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Agents are decison-making components in a comple x adaptive
system (CAS).

Agents have sets of rules/behaviour patter ns that allow them
to:

— take in infor mation,

— process inputs, and

— then cause changes in the outside environment.

Agent-based models can result in adaptation of the CAS by two
possibilities:

1. possible agent learning and adaptation while processing
inputs,

2. possible endogenous str uctural change of the system
(emergence).

(from Nor th & Macal 2007)
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Agent-Based Models

AB Models are used where the inter actions are decentr alised,
and the autonomous agents make their own decisions (perhaps
cons trained).

∴ AB models are suit able for int eractions which are bottom-
up, not top-do wn.

∴ social and market inter actions, rather than engineering or
int ernal organisational inter actions.

Sometimes known as Agent-based Comput ational Economics
(ACE) models.
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Agent-Based compared to Traditional Math Tools

Tr aditional Tools Agent-Based Objects

1) Precise Flexible

2) Little process Process-or iented

2a) Timeless Timel y
(his t ory matt ers)

3) Optimizing Adaptive

4) Static Dynamic

5) Homogeneous Heterogeneous

6) 1, 2, or ∞ agents 1, 2, . . ., N agents

6a) Vacuous Spacey/networked
(dis tance matter s)

(from Miller & Scott 2007)

< >



Lecture 3  R.E. Marks © 201 0 Page 4

Agent-Based compared to Sys t em Dynamics

Don’t use System Dynamics when:

< >



Lecture 3  R.E. Marks © 201 0 Page 4

Agent-Based compared to Sys t em Dynamics

Don’t use System Dynamics when:

• there are strong spacial or geog raphical aspects,

•

< >



Lecture 3  R.E. Marks © 201 0 Page 4

Agent-Based compared to Sys t em Dynamics

Don’t use System Dynamics when:

• there are strong spacial or geog raphical aspects,

• network s of agents inter act ov er time,
especiall y wit h dynamic network s which are creat ed and
tr ansfor med as a result of agent inter actions wit hin the
model

•

< >



Lecture 3  R.E. Marks © 201 0 Page 4

Agent-Based compared to Sys t em Dynamics

Don’t use System Dynamics when:

• there are strong spacial or geog raphical aspects,

• network s of agents inter act ov er time,
especiall y wit h dynamic network s which are creat ed and
tr ansfor med as a result of agent inter actions wit hin the
model

• there are discret e decision var iables, or

•

< >



Lecture 3  R.E. Marks © 201 0 Page 4

Agent-Based compared to Sys t em Dynamics

Don’t use System Dynamics when:

• there are strong spacial or geog raphical aspects,

• network s of agents inter act ov er time,
especiall y wit h dynamic network s which are creat ed and
tr ansfor med as a result of agent inter actions wit hin the
model

• there are discret e decision var iables, or

• there are cons traints on decision var iables.

But see the papers at
http://www.agsm.edu.au/bobm/teaching/SimSS/ABversusSD.html
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• there are discret e decisions and var iables
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• there are dynamic relationships, that for m and dissolve

• agents for m groups, and adaptation and learning is
impor tant at a group level

• agents have a spacial component to their behaviour s and
int eractions

• the pas t is a poor predict or of the future

• scaling up is impor tant (numbers of agents)

• there is endogenous process str uctural change.
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Using AB models

In ABM/ACE models, a population of softw are objects is:

— ins tantiat ed, and each agent is given

— cer tain inter nal st ates (e.g., preferences, endowments)
and

— rules of behaviour (e.g., seek utility improv ements).

The agents are then permitt ed to int eract directl y wit h one
another. A macros tructure emerges from these inter actions.
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Patt erns Emerge

Patt erns in this macros tructure may then be (Axtell, 2005):

— compared with empir ical dat a,

— used to revise agent inter nal st ates and rules, and

— the process repeat ed until an empir ically plausible model
obt ains.

e.g. ACE stock markets have been used to model heterogeneous
agents: will the sty lised features of such markets emerge? Yes.
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What is an Agent?

An agent : a self-centred prog ram that controls its own actions
based on its perceptions of its operating environment.

Der ived from the Distr ibuted AI notion of a network of
calculating nodes.

Examples: the automat a in Conway’s Game of Life or Schelling’s
Seg reg ation game or the couples in March & Lave ’s Sons and
Daught ers game or the people in the Minority (El Farol) game.

Another example of an agent that won $2,000,000 in a
challenge by the U.S. Department of Defense in October 2005
...
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Agents and agency

Wooldr idge & Jennings (1995) would give comput er agents
these proper ties:

• aut onomy: no other s control their actions and inter nal
st ate,

• social ability: can inter act and communicate wit h ot her
agents

• reactive: they perceive their environment and respond

• pro-active: they initiat e goal-direct ed actions

• (int entionality: met aphors of beliefs, decisions, motives,
and even emotions)
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Further agent features:

plus (Epstein 1999):

• het erogeneity: not “represent ative” but may dif fer

• local inter actions: in a defined space

• boundedl y rational (Simon): infor mation, memor y,
comput ational capacity

• non-equilibr ium dynamics: large-scale transitions, tipping
phenomena (Gladwell 2000)
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1. Kno wledge & beliefs.
Agents act based on their knowledge of the environment
(including other agents), which may be faulty — their
beliefs, not true knowledge.

2. Inference.
Given a set of beliefs, an agent might infer more
infor mation.

3. Social models.
Agents, knowing about inter relationships between other
agents, can develop a “social model”, or a topology of
their environment : who’s who. etc.
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Eight Desired Attr ibutes ...

4.
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Eight Desired Attr ibutes ...

4. Kno wledge represent ation.
Agents need a represent ation of beliefs: e.g. predicat e
logic, semantic (hierarchical) network s, Bayesian
(probabilis tic) network s.

[Sebas tian] Thr un [leader of the winning team in
the 2005 DARPA Grand Challenge] had a Zen-like
revelation: “A key prerequisit e of true intelligence
is knowledge of one ’s own ignorance,” he thought.
Given the inherent unpredict ability of the world,
robots, like humans, will alway s make mis takes.
So Thrun pioneered what’s known as probabilis tic
robotics. He prog rams his machines to adjus t their
responses to incoming data based on the
probability that the data are cor rect. — Pacella
(2005).
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5. Goals.
Agents driven by some inter nal goal, e.g. surviv al, and
its subsidiary goals (food, shelter). Usually definition
and management of goals imposed on the agent.

6. Planning.
Agent must (somehow) deter mine what actions will
att ain its goal(s). Some agents modelled without
teleology (simple trial-and-er ror), other s wit h inference
(for ward-looking), or planning.

7. Language.
For communication (of infor mation, negotiation,
threats). Modelling language is dif ficult. (Want to avoid
inadver tent communication, e.g. through the genome of
a population in the GA.)

8. Emotions.
Emergent features? Significant in modelling agents? Or
epiphenomenal?
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Agents, more simpl y — from Gilber t (2008):

Agents should have the following agent-specific charact eris tics:

1. Perception: can perceive their environment, possibly
including other agents

2. Perfor mance: a set of behaviour s, such as:

a. Motion: can move in the space

b. Communication: can send and receive messages
wit h each other

c. Action: can inter act wit h the environment, eg. can
pic k up “food”

3. Memor y: can remember their previous states,
perceptions, and actions

4. Policy: a set of rules that deter mines how they will act,
given their state and history
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How to Model Agent Archit ecture?

Early approach to modelling cognitive abilities (symbolic
par adigm) was fragile, comple x, and lacked common sense.

Since then, five approaches:

1. Production Systems

2. Object Or ientation

3. Language Par sing & Gener ation

4. Machine-Learning Techniques, and (most recentl y)

5. Probabilis tic Robotics — “Stanley” (Thrun et al. 2005).

Ignore 3., 4. last lecture, 5. too new.
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1. Production Systems

Cont ain:

1. a set of rules (a condition + an action),

2. a working memory, and

3. a rule inter pret er (is the condition satisfied? if so, act)

No prespecified order of rules: contingent.

The agent ’s designer specifies how to break ties among rules.
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2. Object Orient ation

In “object-orient ed” prog ramming languages:

• “objects” are program str uctures containing data +
procedures for operating on those data;

• the dat a are stored in “slots” inside the object;

• the procedures are called “methods”;

• objects creat ed from templat es called “classes”;

• classes are ranked in a hierarchy, wit h subordinat e classes
more specialised.
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e.g. Modelling pedestr ian flow.

e.g. Pedes trian flow in a shopping mall —

•
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e.g. Modelling pedestr ian flow.

e.g. Pedes trian flow in a shopping mall —

• Class: pedestr ian;

• Slots: location, direction, gait ;

• Subclass 1: lone walker s;

• Subclass 2: group walker s (wit h a Lis t of Who, and
Int eractions with other s in the group).

If the rules are specified at the class level, then all agents share
the rules, but with dif ferent attribut es.

OO comput er languages: C++, Lisp, Java. etc.
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5. Probabilis tic Robotics

In the 2004 DARPA Grand Challenge, robots used Production
Systems archit ecture. (1.)

Results:
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5. Probabilis tic Robotics

In the 2004 DARPA Grand Challenge, robots used Production
Systems archit ecture. (1.)

Results: The most successful entrant in the 2004 race complet ed
jus t 7.4 miles of the 150-mile off-road (desert) course, and only
six of the fifteen cars competing trav elled even 1.3 miles.

In the 2005 Grand Challenge, many robots used Probabilis tic (or
Bayesian or fuzzy-logic) archit ecture. (5.)

Results: “Stanley, ” St anford’s robotic Volk swagen Touareg beat
the field, completing the 132-mile race with a winning time of 6
hour s 53 minutes 58 seconds (an average speed of 19.1 mph).
Four other vehicles successfully complet ed the race. All but one
of the 23 finalists in the 2005 race surpassed the 7.36 mile
dis tance complet ed by the best vehicle in the 2004 race.
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Gr and Challenge Rules

• The vehicle must travel aut onomously on the ground in
under ten hours.

• The vehicle must stay wit hin the cour se boundar ies as
defined by a dat a file provided by DARPA.

• The vehicle may use GPS and other public signals.

• No control commands may be sent to the vehicle while en
rout e.

• The vehicle must not int entionally touch any other
competing vehicle.

• An autonomous service station is permitt ed at a
chec kpoint area approximat ely halfw ay between start and
finish.

The Stanford team won the first prize of US $2,000,000 in
2005, with “St anley.”

< >
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The DARPA Urban Challenge 2007

In Nov ember 2007, Car negie Mellon’s robot, “Boss,” pipped
St anford’s “Junior,” to win $2,000,000. St anford won the
$1,000,000 second prize.

“Unlike the 2005 desert race, not onl y had entrants to keep to the
tarmac and obey the rules of the road, they had also to avoid colliding
wit h a number of other cars being steered round the base by stunt
dr iver s.

The desert vehicles relied on radar, laser range-finder s and speedy,
cleverl y prog rammed comput ers to avoid meddlesome objects while
racing from point to point.

The urban robots used similar technology to accomplish much more
dif ficult task s.

In effect, they were taking the examination to receive a driving
licence by demons trating the ability to park in narrow spaces, slow
down and indicate appropr iatel y at junctions, and so on—as well, of
cour se, as avoiding collisions.” — The Economist, Nov 1, 2007.
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Modelling the Environment

Definition of the environment depends on what is being
modelled.

For individuals:

• move in a space, or on a network;

• use sensors to perceive the environment, including other
agents;

• perhaps be able to affect the environment directl y;

• perhaps receive and send signals in the environment.

For comput er agents, the order of agents running can be crucial
(“concur rency”). Sometimes, buf fer ing their signals is
suf ficient.
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G & T use NetLogo to build multi-agent simulations:

Major ity: pp.158
http://cress.soc.surrey.ac.uk/s4ss/code/NetLogo/majority.html
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G & T use NetLogo to build multi-agent simulations:

Major ity: pp.158
http://cress.soc.surrey.ac.uk/s4ss/code/NetLogo/majority.html

Sit Sim: pp.163
http://cress.soc.surrey.ac.uk/s4ss/code/NetLogo/sitsim.html

Shopping Agents: pp.182
http://cress.soc.surrey.ac.uk/s4ss/code/NetLogo/shopping-agents.html

Crowds: pp.202
http://cress.soc.surrey.ac.uk/s4ss/code/NetLogo/crowds.html

As well as NetLogo, ABM platfor ms include: Swar m, RePast,
and Mason: horses for courses.
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Railsbac k & Grimm discuss and develop several NetLogo
models:

Their for thcoming book (A Course in Individual- and Agent-
Based Modeling) will provide guidelines to build NetLogo
models.

They also introduce the “ODD” framework for building agent-
based models.

The models they build and modify including the following:

• Floc king (Chapter 7)

• Investment decisions (Chapters 9, 10, 11, 14)

• Telemarketing (Chapters 12, 13)

see: http://www.railsback-grimm-abm-book.com/index.html as well as their
Individual-Based Modeling and Ecology, (Pr inceton U.P., 2005).
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Economic Journal June 2005 Feature —

• focussed on Comple x Adaptive Sys t ems (CAS) in
economics

• appeared just after Leombruni & Richiardi asked, “Why
are economis ts sceptical about agent-based simulations?”
(Ph ysica A 355: 103−109, 2005.)

• included 4 papers: introduced by Markose, with paper s by
Axt ell, Robson, and Durlauf,

• who addressed, respectivel y,

—
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Economic Journal June 2005 Feature —

• focussed on Comple x Adaptive Sys t ems (CAS) in
economics

• appeared just after Leombruni & Richiardi asked, “Why
are economis ts sceptical about agent-based simulations?”
(Ph ysica A 355: 103−109, 2005.)

• included 4 papers: introduced by Markose, with paper s by
Axt ell, Robson, and Durlauf,

• who addressed, respectivel y,

— markets as comple x adaptive sys t ems,

— formal comple xity issues,

— the co-evolutionar y Red Queen effect and novelty,
and

— the empir ical and tes table manifes tations of CAS in
economic phenomena.
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Markose and the EJ Feature on CAS:

• many “anomalies” not under stood or modelled using
conventional optimisation economics:

—
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Markose and the EJ Feature on CAS:

• many “anomalies” not under stood or modelled using
conventional optimisation economics:

— innovation,

— competitive co-evolution,

— per sistent heterogeneity,
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— “t he er ror-dr iven processes behind market
equilibr ium,”
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— stock-market crashes and extreme events such as
Oct ober 1987.
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Markose and the EJ Feature on CAS:

• many “anomalies” not under stood or modelled using
conventional optimisation economics:

— innovation,

— competitive co-evolution,

— per sistent heterogeneity,

— increasing retur ns,

— “t he er ror-dr iven processes behind market
equilibr ium,”

— herding,

— stock-market crashes and extreme events such as
Oct ober 1987.

• need the “adaptive or emergent methods” of ACE
simulation
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Moreover ...

Axt ell (2005) argues that :

• the decentr alised market as a whole can be seen as a
collective computing device

• the par allel dis tribut ed agent-based models of k -lat eral
exchange → the specific level of comple xity (pol ynomial)
in calculations of equilibr ium pr ices and allocations.
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Simon’s Bounded Rationality

Agent-based models, following Simon (1982), also assume
Bounded Rationality. Indeed, in the absence of Tur ing machine
(univer sal calculat or), it is difficult not to.
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Simon’s Bounded Rationality

Agent-based models, following Simon (1982), also assume
Bounded Rationality. Indeed, in the absence of Tur ing machine
(univer sal calculat or), it is difficult not to.

But Epstein (2006) reflects:
“One wonder s how the core concer ns and history of economics
would have developed if, instead of being inspired by
continuum physics ... blissfull y unconcer ned as it is with
ef fective comput ability — it had been founded on Tur ing.
Finitis tic issues of comput ability, lear nability, att ainment of
equilibr ium (r ather than mere exis t ence), problem comple xity,
and undecidability, would then have been central from the
st art. Their foundational impor tance is only now being
recognized.”
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Eps t ein on the virtues of boundedly rational agents ...

“As Duncan Foley summar izes:

`The theor y of comput ability and comput ational
comple xity sugges t that there are two inherent limitations
to the rational choice paradigm.

One limitation stems from the possibility that the agent ’s
problem is in fact undecidable, so that no comput ational
procedure exis ts which for all inputs will give her the
needed answer in finite time.

A second limitation is posed by comput ational comple xity
in that even if her problem is decidable, the
comput ational cos t of solving it may in many situations
be so large as to overwhelm any possible gains, from the
optimal choice of action.’ (See Albin 1998, 46).”
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ABM → Gener ative Explanation:

Gener ative explanation (Epstein 2006):

“If you haven’t gro wn it, you haven’t explained its emergence.”
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regular ity (t hat emerges)?

— Gener ative suf ficiency is a necessary but not suf ficient
condition for explanation. Each realisation is a str ict deduction.

See also Miller & Page (2007) pp. 86−87.
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ABM → Gener ative Explanation:

Gener ative explanation (Epstein 2006):

“If you haven’t gro wn it, you haven’t explained its emergence.”

To answer : how could the autonomous, local inter actions of
het erogeneous boundely rational agents gener ate the observed
regular ity (t hat emerges)?

— Gener ative suf ficiency is a necessary but not suf ficient
condition for explanation. Each realisation is a str ict deduction.

See also Miller & Page (2007) pp. 86−87.

Grüne-Yanof f (2006) argues to dis tinguish functional
explanations (easier for simulator s) from causal explanations
(much less achievable for social scientists).
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Tr uth and Beauty

Josh Epstein (2006): does AB simulation lack beauty?
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Tr uth and Beauty

Josh Epstein (2006): does AB simulation lack beauty?

Ber trand Russell in 1957: Mat hematics as cold, austere, supreme
beauty.

Russell: Beauty when “the premises achieve more than would
have been thought possible, by means which appear natural and
inevit able.”

The first damns comput er simulation, but the second can occur
wit h emergence from AB models.

Eps t ein compares different schools of classical music: German v.
Fr ench.

Tr uth (from agent-based modelling) can be beautiful too.
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Formalisation of Agent-Based Models

Eps t ein (2006): every agent model is a comput er prog ram.

∴ Turing comput able
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Formalisation of Agent-Based Models

Eps t ein (2006): every agent model is a comput er prog ram.

∴ Turing comput able

But for every Tur ing machine, ∃ a unique corresponding and
equiv alent

par tial recursive function.

Such functions might be extremel y comple x and difficult to
int erpret, but they exis t.

Hence: “recur sive” or “effectivel y comput able” or
“cons tructive” or “gener ative” (after Chomsky) social science.
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Validation of Agent-Based Models

Moss & Edmonds (2005): for AB models at least two stages of
empir ical validation.

1. the micro-v alidation of the behaviour of the individual
agents in the model, by reference to dat a on individual
behaviour.

2.
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Validation of Agent-Based Models

Moss & Edmonds (2005): for AB models at least two stages of
empir ical validation.

1. the micro-v alidation of the behaviour of the individual
agents in the model, by reference to dat a on individual
behaviour.

2. macrov alidation of the model’s agg reg ate or emergent
behaviour when individual agents inter act, by reference
to agg reg ate time series.

wit h the emergence of novel behaviour, possible surpr ise
and possible highly non-s tandard behaviour, it’s dif ficult
to ver ify using standard statis tical met hods.

∴ onl y qualit ative validation judgments might be
possible.
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Four Levels of Validation (Axt ell & Eps t ein 1994)

Level 0: Qualit ativel y similar at the micro level of individuals
(agents)
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Four Levels of Validation (Axt ell & Eps t ein 1994)

Level 0: Qualit ativel y similar at the micro level of individuals
(agents)

Level 1: Qualit ativel y similar at a higher, macro, level

Level 2: Quantit ative agreement of macro str uctures
eg. means, moments, distr ibutions, st atis tical tests

Level 3: Quantit ative agreement at the micro level
eg. agents behave exactl y the same.

Recentl y, I addressed Level 2, wit h a new moment, the SSM.
http://www.agsm.edu.au/bobm/papers/marks-talk-

sydagpr-3.pdf
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Simulation and Necessity?

Mat hematical “model A” compr ises the conjunction
(a1∧ a2∧ a3

. . .∧ an), where ∧ means “AND”, and the a i denote
the elements (equations, paramet ers, initial conditions, etc)
that constitut e the model.
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Suf ficiency: If model A exhibits the desired target behaviour B ,
then model A is sufficient to obt ain exhibit ed behaviour B :
A ⇒ B

Thus, any model that exhibits the desired behaviour is
suf ficient, and demonstr ates one conjunction of elements (or
one model) under which the behaviour can be simulated.
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Simulation and Necessity?

Mat hematical “model A” compr ises the conjunction
(a1∧ a2∧ a3

. . .∧ an), where ∧ means “AND”, and the a i denote
the elements (equations, paramet ers, initial conditions, etc)
that constitut e the model.

Suf ficiency: If model A exhibits the desired target behaviour B ,
then model A is sufficient to obt ain exhibit ed behaviour B :
A ⇒ B

Thus, any model that exhibits the desired behaviour is
suf ficient, and demonstr ates one conjunction of elements (or
one model) under which the behaviour can be simulated.

But if there are several such models, how can we choose among
them? And what is the set of all such conjunctions (models)?
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Necessity

Necessity : Onl y those models A belonging to the set of
necessar y models N exhibit target behaviour B .

That is, (A ∈ N ) ⇒ B , and (D ∉ N ) ⇒ ⁄ B .
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Necessity

Necessity : Onl y those models A belonging to the set of
necessar y models N exhibit target behaviour B .

That is, (A ∈ N ) ⇒ B , and (D ∉ N ) ⇒ ⁄ B .

A dif ficult challenge: deter mine the set of necessary models, N.

Since each model A = (a1∧ a2∧ a3
. . .∧ an), searching for the set

N of necessary models means searching in a high-dimensional
space, with no guar antee of continuity, and a possible large
number of non-linear inter actions among elements.
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Lac k of Necessity Means ...

For ins tance, if D ⇒ ⁄ B , it does not mean that all elements a i of
model D are inv alid or wrong, only their conjunction, that is,
model D .

It might be only a sing le element that precludes model D
exhibiting behaviour B .

But deter mining whet her this is so and which is the offending
element is a costl y exercise, in gener al, for the simulator.

Without clear knowledge of the boundaries of the set N of
necessar y models, it is difficult to gener alise from simulations.
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Lac k of Necessity Means ...

For ins tance, if D ⇒ ⁄ B , it does not mean that all elements a i of
model D are inv alid or wrong, only their conjunction, that is,
model D .

It might be only a sing le element that precludes model D
exhibiting behaviour B .

But deter mining whet her this is so and which is the offending
element is a costl y exercise, in gener al, for the simulator.

Without clear knowledge of the boundaries of the set N of
necessar y models, it is difficult to gener alise from simulations.

Onl y when the set N of necessary models is known to be small
(such as in the case of DNA str ucture by the time Watson &
Cr ick were searching for it) is it relativel y easy to use simulation
to der ive necessity.
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Formalisation of Validation

Let set P be the possible range of obser ved outputs of the real-
world sys t em.

Let set M be the exhibit ed outputs of the model in any week .

Let set S ⊂ P be the specific, historical output of the real-world
system in any week .

Let set Q be the inter section, if any, between the set M and the
set S , Q ≡ M ∩ S .

We can charact erise the model output in several cases.
(Mankin et al. 197 7).
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Five Cases for Validation

a.
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Five Cases for Validation

a. no inter section between M and S (i.e., Q = ∅ ), then the model is
useless.

b.
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Five Cases for Validation

a. no inter section between M and S (i.e., Q = ∅ ), then the model is
useless.

b. int ersection Q is not null, then the model is useful, to some degree:
will correctl y exhibit some real-world system behaviour s, will not
exhibit other behaviour s, and will exhibit some behaviour s that do
not his t oricall y occur. Bot h incomplet e and inaccurat e.

c.
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Five Cases for Validation

a. no inter section between M and S (i.e., Q = ∅ ), then the model is
useless.

b. int ersection Q is not null, then the model is useful, to some degree:
will correctl y exhibit some real-world system behaviour s, will not
exhibit other behaviour s, and will exhibit some behaviour s that do
not his t oricall y occur. Bot h incomplet e and inaccurat e.

c. If M is a proper subset of S (i.e., M ⊂ S), then all the model’s
behaviour s are cor rect (match historical behaviour s), but the model
doesn’t exhibit all behaviour that historicall y occur s: accur ate but
incomple t e.

d.
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Five Cases for Validation

a. no inter section between M and S (i.e., Q = ∅ ), then the model is
useless.

b. int ersection Q is not null, then the model is useful, to some degree:
will correctl y exhibit some real-world system behaviour s, will not
exhibit other behaviour s, and will exhibit some behaviour s that do
not his t oricall y occur. Bot h incomplet e and inaccurat e.

c. If M is a proper subset of S (i.e., M ⊂ S), then all the model’s
behaviour s are cor rect (match historical behaviour s), but the model
doesn’t exhibit all behaviour that historicall y occur s: accur ate but
incomple t e.

d. If S is a proper subset of M (i.e., S ⊂ M ), then all historical
behaviour is exhibit ed, but will exhibit some behaviour s that do
not his t oricall y occur : complet e but inaccurat e.

e.
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Five Cases for Validation

a. no inter section between M and S (i.e., Q = ∅ ), then the model is
useless.

b. int ersection Q is not null, then the model is useful, to some degree:
will correctl y exhibit some real-world system behaviour s, will not
exhibit other behaviour s, and will exhibit some behaviour s that do
not his t oricall y occur. Bot h incomplet e and inaccurat e.

c. If M is a proper subset of S (i.e., M ⊂ S), then all the model’s
behaviour s are cor rect (match historical behaviour s), but the model
doesn’t exhibit all behaviour that historicall y occur s: accur ate but
incomple t e.

d. If S is a proper subset of M (i.e., S ⊂ M ), then all historical
behaviour is exhibit ed, but will exhibit some behaviour s that do
not his t oricall y occur : complet e but inaccurat e.

e. If the set M is equiv alent to the set S (i.e., M ⇔ S), then (in your
dreams!) the model is complet e and accurat e.
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Or Graphicall y ...

(a)

S

M

(b)

S Q M

(e)

S M Q

(c)

S M Q

(d)

M S Q

Figure 2: Validity relationships (after Haefner (2005)).

a. useless

b. useful, but incomplet e and inaccurat e

c. accurat e but incomplet e

d. complet e but inaccurat e ← possibl y the bes t to aim for

e. complet e and accurat e
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Modelling Goals

One goal: to cons truct and calibrat e the model so that
M ≈ Q ≈ S

i.e., there are ver y few his t oricall y obser ved behaviour s that the
model does not exhibit, and there are ver y few exhibit ed
behaviour s that do not occur historicall y.

The model is close to being both complet e and accurat e.
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Modelling Goals

One goal: to cons truct and calibrat e the model so that
M ≈ Q ≈ S

i.e., there are ver y few his t oricall y obser ved behaviour s that the
model does not exhibit, and there are ver y few exhibit ed
behaviour s that do not occur historicall y.

The model is close to being both complet e and accurat e.

In practice, a modeller might be happier to achieve case d.,
where the model is complet e (and hence provides sufficiency
for all observed his t orical phenomena), but not accur ate.

Case d. allows for the model to descr ibe as-yet-unobser ved
his t orical behaviour in the future.
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Measures of Validity

A measure of validity which balances the Type I error of
inaccur acy wit h the Type II error of incomplet eness.

Define a metric m() (a ratio scale) on the sets.

Define inaccuracy α as

(1)α ≡ 1 −
m(Q)

m(M)
,

and incomple t eness γ as

(2)γ ≡ 1 −
m(Q)

m(S)
.
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Continued ...

A measure of deg ree of validation V : a weight ed av erage of
inaccur acy α and incomplet eness γ:

(3)V ≡ w (1 −α) + (1 −w )(1 − γ)

∴ V = w
m(Q)

m(M)
+ (1 −w )

m(Q)

m(S)

(4)∴ V = m(Q)



w

m(M)
+

1 −w

m(S)




The value of the weight w , 0 ≤w ≤ 1, reflects the tradeof f
between accuracy and complet eness.
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Tr ade-of fs

Possible to reduce incompleteness by gener alising the model and
so expanding the domain of set M until S is a proper subset of
M , as in case d.

Or by nar rowing the scope of the historical behaviour to be
modelled, so reducing the domain of S .
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Tr ade-of fs

Possible to reduce incompleteness by gener alising the model and
so expanding the domain of set M until S is a proper subset of
M , as in case d.

Or by nar rowing the scope of the historical behaviour to be
modelled, so reducing the domain of S .

Also be possible to reduce inaccuracy by res tricting the model
through use of narrower assumptions and so contracting the
domain of M .

If M is sufficientl y small to be a proper subset of S , as in case
c., then the model will never exhibit anhistorical behaviour.
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Tr ade-of fs

Possible to reduce incompleteness by gener alising the model and
so expanding the domain of set M until S is a proper subset of
M , as in case d.

Or by nar rowing the scope of the historical behaviour to be
modelled, so reducing the domain of S .

Also be possible to reduce inaccuracy by res tricting the model
through use of narrower assumptions and so contracting the
domain of M .

If M is sufficientl y small to be a proper subset of S , as in case
c., then the model will never exhibit anhistorical behaviour.

But not guar anteed to maint ain a non-null inter section Q , and it
is possible that the process results in case a., with no
int ersection.
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Look in the Right Place

Reminiscent of the economist looking for his lost car key s under
the street light (M ), instead of near the car where he dropped
them in the dark (S).

Advocat es of simulated solutions, such as Judd (2006), have
argued that it is better to “have an approximat e answer to the
right ques tion, than an exact answer to the wrong ques tion,” to
quot e Tukey (1962).
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