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Abstract

Although they flow from a common source, the uses of multi-agent systems (or “agent-based

computational systems” — ACE) vary between the social sciences and computer science. The

distinction can be broadly summarised as analysis versus synthesis, or explanation versus design.

I compare and contrast these uses, and discuss sufficiency and necessity in simulations in general

and in multi-agent systems in particular, with a computer science audience in mind.
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1 Introduction

Although it might appear strange to computer scientists, social scientists in general, and

economists in particular, hanker after the formal, mathematical rigour of closed-form, algebraic

models, and their lemmas, theorems, and proofs.1 One reason, I believe, is the possibility

of obtaining not only sufficient conditions, but also necessary conditions for the existence,

uniqueness, and stability of the equilibria traditionally characterised.2 When they use computer

simulation, social scientists are concerned about validating their models from historical data, and

traditionally have separated “positive” (descriptive. or analytical) from “normative” (prescriptive,

or synthetic) activities. Only recently has the notion of the “design economist” gained currency,

and, as we discuss, the complexity of designing markets, for instance, means that synthesis

(“design”) requires computer simulation even more than does analysis.

2 Sufficiency and Necessity

Simulation can, in general, only demonstrate sufficiency, not necessity. Since necessity is, in

general, unattainable for simulators, proofs are also unattainable: simulation can disprove a

proposition (by finding conditions under which it does not hold) but cannot prove it, absent

necessity. But if there are few degrees of freedom, so that the space of feasible (initial) conditions

is small, then it might be possible to explore exhaustively that space, and hence derive necessity,

as we discuss below.

With some formality, it is possible to show how difficult it is to derive necessity using

simulation. A mathematical “model A” is the conjunction of a large number of separate

assumptions embodied in a specific implementation, with several equations that constitute a

conglomeration of hypotheses and generalisations, as well as parameters and initial conditions

that must be specified. So model A comprises the conjunction (a1 ∧ a2 ∧ a3 · · · ∧ an), where ∧

means “AND”, and the ai denote the elements (equations, parameters, initial conditions, etc)

that constitute the model.

Sufficiency: If model A exhibits the desired target behaviour B, then model A is sufficient

to obtain exhibited behaviour B. That is, A ⇒ B. Thus, any model that exhibits the desired

behaviour is sufficient, and demonstrates one conjunction of conditions (or model) under which

the behaviour can be simulated. Indeed, model A might be thought of as a solution to the problem

of producing behaviour B; the fact that other solutions might exist is only of secondary concern

if the problem is hard. But if there are several such models, how can we choose among them?

A designer would choose based on some criterion. And what is the set of all such conjunctions

(models)?

Necessity: Only those models A belonging to the set of necessary models N exhibit target

behaviour B. That is, (A ∈ N) ⇒ B, and (D 6∈ N) 6⇒ B. A difficult challenge for the social-

science simulator is not to find specific models A that exhibit the desired behaviour B, but to

determine the set of necessary models, N. Since each model A = (a1 ∧ a2 ∧ a3 · · · ∧ an), searching

for the set N of necessary models means searching in a high-dimensional space, with no guarantee

of continuity, and a possible large number of non-linear interactions among elements.

For instance, if D 6⇒ B, it does not mean that all elements ai of model D are invalid or wrong,

only their conjunction, that is, model D. It might be only a single element that precludes model

D exhibiting behaviour B. But determining whether this is so and which is the offending element

is a costly exercise, in general, for the simulator. With closed-form solutions, this might not be

trivial, but it might seem easier than determining the necessary set using simulation. Yaneer

Bar-Yam (2006, pers. comm.) argues, however, that necessity is only well defined in a class of

1This paper draws extensively on Marks (2006) and Marks (2007).
2Another is the influence of physics on early classical economics (Mirowski 2007).
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models, and that “if anything, the necessary conditions are better defined in a discrete model

[such as a simulation model] and are more difficult to establish in differential-equation models,

hence the emphasis on their proofs.”

Why is knowledge of the set N of necessary models important? Without clear knowledge of

the boundaries of the set of necessary models, it is difficult to generalise from simulations. Only

when the set N of necessary models is known to be small is it relatively easy to use simulation

to derive necessity. A classic case of simulation — albeit with physical models of metal rods and

brass atoms, not computer models — resulting in a world-shattering discovery was Watson &

Crick’s (1953) discovery of the structure of DNA, with their “stereo-chemical experiments” —

simulations. Note that the title of their 1953 paper included the phrase “textita structure”, not the

structure, flagging sufficiency, not necessity (our emphasis). Experimental results from the work of

others had so constrained the degrees of freedom in the space of possible structures that Watson

and Crick knew when they had simulated (or solved) the structure correctly. Model-building

simulations could not clinch the structure until greater congruence between the model and the

observed structure of the actual molecule was shown to exist, as the future Nobel laureates

emphasised in their 1953 paper. And any negative results would have meant returning to the

drawing board, or in this case the brass rods and sheet metal. See Marks (2003) for further

discussion of this pioneering simulation. Another momentous discovery of “sufficient” conditions

was Kepler’s 1605 theory of elliptical orbits (his first law of planetary motion) to explain Brahe’s

obervations; necessity would have to await Newton’s laws of gravitational attraction of 1686.

This discussion — the absence of necessity in simulation — must appear foreign to engineers

and computer scientists. Problem-solvers would in general regard having several solution to choose

from as a luxury, especially for difficult problems. The question of necessity — whether this is the

entire set of possible solutions — is not in general of concern to them. This difference in emphasis

reflects one difference between social scientists and computer scientists/engineers. Social scientists

in general seek generality of understanding, while engineers in general seek solutions, specific

instances, rather than generality. Mirowski (2007) argued further that engineers are eclectic in

the methods they use to seek solutions, whereas traditionally economists have sought closed-form

solutions, and have eschewed simulation.

3 Analysis in the Social Sciences

Before reviewing the use of agent-based simulation models in market design, we contrast analysis

with design, closed-form calculations with simulation in both analysis and design, and non-

agent-based simulation with agent-based simulation of analysis and design. Once the designer

understands through analysis how the elements of the phenomenon of concern work together, he

can ask the question of how to improve its operation: how better to design it.

In the world of analytical, closed-form solutions, there is a certain logic to the progress of

research. A real-world phenomenon is observed; a need for explanation and understanding is

identified; a model is built, incorporating simplifying assumptions; the model is manipulated to

obtain necessary and sufficient results, and perhaps possible improvement in the operation of the

system is identified, if it is a human-made system. The former part of the progress is analysis,

the latter synthesis, or design, to improve some characteristic of the system or its operation.

Successful analyses are published, indexed, and referenced, to be used and modified by future

analysts and designers.

A common understanding of this process in general, but particularly the process of model-

building and deducing the system’s behavior and outcomes, means that, by and large, later

researchers can stand on the shoulders of earlier researchers. With today’s on-line indexing

services, it is even easier to find antecedent papers, to relax an assumption or two, and to

attempt to solve the ensuing model, which might (or might not) be a closer approximation

to reality, or result in a better design. This process, I believe, is driven in particular directions

by the mathematical tractability of particular types of model, and the relative intractability of
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others. (If this reminds us of the joke about the economist searching for his lost car keys under

the street-light, instead of in the darkness around his car, it might not be coincidental, Judd

2006.)

3.1 Simulation and Analysis

The advantage of using simulation techniques is that they provide us with light where the

analytical techniques cast little or none, in our metaphorical search, so we are no longer restricted

to working with models which we hope will prove tractable to our analytical tools. As computing

tools (both hardware and software) have grown more powerful and user-friendly, research using

simulation techniques has blossomed. Analysis of observed phenomena has not been a driving

motivation of the research of computer scientists — yet they have a fifty-year history of design

and invention, which continues apace (although they have from time to time looked for analogies

to the natural world, neural nets mimic in some sense elements of the brain, simulated annealing

mimics the thermodynamic behaviour of cooling material, and Genetic Algorithms (GA) were

inspired by natural selection with sexual reproduction, Holland 1975). Forty years ago it was

possible for Donald Knuth to write an encyclopedic study of The Art of Computer Programming

in three volumes, but such a task would be daunting now.

Moreover, as they attempt to implement automated on-line markets, computer scientists have

discovered economists’ work on auctions, spurred by applications of game theory to study these

traditional market institutions, and to develop new, designer markets, given the opportunities

of the modern technology. But the economists’ focus on the characterisation of equilibrium

values (Mirkowski 2007) has dismayed those who need to model out-of-equilibrium interactions

and the dynamics associated with real-world markets. Can we surmise that characterising

asymptotic equilibrium parallels looking for the lost keys under the street-light — it’s easier

to do (“tractable”) than the more realistic task of characterising out-of-equilibrium adjustment?

But this characterisation is just what those designing markets — especially fully automated

markets — need to have. The economists’ understanding has proved disappointing.3

Analysis precedes design: in order to change systems, we must first understand them. Even so,

direct design or optimisation requires a degree of understanding of the mapping from the design

space to the performance space which has rarely been developed. Indeed, given the complexity of

market phenomena, direct design might seldom be possible, as Edmonds & Bryson (2003) remind

us. Instead, searching the design space will be an iterative process of analyzing the performance

of a specific model, modifying the model in the light of this analysis, and analyzing the modified

model, until the designer is happy with the performance of the manyfold-modified model against

various criteria.

The social sciences are concerned with understanding or explaining social phenomena. Broadly,

this process entails building a model of aspects of the real-world phenomenon under review and

manipulating the model to see whether the model behaviour matches (at least in a stylised

fashion) the observed real-world phenomenon. This gross simplification of the process overlooks

the attempts to derive alternative explanations (theories) from the models, in oder to test them

against the historical data.

The issue of program verification and empirical validation (or what Midgley et al. (2007) call

“assurance”) of the model is a lively topic in computational economics, at least. We discuss this

further below.

To achieve these ends, the researcher needs historical data, and the ability to abstract from

reality in building the (necessarily simplified) model of the real-world phenomenon. Then the

3Mirowski (2007) argued that for a hundred and fifty years economists have focussed on the agents (buyers
and sellers) who exchange, and have ignored the structure and procedures of the market in which the
exchange occurs. This would explain the lacunæin the economics literature that confronted the computer
scientists when they sought detailed analysis and explanation of the workings of historical markets in
order to implement automated markets of various kinds.
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skill to derive implications of the model that can be tested by examining the historical data to

determine which possible explanation is provides the “best” fit with the data, suitably defined.

The purpose is not solely understanding for its own sake, but prediction. It is true that accurate

prediction does not require clear understanding (Friedman 1953), and that on the other hand

clear understanding does not necessitate accurate predictions, but better understanding is more

likely to result in better (more accurate) predictions, ceteris paribus. This process has several

names: analysis, explanation, understanding.

Axtell et al. (1996) introduced the term “docking” when a second team attempts to replicate

another team’s simulation model. They clarified three decreasing levels of replication: “numerical

identity,” “distributional equivalence” (the results cannot be distinguished statistically), and

“relational equivalence” (the same qualitative relationships).

3.2 Validation

What is a good simulation? The answer to this question must be: a good simulation is one that

achieves its aim. But just what the aim or goal of a simulation might be is not obvious. There

are several broad possibilities.4 A simulation might attempt to explain a phenomenon; it might

attempt to predict the outcome of a phenomenon; or it might be used to explore a phenomenon,

to play, in order to understand the interactions of elements of the structure that produces the

phenomenon. Or it might be used to test a solution to a problem, such as automated allocation

of resources in real time.

Consider a retail market for branded coffee at a specific supermarket. If the profit-maximising

behaviour of the simulated brand managers, together with some external factors or internal

factors, led to behaviour qualitatively or quantitatively similar to the behaviour of the brands —

prices and quantities sold, then we would have obtained one possible explanation. The issue of

degrees of similarity is one of closeness of fit, and could be handled using statistical measures.

Note, following Durlauf (2005), that by making the assumption of profit maximising, we are going

beyond merely seeking a set of equations exhibiting periodicity similar to the “rivalrous dance”

of the brands in the figure.

For prediction, sufficiency suffices: there is no need to know which if any alternate conditions

will also lead to the observed endogenous behaviours. That is, prediction does not require an

understanding of necessity of the underlying exogenous variables. This might explain, as Friedman

(1953) argued, that economic actors can behave as though they have solved complex optimisation

problems, even though they remain ignorant of any formal representation of the problem or its

solution.

3.2.1 Formalisation of Validation

Let set P be the possible range of observed outputs of the real-world system, here the weekly

prices, quantities, and profits of the coffee brands sold in a single supermarket each week.5

Let set M be the exhibited outputs of the model in any week. Let set S be the specific,

historical output of the real-world system in any week. Let set Q be the intersection, if any,

4Haefner (2005) lists seven possible goals: usefulness for system control or management, understanding or
insights provided, accuracy of predictions, simplicity or elegance, generality (number of systems subsumed
by the model), robustness (insensitivity to assumptions), and low cost of building or maintaining the
model. Axelrod (2006) also lists seven: prediction, performing tasks, training, entertaining (see those
ubiquitous games consoles), educating, existence proofs, and discovery; prediction, existence proofs, and
discovery are the main scientific contributions.

Rubinstein (1998) lists four purposes: predicting behaviour, as a normative guide for agents or
policymakers, sharpening economists’ intuitions when dealing with complex situations, and establishing
“linkages” between economic concepts and everyday thinking. Burton (2003) lists three questions: asking
“what is”, “what could be”, and “what should be”.
5Midgley et al. (1997) and Marks et al. (2006) describe how they calculate each brand’s weekly profits,
given the combination of marketing actions of all brands that week, and with prior knowledge of the
brands’ costs.
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between the set M and the set S, Q ≡ M ∩ S. We can characterise the model output in five

cases.6

a. If there is no intersection between M and S (i.e., Q = ∅), then the model is useless.

b. If the intersection Q is not null, then the model is useful, to some degree. In general, the model

will correctly exhibit some real-world system behaviours, will not exhibit other behaviours,

and will exhibit some behaviours that do not historically occur. That is, the model is both

incomplete and inaccurate.

c. If M is a proper subset of S (i.e., M ⊂ S), then all the model’s behaviours are correct (match

historical behaviours), but the model doesn’t exhibit all behaviour that historically occurs.

The model is accurate but incomplete.

d. If S is a proper subset of M (i.e., S ⊂ M), then all historical behaviour is exhibited, but the

model will exhibit some behaviours that do not historically occur. The model is complete

but inaccurate.

e. If the set M is equivalent to the set S (i.e., M ⇔ S), then (in your dreams!) the model is

complete and accurate.

By incomplete, we mean that S\Q is non-null, so that the model does not exhibit all observed

historical behaviours. By inaccurate, we mean that M\Q is non-null, so that the model exhibits

behaviours that are not observed historically. Haefner (2005) notes that the set boundaries might

be fuzzy: not “in” or “out,” but contours of the probability of belonging to the set.

One goal of the modeller might be to attempt to construct and calibrate the model so that M

≈ Q ≈ S (case e.): there are very few historically observed behaviours that the model does not

exhibit, and there are very few exhibited behaviours that do not occur historically. The model

is close to being both complete and accurate, for explanation. But this might be overfitting for

prediction. In practice, a modeller examining sufficient conditions (existence proofs) for previously

unobserved (counterfactual) behaviour might be happier to achieve case d., where the model is

complete (and hence provides sufficiency for all observed historical phenomena), but not accurate.

Of course, changing the model’s parameters will in general change the model’s exhibited behaviour

(set M). In the calibration stage, we might well be happier if we could adjust the model parameters

so that M ≈ S, in the belief that the changed set M′ with different parameters might well model

a variant of historical reality.

4 Economists’ uses of Multi-Agent Systems

In economics, computer simulations have been increasingly popular in analysing oligopoly

behaviour — oligopolies are markets with small numbers of sellers, each of whose actions in

general affect the outcomes for other sellers, as well as for itself. This is strategic interaction,

and has been analysed using game theory, the best framework for analysing interactions where

each player’s outcome is a function of its actions and those of other players. Some oligopoly

interactions have the character of an iterated Prisoner’s Dilemma (IPD), which has attracted

computer scientists.

Except for the simplest markets, the interactions of asymmetric agents lead to a degree

of complexity that precludes closed-form analysis of markets, let alone direct design of such

markets. Instead, in both economics and computer science, multi-agent systems (“agent-based

computational systems”) have been enlisted to enable analysis (and design) of such markets.

That is, unlike top-down models of sets of difference/differential equations, the model is analysed

from the bottom up by simulating the behaviour of interacting agents, buyers and sellers, a more

realistic model, a priori.

6This conceptual framework was introduced by Mankin et al. (1977).
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The GA was the first multi-agent system used to simulate and analyse oligopolistic behaviour

(Marks 1989). The GA had been developed and pioneered by computer scientists and engineers

who were intent on solving optimisation problems exhibiting “rugged landscapes” (Kauffman

1995). Although it was at first used only where these were static, where the landscape did not

change as the process of genetic “learning” took place, it also turned out to be well suited

to simulating and solving problems where the environment was changing. When the individual

agents modelled by the GA are competing against each other, the GA is modeling the process of

co-evolution. GAs were originally used as means of seeking optimal solutions to static problems;

Marks (1989) and others adapted them to seek solutions of co-evolutionary strategic problems,

such as the IPD and oligopolies with asymmetric players, where the fitness of an agent depends

on the state of the whole population of agents.

When the interacting parties — the players — face identical payoff sets and choose from

identical action sets, a single population is satisfactory, since the GA processes (selection,

crossover, and mutation) which model learning among the individuals and between generations

of the population are focused to the same end: faced with the same state of the interaction, any

of the players would behave identically, and fitness is average (or discounted) profit.

But when modeling asymmetric oligopolistic players who have distinct payoff sets (because of

distinct costs, facing distinct demands, and perhaps with distinct action sets), a single population

of agents means that the GA processes are faced with a fitness landscape that is not only

possibly rugged, but also shifting (as each agent wears a distinct seller’s hat, as it were). In

this case, separate populations of sellers makes practical sense. It also makes realistic sense. A

single population GA was acceptable when the players were not differentiated and when the flow

of information from parents to offspring at the genotype level was not an issue (Vriend 2000), but

when the players are modelling heterogeneous actors — in realistic coevolution, for instance —

each player requires a separate population, not least to prevent the modelling of illegally collusive,

extra-market transfers of information.

Vriend (2000) draws the distinction between the social learning of the GA (whereby the

individuals in the population have learned from their parents, through selection and crossover,

and so there is the possibility of good “genes” spreading through society over several populations)

and the individual learning of non-GA agent-based models (with explicit learning incorporated

into the structures of the artificial, adaptive agents). Both sorts of models, and both sorts of

learning, have been termed “agent-based” models.

As well as GAs, agent-based models in economics have increasingly included simulations in

which agents “learn” individually, rather than the population learning of the GA, and in which

agents are explicitly modelled as boundedly rational, in various ways. Indeed, economists have

explored the relationships between so-called zero-intelligence (stochastic-choice) traders (Gode &

Sunder 1993) and the structure and rules of markets. This research has also been undertaken in

computer science (Cliff 2001). Duffy (2006) surveys the growing literature on the links between

laboratory experiments with human subjects and computer experiments with agents that learn,

using models of learning originally borrowed from the psychological literature (Arthur 1991,

1993). See also Arifovic & Ledyard (2008).

5 Synthesis in the Social Sciences

We focus on market design, since this is a field of great interest to economists as new markets

have been devised and implemented, and also to computer scientists, attempting to implement

market allocation mechanisms which allow interaction between non-human agents. Automated

contract design is also a new field, in which computer scientists have made advances (see Jennings

et al. 2001).

As engineers say, after analysis comes synthesis — design. Designing markets is a new discipline.

At least five examples of designed market can be identified: simulated stock markets; emission
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markets; auctions for electro-magnetic spectrum; electricity markets; and on-line, e-commerce

markets:

First, the markets for new financial instruments, derivatives, that were created and traded after

Black, Scholes, and Merton solved the seventy-year-old problem of pricing options. Previously,

financial traders understood that options were valuable, but not how to value them exactly. More

recently, there has been research into the rules and micro-structure of stock markets, continuous

double-auction trading, through the use of simulated markets. See LeBaron (2006) for further

discussion of this research.

Second, the markets for pollution emissions, usually sulphur dioxide and carbon dioxide.

The realisation that the emissions from industrial processes in particular, and the emission of

anthropogenic chemicals into the environment in general, were, at least potentially, altering the

biosphere for the worse was followed only after a lag with the awareness by policy makers that

market mechanisms could be harnessed to control such emissions, generally more efficiently than

could other mechanisms.

Third, the auctions for electro-magnetic spectrum. The simultaneous ascending-bid auctions

that have recently been designed for selling bands of local spectrum to be used for new

communications technologies did not arise without some hiccups. Perhaps as an offshoot of

the privatisation of government assets and activities in the 1980s in many countries, the use

of auctions to choose the new owners and to value these assets slowly replaced so-called “beauty

contests,” in which subject to certain technical requirements licenses were virtually given away.

But these new auction mechanisms at first did not allow for the complementary nature of bands

in different localities. Only after intensive efforts by economists advising, first, governments, and,

second, bidding companies did the successful “3G” auctions occur (Milgrom 2004).

Fourth, the markets for the exchange of electricity. Again, as a consequence of the twin

political aims of privatising government-owned electricity utilities and of improving the efficiency

of electricity generation and distribution systems (perhaps by separating ownership of generators

and distributors), while reducing the bureaucratic weight of regulation even on privately owned

utilities, there has in many jurisdictions been a move away from centralised engineering-dominated

means of allocating electricity load across generators and distribution networks to using market

mechanisms of various kinds. Electricity cannot (easily or cheaply) be stored, a characteristic

which, with some engineering issues, has meant that previously existing market mechanisms were

not appropriate. Instead, several types of new market mechanisms have been introduced (see

Marks 2006).

Fifth, on-line markets. With the growth of the use and extent of the Internet over the past eight

years, and the dot-com boom, with buying and selling on-line, opportunities for designing on-line

markets de novo, as opposed to trying to emulate existing face-to-face markets, have arisen. In

the last few years these opportunities have given rise to much work by computer scientists, as

well as economists. Indeed, there is a productive research intersection of the two disciplines, as

revealed in some of the papers to be presented over the next few days.

Mirowski (2007) argued that the traditional reduced form of marekt-clearing, and the focus on

agents rather than markets, meant that economiosts were ill-prepared to offer advice on how to

design new markets, either to policy-makers or to computer scientists. Indeed, there were salutary

tales when spectrum markets were first established, under rules that have since been abandoned

(McMillan 1994).

As remarked by Roth (1991) in an early paper on market design, three approaches are suitable

for the iterative process of market design: first, traditional closed-form game-theoretic analysis,

as discussed above; second, human-subject experiments (see Duffy 2006 and Brenner 2006); and,

third, computational exploration of different designs. Indeed, if the design criteria are clearly

defined, some of the recent techniques of simulation and optimisation developed by computer

scientists and computational economists can be used to search for optimal market designs, directly

and indirectly.



Analysis and Synthesis: Multi-Agent Systems in the Social Sciences 9

Historical market institutions have in general not simply been imposed from above (so-called

top-down design) but have also emerged from the bottom up as a consequence of a multitude

of actions and interactions of the myriad traders (McMillan 2002). Although the omnipotent

programmer can experiment with different market forms and different kinds of boundedly rational

agents to discover sufficient combinations of each for specific behavior of the market, evolutionary

computation raises the possibility of bottom-up design, or emergence of market design through

simulation. As Mirowski (2007) argued, a typology of markets, characterised by their structures

and rules, would be very useful for the designers. Unfortunately, the profession is far from

accomplishing this, perhaps because of the complexity of markets.

This in turn raises the issue of whether agent-based experiments are being used as a model of

human behavior (where analysis is followed by design, given the behavior of the agents and the

emergent aggregate outcomes) — in which case it is an empirical question as to how boundedly

rational the agents should be to best model human agents (Duffy 2006) — or whether the agent-

based experiments are an end in themselves, because on-line it is possible to use agents (“buy-

bots”, “sell-bots”) to buy and sell, without the errors that human agents are heir to. How has

this research proceeded?

5.1 Market Design

Design is a process of building directed by the pre-specified design objectives, if not by an explicit

how-to plan. Unfortunately, specifying objectives does not always immediately delineate exactly

how the model building should occur: these objectives are specified in a performance space (or

behavior space) and the building occurs in a design space. The mapping from the designed

structure to the desired performance may not be clear.

In the case of evolution, the design would occur in the genome space, while the behavior or

performance occurs in the phenome space. In the case of designer markets, policy-makers have

been using theory, experiments with human subjects, and computer simulations (experiments) to

reduce the risk that the mapping from design (structure and rules) to behavior of the economic

actors (the performance of the system) is incompletely understood, and so that there are fewer

surprises. Where the mapping is sufficiently well understood, and where closed-form analytic

solution is tractable, it should be possible to describe not only sufficiency — if the market

has this structure, and the rules of trading are such and such and the traders are given this

information, then this performance and behavior will follow, at least in general form — but also

necessity — if you want this performance and behavior, then this is the only set (or sets) of

designs (combinations of structure and rules) that will produce it.

MacKie-Mason & Wellman (2006) present a Marketplace Design Framework, which delineates

the three fundamental steps that constitute a transaction: first, the connection (searching for and

discovering the opportunity to engage in a market interaction); second, the deal (negotiating and

agreeing to terms); and, third, the exchange (executing a transaction). They define a “marketplace

system” as consisting of agents and the market mechanism through which they interact, all

embedded in an environment of social institutions (language, laws, etc.). Their market mechanism

is the set of “rules, practices, and social structures of a social choice process, specifying, first,

permissible actions” (including messages), and, second, market-based exchange transactions as

outcomes of a function of agent messages. If there is some entity, apart from the participating

agents, that manages any inter-agent communication and implements the mechanism rules, then

the market mechanism is mediated.

MacKie-Mason and Wellman note that, as a consequence of this characterisation of a

marketplace, there are at least two design decisions: first, the design of the market mechanism,

which might be decomposed into the design of mechanisms for, successively, the connection,

the deal, and the exchange phases of a transaction; and, second, design of agents to interact

with the market mechanism, whether existing or newly designed. They define an agent as an

“autonomous decision-making locus in a system of multiple decision-making entities”; an agent
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has “type” attributes, such as preferences, beliefs, intentions, and capabilities. There will be a

form of consistency between the agents’ behavior, beliefs, and preferences, consistent with some

principle of rationality. Here, the focus is on design of MacKie-Mason and Wellman’s market

mechanism, specifically, the deal negotiation task. As with most of the existing literature, we

here focus on market mechanisms that govern the settlement from allowable actions.

Mechanisms specify, first, the agents’ concerns that are recognised, and, second, rules mapping

actions into allocation outcomes. A rule might specify which actions are permissible, or the

procedure for choosing a settlement of agents’ concerns based on observable actions. For instance,

auctions, MacKie-Mason and Wellman point out, include rules governing allowable actions, and

rules governing settlement.

To be effective, design of the market mechanism must be measured, and will usually consist of

a constrained optimisation, even if not explicitly or directly. “No external subsidies” or “maintain

horizontal equity” are two possible constraints given by MacKie-Mason and Wellman. We explore

others below. The general design problem has become designing a market mechanism that includes

defining a set of concerns over which agents can interact, specifying rules of permissible actions,

and rules for mapping from actions to settlement and outcomes.

5.1.1 Complexity of Design

Edmonds & Bryson (2003) speak of the “syntactic complexity” of design. This is the lack of

a clear mapping from design to behavior (or vice versa): the only way to know the system’s

outcomes is to run the system and observe the emerging performance. Analysis is in general

not able to predict the outcome. They are speaking of multi-agent computer systems, but could

be speaking of standard double auctions in continuous time, which have not yet been solved

analytically. Simon (1996) put it this way: “... it is typical of many kinds of design problems

that the inner system consists of components whose fundamental laws of behavior ... are well

known. The difficulty of the design problem often resides in predicting how an assemblage of such

components will behave.” Nonetheless, Byde (2006) uses evolutionary simulations applied to a

space of auction mechanisms to derive novel mechanisms for sealed bid auctions.

One reason why analytical methods of analysis might fail is that the mapping from initial

conditions of structure and rules to behavior and performance is not smooth or continuous,

and, as such, is not amenable to calculus-based tools. The rugged nature of this landscape is

its complexity, a complexity that is multiplied if it too is changing, perhaps as a function of

the strategic complexity that occurs if the design has also to account for the interacting agents’

patterns of behavior changing as a result: the biologist’s co-evolution.

5.1.2 Design Trade-offs

Where there are several design criteria, the possibility arises of trade-offs between the criteria.

For instance, if a firm has market power, it can maximise its seller revenue, but at the cost of

market efficiency, as measured by the sum of seller (or producer) surplus and buyer (or consumer)

surplus.7 Or it might be possible to improve the fairness of a market outcome, but at the cost

of market efficiency. To use computer simulation such trade-offs must be explicit. It might be

possible to use a version of Simon’s (1996) “satisficing,” whereby so long as the other criteria

are met (above some target level), the remaining criterion is used to rank designs. Or different

criteria could be weighted to derive a single, scalar maximand.

LeBaron (2006), in examining the use of agent-based models of financial markets, discusses

seven basic design questions for his models, which translate across to more general models.

First, the economic environment itself needs to be resolved: What will be traded? Second, how

are agents’ preferences to be modelled? What particular functional forms will be used, such

as mean-variance, constant absolute risk aversion, myopic or inter-temporal? Or will specific

behavioral rules simply be evaluated directly? Third, market clearing and price formation need

7Mirowski (2007) was skeptical about the meaning of this measure when the agents are artificial.
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to be modelled. Fourth, the fitness of the model must be evaluated. For example, should wealth

or utility be used? And should the evolving behavioral rules to which fitness measures are applied

be forecasts, demands, or some other type of action? Fifth, how is information to be processed

and revealed? Sixth, how does learning occur? Is it social or is it individual? Seventh, how is

benchmarking to be undertaken? While these questions relate to the models used to design

markets, they may also reflect on the design criteria for the final designer markets.

5.2 Explicit Use of Agents

It is interesting to note that three of LeBaron’s seven design questions above (2, 5, 6) refer to

the agents, the rest to the market institution itself. It is possible to design without the use of

agents: given a market with demand and supply schedules, economic efficiency is maximised at

the output level where marginal value equals the marginal unit cost, no matter how the social

surplus is divided between buyers and sellers. But such direct design (optimisation) requires a

well defined problem. With several design trade-offs and the possible emergence of unforeseen

performance in the system, agent-based analysis and design, in which the market system can

be modelled as “evolving systems of autonomous, interacting agents with learning capabilities”

(Koesrindartoto & Tesfatsion 2004), is increasingly employed.

LeBaron (2006) places some weight on how actual trading occurs: the institutions under which

trading is executed. He argues that agent-based models are well suited to examining market

design and micro-structure questions because, first, they can produce a large amount of data, and,

second, they allow testing of market design in a heterogeneous, adaptive environment. Computer

scietists designing automated negoation and exchange mechanisms (markets) would likely agree.

6 Similarities and Differences

Recently, software engineers have been designing systems of exchange, of markets. Their designs —

of distributed computing systems, and on-line trading in real time — have begun to borrow from

economists’ insights into how traditional face-to-face markets have evolved to operate. They have

also (Phelps et al. 2002) begun to realise that the equilibrium characterisations of mathematical

economics do not always provide the answers they need in designing their on-line markets, which

will be in disequilibrium almost always if trading in real time. That is, the adjustments of the

operation of the markets to the current equilibrium (or attractor) will almost never happen

fast enough to reach equilibrium, especially when the location of the attractor is continuously

changing. This means that the economist’s characterisation of the equilibrium may be of little

help.

The shortcomings of these results from equilibrium analyses of economic mechanisms have

been underlined by Roth (2000, 2002) in two papers that begin to point the way forward for

market design, with the economist as engineer. Indeed, Roth makes the point that, as engineers

have learned to borrow from the insights of physics, the design economist can use insights not

only from equilibrium mathematical economics, but also from computer science.

When, however, these insights are curtailed, perhaps by the tractability of closed-form

analytical methods, both economists and software engineers have been using simulation in

analysis, to obtain sufficient, but rarely necessary, conditions. But then a single sufficient condition

(solution) may be enough. Simulation has occurred using GAs, numerical solutions, and explicit

agent-based models. Iterative analysis has been used as a means of designing systems.

LeBaron (2006), in his conclusion, lists some criticisms of the agent-based approach to modeling

financial markets. Some (such as too few assets considered, questions of timing ignored) are more

specific to the models he examines, but several are relevant to more general market models:

too many parameters; questions about the stability of trading to the introduction of new trading

strategies; sensitivity to the number of agents trading; over-reliance on inductive models of agents,

which respond to past rules and forecasts; and not enough on deductive models which might learn

commonly held beliefs about how markets work.
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Epstein (2006) answers the criticisms of some economists that “anything goes” with computer

simulations by stating that, in fact, the computer algorithms controlling computer simulations

can be written as mathematical expressions. His argument is that every agent model is a computer

program, and hence is Turing computable. But for every Turing machine, there exists a unique

corresponding and equivalent partial recursive function. Such functions might be extremely

complex and difficult to interpret, but they exist. Hence he argues for considering computer

simulations as “recursive” or “effectively computable” or “constructive” or “generative” (after

Chomsky) social science.

7 Borrowings

There has been some cross-fertilisation between computer science and the social sciences.

Researchers from both sides have considered what attributes simulated agents should have

(Gilbert & Troitzsch 2005). Wooldridge & Jennings (1995) would give computer agents these

properties:

• autonomy: no other agents can control their actions and internal state,

• social ability: agents can interact and communicate with other agents

• reactive: agents perceive their environment and respond

• pro-active: agents initiate goal-directed actions

• (intentionality: metaphors of beliefs, decisions, motives,

• and even emotions)

While most agents used in economics have until recently been deductive (backwards-looking,

stimulus-response automata), Epstein (1999) would desire these qualities in addition:

• heterogeneity: not “representative” agents, but may differ

• local interactions: in a defined space

• boundedly rational (Simon 1982): perceive information, possess memory, and some compu-

tational capacity

• ability to deal with non-equilibrium dynamics: large-scale transitions, tipping phenomena

As further problems are addressed and solved, we might expect more borrowings to appear

across the divide, perhaps even from this research project.

8 Conclusion

The practical design of markets — mechanism design — using the tool of agent-based simulation

is emerging from its infancy. On the one hand, there are mechanisms, such as monopoly auctions,

that have been in use since antiquity (McMillan 2002, p. 69) without much self-conscious design

effort. On the other, recent advances in theory and computation have allowed analysis and design

to derive new or better mechanisms. The iterative analysis of electricity markets with agent-

based models is now just a dozen years old, and the work by computer scientists on automated

markets is even more recent. Only recently have there been attempts to use such models, after

parameterisations of auctions, to directly design markets, including electricity markets. Indeed,

direct market-design modeling attempts have only occurred in the last several years. Clearly, we

have further to travel down this road, as Roth’s (2002) notion of the design economist emerges

from the work of many modellers, in economics, engineering, and computer science.
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