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I. Herbert Simon on Learning

“Any change in a sys t em that allows it to per for m bett er the
second time on repetition of the same task or on another task
dr awn from the same population” — Simon (1983)
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I. Herbert Simon on Learning

“Any change in a sys t em that allows it to per for m bett er the
second time on repetition of the same task or on another task
dr awn from the same population” — Simon (1983)

“Lear ning is any change in a sys t em that produces a more or
less permanent change in its capacity for adapting to its
environment. ” — Simon (1996)

“Armchair speculation about expect ations, rational or other, is
not a satisfact ory subs titut e for factual knowledge as to how
human beings go about anticipating the future, what fact ors
they take int o account, and how these fact ors, rat her than
ot her s, come within the range of their attention.” — Simon
(1982)
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Lear ning

Previous (e.g. Life, segregation) the agents are unchanging,
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Previous (e.g. Life, segregation) the agents are unchanging,

Now: change occur s in the agent ’s par ameter s (simples t) or in
the for m of the agent model (more comple x).
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Lear ning

Previous (e.g. Life, segregation) the agents are unchanging,

Now: change occur s in the agent ’s par ameter s (simples t) or in
the for m of the agent model (more comple x).

Several sor ts of models of learning:

1. Artificial Neur al Nets (ANNs): from machine learning,
from biological simplifications of the brain’s oper ation,

2. Evolutionar y models, such as Genetic Algorit hms (GAs)
and Genetic Prog ramming (GP), from natural evolution,
and

3. Models from psychology exper iments, such as
Reinforcement Learning (RL).
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II. Artificial Neur al Nets (ANNs)

An anecdote.

Ins t ead of the ∼ 100 million neurons in our brain, ANNs use up
to 50 artificial neurons, in three or more lay ers:
Input, Hidden, and Output.

When present ed wit h a stimulus, an ANN lear ns to output an
appropr iate signal.

Ever y unit (AN) in any lay er is connect ed to every unit in the
adjoining layer(s).

Ever y connection has a numerical weight.

One layer of units is the Input layer (by convention, on the
lef t).

One layer of units is the Output layer (right, opposite).

In the middle are the Hidden layer or lay ers.
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The crucial Hidden Layer ...

The Input layer gets stimulus from the environment ; the Hidden
layers take the signals received from the Input layer, process
them, and pass them to the Output layer.

The strengt h of the Input layer’s units are set by the
environment al stimulus; the decoded strengt hs of the Output
layer is the ANN’s response.

Activ ation of the non-Input-layer units depends on:

• the strengt h of the inputs to the unit,

• the weights of each of its input connections,

• a mat hematical function of these weights and inputs.

Rescale the weight ed sum of inputs to unity by a non-linear
activation function bounded between 0 and 1: usually a sigmoid
function (y = 1

1+e−x ).

< >
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So ...

Need to encode any stimulus into number s for the Input layer.

Need to train the ANN to give the correct output for a given
input, usually by bac k-propagation of error: alt er the weights to
reduce the error (the dif ference between the output with
random weights and the correct output response).

The amount of error adjus tment of the weights depends on:

• the der ivative of the activation function,

• the size of the error,

• the ANN’s exogenous learning rat e, and

• a momentum propor tional to all previous error
adjus tments.

< >
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Applications of ANNs

ANNs used to:

• recognise handwritt en digits

• recognise human speech

• select good credit risk s for bank loans

• tr ack stock-market trends

• recognise objects in video images

• explore the development of a shared lexicon (= a
language)

• doc k Axelrod’s (1987) evolution of cooperation with the
IPD. (Marks & Schnabl 1999)

• Teknikeller ’s seminar : “Macroeconomic Forecas ting wit h
Neur al Network s”

< >
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Designing ANNs

More an art than a science.

“Good”: learn efficientl y wit hout needing too large a training
set.

Design choices:

1. encoding of the environment al stimuli

2. number of Hidden layers

3. number of units in each layer

4. the specific activation (or squashing) function (usually
sigmoid) (see Marks & Schnabl 1999)

5. the sizes of the learning rat e and momentum constants
(use the package defaults)

6. how the error is calculat ed.

< >
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1. Encoding of Stimuli

Stimuli can be:

1. Continuous or large int eger (a measure or count)
Scaled ∈ [0,1] and directl y input, or categor ised in bands.

2. Categor ical (e.g. male or female)
Assign one unit per categor y: 0 or 1 input.

3. Qualitative (e.g. blue, heavy, wit h a sweet tas t e)
Code in binary, wit h a unit per binary position.

< >
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2. Number of Hidden Layers

Depends on the comple xity of relationship between stimuli and
responses.

Mos t phenomena only require a sing le Hidden layer (Mas t ers
1992),

but with no Hidden layers, an ANN is crippled (see the
discussion in Marks & Schnabl 1999, Introduction).

< >
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3. Number of Units

Input and Output layers:

Depends on the encoding: as many Input units as input
cat egories.

e.g. An IPD with one period’s memor y?

wit h two week’s memor y?

< >
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Number s of Units in the Hidden layer(s):

ANNs have a deg ree of gener alisation: they can recognise a
variant never seen before.

But we need to ret ain some specificity (to avoid misinter preting
new inputs).

Permit a degree of gener alisation, but not too much.
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Number s of Units in the Hidden layer(s):

ANNs have a deg ree of gener alisation: they can recognise a
variant never seen before.

But we need to ret ain some specificity (to avoid misinter preting
new inputs).

Permit a degree of gener alisation, but not too much.

As the number of Hidden layer units increases, the accuracy of
input recognition increases, but gener alisation ability falls —
when the number of Hidden units = the number of distinct
input examples, then there is 100% recognition, but no
gener alisation.
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6. Measuring Recognition Error

Dif ference, or root square error.

But need to avoid local optima (local hills), by repeating the
tr aining on a new random set of initial connection weights.

< >
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How can ANNs be Agents?

What are ANNs?

• Hor nik et al. (1989) have shown that econometricall y
ANNs are “univer sal approximat ors:”

• Can be used as agents when used in parallel, but don’t
require ot her ANNs.

• Used singly, don’t lead to emergence, but can learn.

• Could use a population of ANNs, playing agains t each
ot her, as agents.

See Beltratti et al. (1996) for early applications of ANNs to
financial and economics models.

< >
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III. Modelling Learning in ACE Models

Two sor ts of (deductive) learning have dominat ed ACE models:
GA (genetic algorit hms) & RL (reinforcement learning)

•
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III. Modelling Learning in ACE Models

Two sor ts of (deductive) learning have dominat ed ACE models:
GA (genetic algorit hms) & RL (reinforcement learning)

• GA , wit h implicit learning as the population “learns” from
gener ation to gener ation: eit her

— a population of players (the sing le-population GA
model), or

— a population of routines, ideas, heuris tics, wit h each
player modeled as a population (the multi-
population GA model).

•
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gener ation to gener ation: eit her

— a population of players (the sing le-population GA
model), or

— a population of routines, ideas, heuris tics, wit h each
player modeled as a population (the multi-
population GA model).

• RL, where the probability of choosing an action that was
ef fective las t round is increased.

•
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III. Modelling Learning in ACE Models

Two sor ts of (deductive) learning have dominat ed ACE models:
GA (genetic algorit hms) & RL (reinforcement learning)

• GA , wit h implicit learning as the population “learns” from
gener ation to gener ation: eit her

— a population of players (the sing le-population GA
model), or

— a population of routines, ideas, heuris tics, wit h each
player modeled as a population (the multi-
population GA model).

• RL, where the probability of choosing an action that was
ef fective las t round is increased.

• A third sor t: Anticipat ory (inductive), Belief-Based
Lear ning — the future?
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Evolutionar y Comput ation

Based on evolution with natur al selection.

Fitt er individuals have more offspr ing to pass their genes to;
less fit individuals have fewer offspr ing.

Genes occur in chromosomes; each gene codes for one (or more)
functions.

The genotype = the str ucture of the individual’s chromosomes.

The phenotype = the expressed charact eris tics (behaviour s) of
the individual, coded by the genotype.

Many phenotypes emerge from the individual genotypes:
dif ficult to predict.
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Evolution ...

1.
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Evolution ...

1. Populations evolve, not individuals.

2.
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Evolution ...

1. Populations evolve, not individuals.

2. Evolutionar y change requires diver sity at the genotype
level in the population.
Clones are identical, and ∴ so are their offspr ing.

3.
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Evolution ...

1. Populations evolve, not individuals.

2. Evolutionar y change requires diver sity at the genotype
level in the population.
Clones are identical, and ∴ so are their offspr ing.

3. While a species changes and adapts to its environment,
the environment itself might change, because of the
species ’ actions (example?) or because of other species’
actions → co-evolution?

4.
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Evolution ...

1. Populations evolve, not individuals.

2. Evolutionar y change requires diver sity at the genotype
level in the population.
Clones are identical, and ∴ so are their offspr ing.

3. While a species changes and adapts to its environment,
the environment itself might change, because of the
species ’ actions (example?) or because of other species’
actions → co-evolution?

4. Acquired skills die with the parent : onl y inherent
char acter istics are passed on.
But : For Homo sapiens, language means culture, which
can be passed on through deliberat e lear ning.

< >
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Holland’s (19 75) Genetic Algorit hm mimics natural evolution.

1. A population of “individuals,” each having a fitness,
which is measured.

2. The fitt es t individuals are chosen to breed a new
population/gener ation of offspr ing, inher iting fitt er tr aits
and genotypes.

3. Retur n to 1. (It erat e)
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Holland’s (19 75) Genetic Algorit hm mimics natural evolution.

1. A population of “individuals,” each having a fitness,
which is measured.

2. The fitt es t individuals are chosen to breed a new
population/gener ation of offspr ing, inher iting fitt er tr aits
and genotypes.

3. Retur n to 1. (It erat e)

In breeding, the GA uses the processes of:

• Selection of parents to breed new offspr ing,

• Crosso ver of parents ’ chromosomes to pass on a mixture
of their two genotypes, and

• Random mut ation of some genes.

Or : selection, exploit ation or imitation (of fit phenotypes), and
exploration (of the genotype space) which reduces the risk of
local optima.
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Four GA Design Choices:

1. Measures of Fitness.
Depends on what’s being modelled.
e.g. utility, wealt h, sur vival time, profit,
The average fitness of successive populations is alway s
monotonicall y increasing: local optima.

2.
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Four GA Design Choices:

1. Measures of Fitness.
Depends on what’s being modelled.
e.g. utility, wealt h, sur vival time, profit,
The average fitness of successive populations is alway s
monotonicall y increasing: local optima.

2. Selection mechanisms.
In choosing parents, need to ret ain some diver sity in
genotypes: don’t onl y choose the fittes t individuals to
mat e.

Tour nament selection: choose pairs of individuals at
random; take the fitter of the pair as a parent.
Typicall y, ret ain 40% of new population from the old, to
prot ect better traits (embodied in the genotypes).
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3.
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3. Gene tic Operators: crosso ver & mut ation.
Sing le-point crossover: take two chromosomes (one from
each parent), cut at the same randoml y chosen position,
sw ap the cuts to creat e two offspr ing (use at least one).
Possible to hav e more than one cut point, but not
impor tant.

Crossover preser ves traits (from combinations of
adjoining genes on the chromosome).

Mut ation: probability that a gene changes.
Creat es novelty at the genome level: diver sity, to avoid
sub-optimal traps.

4.
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3. Gene tic Operators: crosso ver & mut ation.
Sing le-point crossover: take two chromosomes (one from
each parent), cut at the same randoml y chosen position,
sw ap the cuts to creat e two offspr ing (use at least one).
Possible to hav e more than one cut point, but not
impor tant.

Crossover preser ves traits (from combinations of
adjoining genes on the chromosome).

Mut ation: probability that a gene changes.
Creat es novelty at the genome level: diver sity, to avoid
sub-optimal traps.

4. Population size.
Should considerabl y exceed the number of genes in each
chromosome.
If the population is too small, then increased risk of
convergence to a local optimum.
But 20 to 50 has been used successfully.
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Doc king of a GA Model

In G&T 2nd edition, they doc k Axelrod’s (1987) model of the
IPD: at
http://cress.soc.surrey.ac.uk/s4ss/code/NetLogo/axelrod-

ipd-ga.html

Axelrod (1987) wrot e in Pascal VS,

Mark s (1988) wrot e in C,
http://www.agsm.edu.au/bobm/papers/niche.pdf

G&T (2005, pp. 239−247) write a GA in NetLogo !
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Szpiro (1997) used a GA to demons trat e the emergence of risk
av ersion.
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Doc king of a GA Model

In G&T 2nd edition, they doc k Axelrod’s (1987) model of the
IPD: at
http://cress.soc.surrey.ac.uk/s4ss/code/NetLogo/axelrod-

ipd-ga.html

Axelrod (1987) wrot e in Pascal VS,

Mark s (1988) wrot e in C,
http://www.agsm.edu.au/bobm/papers/niche.pdf

G&T (2005, pp. 239−247) write a GA in NetLogo !

Szpiro (1997) used a GA to demons trat e the emergence of risk
av ersion.

Mark s (2010) used a GA to show that it is difficult to
demons trat e the emergence of risk aversion:
http://www.agsm.edu.au/bobm/papers/ralet.pdf
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GA Developments

Coding of the Genotype:
Nature uses the four nucleotide amino acids: G, A, T, C (i.e.
quat ernar y).
Holland’s classical GA uses bits in a binary str ing.

But real numbers are possible: easier to deal with many real-
valued problems.
Mut ation: added a randoml y chosen small number (N (0,σ) )  to
a small propor tion of genes.

< >



Lear ning R.E. Marks © 201 0 Page 23

GA Developments

Coding of the Genotype:
Nature uses the four nucleotide amino acids: G, A, T, C (i.e.
quat ernar y).
Holland’s classical GA uses bits in a binary str ing.

But real numbers are possible: easier to deal with many real-
valued problems.
Mut ation: added a randoml y chosen small number (N (0,σ) )  to
a small propor tion of genes.

Or : use prog rams as genes → Genetic Prog ramming (Koza
1992).
Need to ensure that crossover and mutation preser ve a
synt actically cor rect prog ram, even if it per for ms very poorly.
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GA Developments

Coding of the Genotype:
Nature uses the four nucleotide amino acids: G, A, T, C (i.e.
quat ernar y).
Holland’s classical GA uses bits in a binary str ing.

But real numbers are possible: easier to deal with many real-
valued problems.
Mut ation: added a randoml y chosen small number (N (0,σ) )  to
a small propor tion of genes.

Or : use prog rams as genes → Genetic Prog ramming (Koza
1992).
Need to ensure that crossover and mutation preser ve a
synt actically cor rect prog ram, even if it per for ms very poorly.

Classifier Syst ems (Holland et al. 1986): Production Sets which
can alter their rules by lear ning from feedbac k af ter it has acted.
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Bes t Individual or Whole Population?

GA largel y used as an optimiser : asking what is the best value
(of fitness) in the population?

But focussing on the value of the best individual throw s aw ay
the population’s emerging charact eris tics as a population.

It ignores the aggregate level of emerging phenomena.

Axelrod (1987) not onl y sought the best-per for ming strategy in
the IPD,

but also asked ques tions at the aggregate level of the
population, such as its stability agains t invasion by a dif ferent
strategy : e.g. Tit for Tat ’s stability agains t Alw ays Defect. (See
Mark s 1989.)
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How many populations in the GA?

Vr iend (2000): with a sing le population in the GA, we mus t
dis tinguish social learning from individual learning.
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How many populations in the GA?

Vr iend (2000): with a sing le population in the GA, we mus t
dis tinguish social learning from individual learning.

Social learning occurs at the genotypic level: sexual
reproduction means that parents can communicate (share
infor mation) wit h their offspr ing via crossover:

∴ ov er gener ations, fitt er genes or traits can spread through a
sing le population covertly, by inher itance of genetic mater ial.

How many parents, grandparents, great grandparents, ... do you
have?

“Individual” learning occurs at the phenotypic level as each
individual inter acts wit h ot her s, is scored for its fitness, and is
∴ select ed (or not) as a parent for the next gener ation,
depending on its fitness ranking.
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Multiple-population GA lear ning

With one population per player: Individual learning occurs onl y
through arm’s-lengt h competition, and the selection of fitter
individuals as future parents, not through inherit ance of genetic
mat erial. (Illegal communication?)
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Multiple-population GA lear ning

With one population per player: Individual learning occurs onl y
through arm’s-lengt h competition, and the selection of fitter
individuals as future parents, not through inherit ance of genetic
mat erial. (Illegal communication?)

When all members of a population are identical, then genetic
inher itance is not a problem, since the aim is in gener al onl y to
seek the fittes t individual.
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GAs wit h Co-evolution: Many Populations

When the environment in which the GA oper ates changes, and
when such change is due to the behaviour of the species’
competit ors — co-evolution — then sharing of genetic mater ial
blur s the dis tinction between species.
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GAs wit h Co-evolution: Many Populations

When the environment in which the GA oper ates changes, and
when such change is due to the behaviour of the species’
competit ors — co-evolution — then sharing of genetic mater ial
blur s the dis tinction between species.

Example: If the GA is being used to explore the behaviour of
seller s in an oligopolistic market, genetic sharing can only
model sub-rosa communication across brands.

This is illegal under most antitr ust regimes, and therefore in
gener al should not occur in the model, lest the results rel y on
it.

This implies the need for a separat e population of agents for
each seller brand.
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... so: How many populations?

The answer to the ques tion: how many populations? is then: as
many as there are dis tinct players, or dis tinct species
coevolving.
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... so: How many populations?

The answer to the ques tion: how many populations? is then: as
many as there are dis tinct players, or dis tinct species
coevolving.

Example: When each seller in an oligopoly has distinct costs,
faces distinct demand, perhaps with a dis tinct actions set, then
it should be modeled using a distinct population.
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... so: How many populations?

The answer to the ques tion: how many populations? is then: as
many as there are dis tinct players, or dis tinct species
coevolving.

Example: When each seller in an oligopoly has distinct costs,
faces distinct demand, perhaps with a dis tinct actions set, then
it should be modeled using a distinct population.

Perhaps because each GA has an inter nal population of
individuals, a tendency to think of the GA as modeling
het erogenous players.

But a single population assumes homogeneity.
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Individuals in the GA

Each str ing in a GA population could be:

• an individual brand (say), which I have argued above is
unrealis tic in gener al, or

• one possible decision, of a population that the agent
could make — makes sense with a population per distinct
player.

So each new gener ation could be:

• new individual decision maker s (br ands), or

• new ideas or heuris tics belonging to long-lived players.
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Disput es about GAs in Economics:

Chatt oe (1998) argues (correctl y) that there has been confusion
ov er the role of the GA:

• an instr ument to search a rugged solution space, or

• a model of firms ’ decision making and individual
behaviour.

Dawid (1999) argues that the GA is good at modelling the
lear ning of populations of agents.

Cur zon Pr ice (1997): the GA provides a stream of hypothetical
actions or str ategies, which may or may not be used.

Duf fy (2006) concludes that empir ical evidence exis ts that GAs
are reasonable “models of adaptive lear ning by populations of
het erogeneous agents.”
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Mark s & Schnabl (1999) compare a GA and an ANN playing an
IPD

The logical str ucture of this ANN is a kind of dual to the
nor mal ANN: normall y the net gets inputs from the
environment of data and forecas ts future behaviour, here it
makes the data by creating behaviour of the actual move (i.e.
Cooper ate or Defect). The data input of the ANN then is the
his t ory of one ’s own and one’s opponent ’s mov es.

•
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Mark s & Schnabl (1999) compare a GA and an ANN playing an
IPD

The logical str ucture of this ANN is a kind of dual to the
nor mal ANN: normall y the net gets inputs from the
environment of data and forecas ts future behaviour, here it
makes the data by creating behaviour of the actual move (i.e.
Cooper ate or Defect). The data input of the ANN then is the
his t ory of one ’s own and one’s opponent ’s mov es.

• The ANN did not reall y tr ansfor m itself to a str ucture to
bes t play the IPD.

• The ANN had to approximat e 0 and 1 using real-v alued
functions.

∴ The ANN not as close to the IPD as is the GA: ANN seen
to be less stable in solution.

• But with real-v alued real-world var iables, ANN might do
bett er than a GA.

• GAs sometimes used to search for better weights in an
ANN.
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IV. Explicit Agent-Based Learning

With populations in a GA, lear ning is implicit : it occurs at the
population level, not at the individual level — it emerges.
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IV. Explicit Agent-Based Learning

With populations in a GA, lear ning is implicit : it occurs at the
population level, not at the individual level — it emerges.

Ar thur (1991, 1993) was the first economis t to model explicit
agent learning, and to calibr ate his models using data from
human-subject exper iments.

In his Reinforcement Learning (RL) model, how an agent
chooses to act later is a function of the outcomes it exper ienced
as a result of earlier choices — the Thorndike effect.
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IV. Explicit Agent-Based Learning

With populations in a GA, lear ning is implicit : it occurs at the
population level, not at the individual level — it emerges.

Ar thur (1991, 1993) was the first economis t to model explicit
agent learning, and to calibr ate his models using data from
human-subject exper iments.

In his Reinforcement Learning (RL) model, how an agent
chooses to act later is a function of the outcomes it exper ienced
as a result of earlier choices — the Thorndike effect.

At first he calibr ated individual learning, but with the artificial
stock market (Arthur et al. 1997), he became interes t ed in data
at the aggregate level.
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Ar thur ’s RL Model, the earlies t

His model: In round t , player i has a propensity q ij (t ) to choose
pure str ategy j , and q ij is updated:

q ij (t + 1) = q ij (t ) + (x − xmin),

where x was the payoff for choosing str ategy j previousl y, and

xmin is the lowest possible payoff.
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Ar thur ’s RL Model, the earlies t

His model: In round t , player i has a propensity q ij (t ) to choose
pure str ategy j , and q ij is updated:

q ij (t + 1) = q ij (t ) + (x − xmin),

where x was the payoff for choosing str ategy j previousl y, and

xmin is the lowest possible payoff.

∴ The propensity to choose a str ategy j is reinforced if j has
provided higher payoffs in the past, and vice ver sa.

p ij (t ) = q ij (t )

ΣN
k =1q ik (t )

is the probability that agent i plays

strategy j in period t , a function of all str ategies ’ propensities.
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Roth and Erev’s gener alisation

Roth & Erev (1995), Erev & Rot h (1998) gener alised Ar thur ’s RL
model to get a better fit with exper imental data from multi-
player games.
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Roth and Erev’s gener alisation

Roth & Erev (1995), Erev & Rot h (1998) gener alised Ar thur ’s RL
model to get a better fit with exper imental data from multi-
player games.

Initial propensities q ij (1) are equal across all str ategies.

Σ jq ij (1) = S i (1) = S(1), an initial propensity paramet er, equal
across all players and str ategies.

The rat e of learning is propor tional to S(1).

Ag ain, p ij (t ) = q ij (t )

ΣN
k =1q ik (t )

is the probability that agent i

plays str ategy j in period t .
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The Rot h-Erev Model ...

Player i updat es his propensity to play str ategy j according to
the rule:

q ij (t + 1) = (1 −φ)q ij (t ) + Ek ( j ,R(x ) ),

where Ek ( j ,R(x ) ) =




(1 −ε)R(x ) if j = k , or
ε

N−1
R(x ) otherwise,

where R(x ) = x − xmin.
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The Rot h-Erev Model ...

Player i updat es his propensity to play str ategy j according to
the rule:

q ij (t + 1) = (1 −φ)q ij (t ) + Ek ( j ,R(x ) ),

where Ek ( j ,R(x ) ) =




(1 −ε)R(x ) if j = k , or
ε

N−1
R(x ) otherwise,

where R(x ) = x − xmin.

Three paramet ers:

• initial-propensity paramet er S(1)

• recency paramet er φ: reduces the power of pas t
exper iences

• exper imentation paramet er ε
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The Rot h-Erev Model ...

Player i updat es his propensity to play str ategy j according to
the rule:

q ij (t + 1) = (1 −φ)q ij (t ) + Ek ( j ,R(x ) ),

where Ek ( j ,R(x ) ) =




(1 −ε)R(x ) if j = k , or
ε

N−1
R(x ) otherwise,

where R(x ) = x − xmin.

Three paramet ers:

• initial-propensity paramet er S(1)

• recency paramet er φ: reduces the power of pas t
exper iences

• exper imentation paramet er ε

When φ = ε = 0, Rot h-Erev is Arthur.
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Five Types of RL Models

Five types of RL models (Duffy 2006, Brenner 2006):

1.
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Five Types of RL Models

Five types of RL models (Duffy 2006, Brenner 2006):

1. the Arthur-R oth-Erev model above

2.
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Five Types of RL Models

Five types of RL models (Duffy 2006, Brenner 2006):

1. the Arthur-R oth-Erev model above

2. Q-lear ning, which optimises long-ter m payoffs rat her
than immediate retur ns (Watkins & Dayan 1992)

3.
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Five Types of RL Models

Five types of RL models (Duffy 2006, Brenner 2006):

1. the Arthur-R oth-Erev model above

2. Q-lear ning, which optimises long-ter m payoffs rat her
than immediate retur ns (Watkins & Dayan 1992)

3. multi-agent Q lear ning (Hu & Wellman 1998), and

4.
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Five Types of RL Models

Five types of RL models (Duffy 2006, Brenner 2006):

1. the Arthur-R oth-Erev model above

2. Q-lear ning, which optimises long-ter m payoffs rat her
than immediate retur ns (Watkins & Dayan 1992)

3. multi-agent Q lear ning (Hu & Wellman 1998), and

4. Adaptive Play (Young 1998)

5.
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Five Types of RL Models

Five types of RL models (Duffy 2006, Brenner 2006):

1. the Arthur-R oth-Erev model above

2. Q-lear ning, which optimises long-ter m payoffs rat her
than immediate retur ns (Watkins & Dayan 1992)

3. multi-agent Q lear ning (Hu & Wellman 1998), and

4. Adaptive Play (Young 1998)

5. Another modification of RL: suppose that agents have
cer tain “aspiration levels” in payoff ter ms that they are
tr ying to achieve. This idea has a long history in
economics dating back to Simon’s (1955) notion of
satisficing.

Could use xasp ins t ead of xmin above.
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Anticipat ory, Belief-Based Learning — Inductive

RL and GA-based learning models are deductive: respond to
pas t actions and payoffs.
No att empt to anticipat e and reason back, inductivel y.
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Anticipat ory, Belief-Based Learning — Inductive

RL and GA-based learning models are deductive: respond to
pas t actions and payoffs.
No att empt to anticipat e and reason back, inductivel y.

Belief-based learning: agents for m beliefs about other players ’
likel y actions, and so respond to their beliefs. Inductive.

Gjer stad & Dic khaut (1998): “heuris tic belief learning”: agents
use heuris tics to updat e their beliefs about other s’ actions
(e xpressed as probabilities) — they found good convergence to
competitive equilibr ium and good fit with agg reg ate behaviour.

Timing of bids is crucial.
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Selt en’s Direct ed Lear ning

Ex-pos t rationality deter mines adaptive behaviour.

Requires an order ing ov er the set of possible actions.

Players probabilis tically mov e towards actions that would have
been profit able had they been chosen earlier;
and never mov e to low er their payoffs.
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Selt en’s Direct ed Lear ning

Ex-pos t rationality deter mines adaptive behaviour.

Requires an order ing ov er the set of possible actions.

Players probabilis tically mov e towards actions that would have
been profit able had they been chosen earlier;
and never mov e to low er their payoffs.

Hailu & Schilizzi (2004): use a mixed (i.e. probabilis tic)
strategy in a procurement (i.e. selling) tender :

• if bid X won las t auction, then slightly raise the bid,
using P ( 1

2
)X and P ( 1

2
) X +10% as next bid,

• if bid X was too high, then slightly low er the bid, using
P ( 1

2
)X and P ( 1

2
) X −10% as next bid, both bounded.
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Lear ning: How to optimise (LHTO), or how to predict (LHOP)?

LHTO: GA searches for actions or str ategies that are bes t, lead
to highes t fitness (profits etc.)

LHTP: use the GA str ings to encode how prices will change
from period to per iod.

Used to calibr ate GA output with human-subject exper imental
dat a.

For us humans, it seems that predicting prices is easier than
predicting how to respond to changing prices.

Perhaps this sugges ts how markets help us solve dif ficult
problems (see the EJ June 2005 feature discussed in Lecture 2).
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Are Lear ning Strategies Better? (In Repeat ed Games)

Air iau et al. (2007) evaluat e several lear ning and non-learning
strategies in an evolutionar y tour nament where agents adopt
successful str ategies from the previous gener ation.

The tes tbed: all 57 dis tinct 2 × 2 games. Nine strategies:

Simple: Random R, Generalized Tit for Tat GTFT,
Bes t Response BR, MaxiMin M.

Sophis ticat ed: Nash equilibrium N, Fictitious Play FP,
Bes t Response to Fictitious Play BRFP, Bull y, Sab y.

St atic: R, N, M, Bull y.
Simple, purel y reactive: GTFT, BR.
Lear ning Strategies: FP, BRFP, Sab y.

Bull y chooses an action which maxes its payoff assuming the
ot her will respond optimall y to this action.

Sab y plays its best response to an estimat ed probability
dis tribution across the other ’s actions, given Sab y’s las t
move.
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Yes in Simple Round-R obins

1. In a round-robin with one player per str ategy :

st atic str ategies and N are dominat ed by the learning
strategies: static str ategies and N are not alw ays efficient
(P aret o-optimal outcomes)

N could significantly outper for m onl y R.

FP loses to BRFP, but beats R.
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Yes in Evolutionar y Tour naments

2. In an evolutionar y tour nament, where agents adopt the
bes t strategies in the previous gener ation (i.e. selection,
wit hout the genetic operations of crossover and
mut ation):

the lear ning strategies (including FP and BRFP)
outper for m strategies such as N, and survive the
evolutionar y process.

N cannot sur vive when learning str ategies are present in
the first gener ation.

Lear ning strategies may not overwhelm all other s: Bull y
can survive wit h them.
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