Maths Revision

From the document, "MBA Maths Unit 3 Functions \mathcal{E} Interests (sic)" pages 46/47: Functions — Quadratics.

A quadratic function constains a variable squared:

$$
y=a x^{2}+b x+c
$$

The (single) maximum or minimum of y always occurs at:

$$
x=-\frac{b}{2 \boldsymbol{a}}
$$

We can see this by differentiating $y: \frac{d y}{d x}=2 a x+b$, which is zero to maximize y, at $x^{*}=-b / 2 a$.

Whether y is a maximum or minimum depends on the sign of the coefficient a:
when a is positive, y is a minimum, when a is negative, y is a maximum, and when a is zero, y is a linear function in x.

Let's find the profit-maximizing values in L5.
p. 5 Von Stackelberg: Reaction Function
$\pi_{C}=\left(10-\left(Q_{S}+Q_{C}\right)\right) \times Q_{C}-3 Q_{C}$
$\therefore \pi_{c}=-Q_{C}^{2}+\left(7-Q_{S}\right) \times Q_{C}+10$ is a quadratic in Q_{C},
with $a=-1, b=\left(7-Q_{S}\right)$, and $c=10$.
$\therefore \pi_{C} \max$ at $Q_{C}^{*}=-\frac{b}{2 a}=\frac{7-Q_{S}}{2}$

Let's find the profit-maximizing values in L5.
p. 5 Von Stackelberg: Reaction Function
$\pi_{C}=\left(10-\left(Q_{S}+Q_{C}\right)\right) \times Q_{C}-3 Q_{C}$
$\therefore \pi_{C}=-Q_{C}^{2}+\left(7-Q_{S}\right) \times Q_{C}+10$ is a quadratic in Q_{C},
with $a=-1, b=\left(7-Q_{S}\right)$, and $c=10$.
$\therefore \pi_{C} \max$ at $Q_{C}^{*}=-\frac{b}{2 a}=\frac{7-Q_{S}}{2}$

p. 6 Von Stackelberg: Solution

$\pi_{S}=-\frac{1}{2} Q_{S}^{2}+3 \frac{1}{2} Q_{S}$ is a quadratic in Q_{S},
with $a=-1 / 2, b=31 / 2$, and $c=0$.
$\therefore \pi_{S} \max$ at $Q_{S}^{*}=-\frac{b}{2 a}=3 \frac{1}{2}$.

Let's find the profit-maximizing values in L5.
p. 5 Von Stackelberg: Reaction Function
$\pi_{C}=\left(10-\left(Q_{S}+Q_{C}\right)\right) \times Q_{C}-3 Q_{C}$
$\therefore \pi_{C}=-Q_{C}^{2}+\left(7-Q_{S}\right) \times Q_{C}+10$ is a quadratic in Q_{C},
with $a=-1, b=\left(7-Q_{S}\right)$, and $c=10$.
$\therefore \pi_{c} \max$ at $Q_{C}^{*}=-\frac{b}{2 a}=\frac{7-Q_{S}}{2}$

p. 6 Von Stackelberg: Solution

$\pi_{S}=-\frac{1}{2} Q_{S}^{2}+3 \frac{1}{2} Q_{S}$ is a quadratic in Q_{S},
with $a=-1 / 2, b=31 / 2$, and $c=0$.
$\therefore \pi_{S} \max$ at $Q_{S}^{*}=-\frac{b}{2 a}=3 \frac{1}{2}$.
p. 8 Monopolist: Solution
$\pi_{M}=P_{M} Q_{M}-3 Q_{M}=Q_{M}^{2}+7 Q_{M}$ is a quadratic in Q_{M},
with $a=-1, b=7$, and $c=0$.
$\therefore \pi_{M}$ is max at $Q_{M}^{*}=7 / 2$.

p.II Cournot: Reaction Function

$\pi_{S}=\left(10-\boldsymbol{Q}_{\boldsymbol{C}}-\boldsymbol{Q}_{S}\right) \times \boldsymbol{Q}_{\mathbf{S}}-3 \boldsymbol{Q}_{S}$
$\pi_{S}=-\boldsymbol{Q}_{S}^{2}+\left(7-\boldsymbol{Q}_{C}\right) \boldsymbol{Q}_{S}$ is a quadratic in \boldsymbol{Q}_{S},
with $a=-1, b=7-Q_{C}$, and $c=0$.
$\therefore \pi_{S}$ is a max at $Q_{S}^{*}=\frac{7-Q_{C}}{2}$.
p.II Cournot: Reaction Function
$\pi_{S}=\left(10-\boldsymbol{Q}_{\boldsymbol{C}}-\boldsymbol{Q}_{S}\right) \times \boldsymbol{Q}_{S}-3 \boldsymbol{Q}_{S}$
$\pi_{S}=-Q_{S}^{2}+\left(7-Q_{C}\right) Q_{S}$ is a quadratic in Q_{S},
with $a=-1, b=7-Q_{C}$, and $c=0$.
$\therefore \pi_{S}$ is a max at $Q_{S}^{*}=\frac{7-Q_{C}}{2}$.
p. 15 Imperfect Bertrand: Solution
$\pi_{p}=-P_{p}^{2}+\left(\mathbf{3 0}+\frac{1}{2} P_{d}\right) \times P_{p}-144-3 P_{d}$ is a quadratic in P_{p},
with $a=-1, b=30+\frac{1}{2} P_{d}$, and $c=-144-3 P_{d}$
$\therefore \pi_{p}$ is max at $P_{p}^{*}=15+\frac{1}{4} P_{d}$
p.II Cournot: Reaction Function
$\pi_{s}=\left(10-Q_{C}-Q_{S}\right) \times Q_{S}-3 Q_{S}$
$\pi_{S}=-Q_{S}^{2}+\left(7-Q_{C}\right) Q_{S}$ is a quadratic in Q_{S},
with $a=-1, b=7-Q_{C}$, and $c=0$.
$\therefore \pi_{S}$ is a max at $Q_{S}^{*}=\frac{7-Q_{C}}{2}$.
p. 15 Imperfect Bertrand: Solution
$\pi_{p}=-P_{p}^{2}+\left(30+\frac{1}{2} P_{d}\right) \times P_{p}-144-3 P_{d}$ is a quadratic in P_{p},
with $a=-1, b=30+\frac{1}{2} P_{d}$, and $c=-144-3 P_{d}$
$\therefore \pi_{p}$ is max at $P_{p}^{*}=15+\frac{1}{4} P_{d}$
p. 26 Monopolistic Cartel: Solution
$\pi_{M}=\left(10-Q_{M}\right) \times Q_{M}-1 \times Q_{M}=-Q_{M}^{2}+9 Q_{M}$ is a quadratic in Q_{M},
with $a=-1, b=9$, and $c=0$.
$\therefore \pi_{M}$ is max at $Q_{M}^{*}=9 / 2=4 \frac{1}{2}$.
p. 27 Cournot: Reaction Function
$\pi_{2}=\left(10-y_{2}-y_{1}^{e}\right) \times y_{2}-1 \times y_{2}$
$\pi_{2}=-y_{2}^{2}+\left(9-y_{1}^{e}\right) \times y_{2}$ is a quadratic in y_{2},
with $a=-1, b=9-y_{1}^{e}$, and $c=0$.
$\therefore \pi_{2}$ is max at $y_{2}^{*}=\frac{1}{2}\left(9-y_{1}^{e}\right)$.
p. 27 Cournot: Reaction Function
$\pi_{2}=\left(10-y_{2}-y_{1}^{e}\right) \times y_{2}-1 \times y_{2}$
$\pi_{2}=-y_{2}^{2}+\left(9-y_{1}^{e}\right) \times y_{2}$ is a quadratic in y_{2},
with $a=-1, b=9-y_{1}^{e}$, and $c=0$.
$\therefore \pi_{2}$ is max at $y_{2}^{*}=\frac{1}{2}\left(9-y_{1}^{e}\right)$.
p. 28 Von Stackelberg: Solution
$\pi_{1}=\left(10-y_{2}-y_{1}\right) \times y_{1}-1 \times y_{1}$
$\pi_{1}=\left(10-\frac{1}{2}\left(9-y_{1}\right)-y_{1}\right) \times y_{1}-y_{1}$
$\pi_{1}=10 y_{1}-\frac{9}{2} y_{1}+\frac{1}{2} y_{1}^{2}-y_{1}^{2}-y_{1}$
$\therefore \pi_{1}=4 \frac{1}{2} y_{1}-\frac{1}{2} y_{1}^{2}$ is a quadratic in y_{1},
with $a=-1 / 2, b=4 \frac{1}{2}$, and $c=0$.
$\therefore \pi_{1}$ is max at $y_{1}^{*}=41 / 2$.

The Economics of Profit-Maximizing

The profit-maximizing firm will continue increasing its rate of output until the revenue associated with selling another unit of output is equal to or less than the cost of producing that output, assuming rising costs.

The Economics of Profit-Maximizing

The profit-maximizing firm will continue increasing its rate of output until the revenue associated with selling another unit of output is equal to or less than the cost of producing that output, assuming rising costs.

These two measures are called the "Marginal Revenue" and the "Marginal Cost", respectively.

The Economics of Profit-Maximizing

The profit-maximizing firm will continue increasing its rate of output until the revenue associated with selling another unit of output is equal to or less than the cost of producing that output, assuming rising costs.

These two measures are called the "Marginal Revenue" and the "Marginal Cost", respectively.

The difference between Marginal Revenue and Marginal Cost is the Marginal Profit associated with the last unit of output produced and sold.

The Economics of Profit-Maximizing

The profit-maximizing firm will continue increasing its rate of output until the revenue associated with selling another unit of output is equal to or less than the cost of producing that output, assuming rising costs.

These two measures are called the "Marginal Revenue" and the "Marginal Cost", respectively.

The difference between Marginal Revenue and Marginal Cost is the Marginal Profit associated with the last unit of output produced and sold.
In algebra: $M \pi=M R-M C$, where all three are functions of the level of output Q (amongst other things, such as the demand curve, or the going market price P).

With rising costs, profit is maximized when Marginal Profit is no longer positive: when Total Profit no longer rises with the rate of production.

With rising costs, profit is maximized when Marginal Profit is no longer positive: when Total Profit no longer rises with the rate of production.

Or, when $M \pi=M R-M C=0$.

With rising costs, profit is maximized when Marginal Profit is no longer positive: when Total Profit no longer rises with the rate of production.

Or, when $M \pi=M R-M C=0$.
If we have functions for $M R$ and MC in terms of output Q, then we can determine the profit-maximizing level of output Q^{*} 。

With rising costs, profit is maximized when Marginal Profit is no longer positive: when Total Profit no longer rises with the rate of production.

Or, when $M \pi=M R-M C=0$.
If we have functions for $M R$ and $M C$ in terms of output Q, then we can determine the profit-maximizing level of output Q^{*} 。

Marginal Revenue and Cost are just the derivatives of Total Revenue and Total Cost with respect to output \boldsymbol{Q}.

With rising costs, profit is maximized when Marginal Profit is no longer positive: when Total Profit no longer rises with the rate of production.
Or, when $M \pi=M R-M C=0$.
If we have functions for MR and MC in terms of output Q, then we can determine the profit-maximizing level of output Q^{*}.

Marginal Revenue and Cost are just the derivatives of Total Revenue and Total Cost with respect to output \boldsymbol{Q}.
$T \boldsymbol{R}$ is just $P \times Q$. With a linear demand curve (say
$P=10-Q$), and a firm with some market power (which means can set its own price, subject to demand), MR can be calculated:
$T R=P \times Q=(10-Q) \times Q=10 Q-Q^{2}$.

Differentiating with respect to output Q :
$\frac{d T R}{d Q}=M R[Q]=10-2 Q$

Differentiating with respect to output Q :
$\frac{d T R}{d Q}=M R[Q]=10-2 Q$
Let's say that it costs a constant amount (say, \$3) to produce and sell a unit of output. Then $T C=3 Q$, and $M C=3$.

Differentiating with respect to output Q :
$\frac{d T R}{d Q}=M R[Q]=10-2 Q$
Let's say that it costs a constant amount (say, \$3) to produce and sell a unit of output. Then $T C=3 Q$, and $M C=3$.

For this firm, choosing Q^{*} to equate $M R$ and $M C$ will result in the higest profit:
solve: $10-2 Q=3$ to get $Q^{*}=31 / 2$.

Differentiating with respect to output Q :
$\frac{d T R}{d Q}=M R[Q]=10-2 Q$
Let's say that it costs a constant amount (say, \$3) to produce and sell a unit of output. Then $T C=3 Q$, and $M C=3$.

For this firm, choosing Q^{*} to equate $M R$ and $M C$ will result in the higest profit:
solve: $10-2 Q=3$ to get $Q^{*}=31 / 2$.
From the demand function, with $Q^{*}=31 / 2$, the price P will be $\$ 6.50$: the higher the output, the lower the price to sell all units.

Profit-Maximizing, Graphically

We can plot the MC = \$3/unit line and the demand line $P=10-Q$. We can identify the Monopolist's price \mathcal{E} quantity $\left(P_{M}, Q_{M}\right)$ and the price-taker's price \mathcal{E} quantity $\left(P_{C}, Q_{C}\right)$.

Profit-Maximizing, Graphically

We can plot the MC = \$3/unit line and the demand line $P=10-Q$. We can identify the Monopolist's price \mathcal{E} quantity $\left(P_{M}, Q_{M}\right)$ and the price-taker's price \mathcal{E} quantity $\left(P_{C}, Q_{C}\right)$.

Monopolists's
$T R=P_{M} \times Q_{M}=\left(10-Q_{M}\right) \times Q_{M}=10 Q_{M}-Q_{M}^{2}$

Profit-Maximizing, Graphically

We can plot the MC = \$3/unit line and the demand line $P=10-Q$. We can identify the Monopolist's price \mathcal{E} quantity $\left(P_{M}, Q_{M}\right)$ and the price-taker's price \mathcal{E} quantity $\left(P_{C}, Q_{C}\right)$.

Monopolists's
$T R=P_{M} \times Q_{M}=\left(10-Q_{M}\right) \times Q_{M}=10 Q_{M}-Q_{M}^{2}$
Differentiating TR, we get
$M R=\frac{d T R}{d Q_{M}}=10-2 Q_{M}$, which is exactly twice as steep as the demand line, as shown below.

Profit-Maximizing, Graphically

We can plot the MC = \$3/unit line and the demand line $P=10-Q$. We can identify the Monopolist's price \mathcal{E} quantity $\left(P_{M}, Q_{M}\right)$ and the price-taker's price \mathcal{E} quantity $\left(P_{C}, Q_{C}\right)$.
Monopolists's
$T R=P_{M} \times Q_{M}=\left(10-Q_{M}\right) \times Q_{M}=10 Q_{M}-Q_{M}^{2}$
Differentiating $T R$, we get
$M R=\frac{d T R}{d Q_{M}}=10-2 Q_{M}$, which is exactly twice as steep as the demand line, as shown below.
From above, profit-maximizing monopolistic output Q_{M}^{*} occurs when $M R=M C$, but here $M C=\$ 3$.
So Q_{M}^{*} from $10-2 Q_{M}^{*}=3$, or $Q_{M}^{*}=3 \frac{1}{2}$.

Profit-Maximizing, Graphically

We can plot the MC = \$3/unit line and the demand line $P=10-Q$. We can identify the Monopolist's price \mathcal{E} quantity $\left(P_{M}, Q_{M}\right)$ and the price-taker's price \mathcal{E} quantity $\left(P_{C}, Q_{C}\right)$.

Monopolists's
$T R=P_{M} \times Q_{M}=\left(10-Q_{M}\right) \times Q_{M}=10 Q_{M}-Q_{M}^{2}$
Differentiating $T R$, we get
$M R=\frac{d T R}{d Q_{M}}=10-2 Q_{M}$, which is exactly twice as steep as the demand line, as shown below.
From above, profit-maximizing monopolistic output Q_{M}^{*} occurs when $M R=M C$, but here $M C=\$ 3$. So Q_{M}^{*} from $10-2 Q_{M}^{*}=3$, or $Q_{M}^{*}=3 \frac{1}{2}$.
The diagram shows that the output $Q_{M}^{*}=31 / 2$ occurs where the red downwards-sloping MR line cuts the MC = \$3 line, and reading up to the demand line gives $P_{M}^{*}=\$ 6.50$.

If the firm is behaving as a price-taker, then its Marginal Revenue is just the going price P.
So it chooses its output where its Marginal Revenue = \$3, the Marginal Cost.

The Marginal Cost = \$3/unit is in effect the market Supply curve.

The market quantity is $Q_{C}=7$, at $P_{C}=\$ 3 /$ unit, where Demand = the horizontal green Supply line, as shown above.

