of computational complexity. The work of Cliff (2001) is the first 
to explore evolutionary search methods over a parametric space of mechanisms. 
Cliff addresses the case of a continuous open-cry auction, using a Genetic 
Algorithm to adjust both the parameters of the bidding agents he uses, and the 
mechanism parameter, which in this case is the probability Qs that in any given 
round, a seller will be chosen at random to make an offer. Besides being based on 
the continuous double auction, Cliff’s work differs from ours in two significant 
ways. Firstly, the space of agent strategies explored is necessarily very restrictive,6 
whereas the strategy space our GA explores contains close approximations to all 
continuous bidding strategies. Secondly, although Cliff’s choice of mechanism 
space was inspired by the experimental design used by Smith (1962), the 
Continuous Double Auction as it is used in such real-world institutions as the New 
York stock exchange is quite different—using order queues and bid improvement 
rules, for example; our cases w2 = 0,1 are faithful interpretations of first- and 
second-price sealed bid auctions, which are used in the world on a daily basis. 

The work of Phelps, McBurnley, Parsons and Sklar (2002) provides another 
approach to modifications of the continuous double auction, in which the 
modification is to the clearing rule, via use of Genetic Programming. 

The space of mechanisms here is equivalent to a special case of a class of 
sealed-bid double auction mechanisms (‘k-price’ auctions) first introduced by 
Chatterjee and Samuelson (1983), and subsequently investigated by Satterthwaite 
and Williams (1989) among others under different assumptions on the 
independence, privacy, affiliation (e.g. Kadan 2004) or commonality of values. 

6. Conclusions 
In this paper we have described an application of evolutionary search to a family of 
auction mechanisms—an example of automated mechanism design. We have 
demonstrated that this technique can be used to explore a space of auction 
mechanisms, and by doing so in a specific setting that involves faithful versions of 
real-world mechanisms, have established the superiority of non-standard auction 
types in a variety of common environments. 

The advantages of such a method for exploring auction design issues are 
clear: the agents discover good bidding strategies by evolution, without the need 
for complicated, possibly intractable, and certainly fragile mathematical analysis. 

In more complicated applications, the evolution process can implicitly take 
factors into consideration that might not have occurred to analysts. Additionally, 
the mechanism is tested for revenue generation against a small neighbourhood of 

 
6. This problem is difficult to address in the continuous open-cry auction, because such auctions have an 

intractably complicated strategy space: an agent will typically have many opportunities to act, for each of 
which the information space is the set of all previous actions by all agents. 
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strategies, not just the Nash-equilibrium strategy. As a result, its sensitivity to 
agents’ choice of strategy can be determined. 

(Date of receipt of final transcript: October 13, 2005. 
Accepted by Robert Marks, Area Editor.) 
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