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We can use three str ategic game-t heoretic models:
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2. Cour not simult aneous quantity competition

3. Ber trand simultaneous price competition

Plus:

4. Strategic Complements and Substitut es

5. Benchmarking market performance.
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Model: Leader (Spring) produces quantity QS of bottled
water, and

Follower (Cr yst al) produces QC of identical
water: a homogeneous good.

• market demand → pr ice P (i.e. equal for both)

P = 10 − (QS + QC ), QS + QC ≤ 10.

• common knowledge: Spring sets its production level
before Cryst al does

• each firm’s production level: common knowledge

• order of play & output choices: common knowledge

• no capacity constr aints
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πS [QS ,QC ] = (10 − QS − QC ) ×QS − 3QS

• zero output → zero profit

• The follower (Cr yst al) has a similar profit πC .

Ques tions:

• What should the Leader (Spring) do?
Depends on how the Leader think s the Follower
(Cr yst al) will react.

Spr ing should: Look for ward and reason back.

• for every fixed level of output for Spring QS , what is
the bes t (profit-maximising) level that Crys tal can do?
What is the Follower’s reaction function?
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Spring

0 10

Crystal

0 10 − QS

Q *
C [QS ]

QS

Cour not Rivalr y Game Tree

(Quant. ➩ Cour not,
Pr ice ➩ Ber trand.)
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TRC = (10 − QS − QC ) × QC = 10QC − QSQC − Q2
C

∴ MRC = 10 − QS − 2Q *
C = MCC = 3

→ Q *
C = RC [QS ] = 7 − QS

2
,

the profit-maximising output Q *
C of Follower (Cr yst al) is a

function of the Leader’s choice QS

• This function is known as the reaction function, since it tells
us how the Follower will react to the Leader’s choice (of
output in this case, but it could be price).
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dQS
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dQS

= 3 1
2

−Q *
S = 0

∴ πS is max when Q *
S = 3.5, Q *

C = 1.75, ∴ Q = 5.25,

wit h π*
S = $6.125 and P =$4.75/unit

and π*
C = $3.06
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First-Mover Adv antage:

• So Spring’s first-mo ver advant age is the difference
between Spring’s profit πS and Crys tal’s profit πC :

$6.125 − $3.06 = $3.06

• leader ship — first mov er

• leader ship — innovator, monopolis t, faced with threat
of entry

• incumbent erects barrier s to entr y by new-comer

• long-t erm contr acts reduce incumbent’s flexibility and
increase the credibility of defence
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What Would A Monopolist’s Outcomes Be?

• The monopolist quantity in this case is

QM = 3.5, with PM = $6.50/unit

and profit πM = 6.5 × 3.5 − 3 × 3.5 = $12.25

(R emember that a monopolist chooses output QM to
equat e Marginal Revenue with Marginal Cost, or
10 − 2QM = 3.)

This means that the Leader could become the
Monopolis t by paying the Follower not to ent er the
market, and offering him his (Follower’s) profit of
$3.06 (= πC ) not to, and still be ahead by:
$12.25 − 3.06 − 6.125 = $3.06.

I.e., πM − πC − πS = $3.06
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Crystal’s reaction function:

i.e. as QS rises, Q *
C falls, & vice versa: strategic substitutes.
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2. Simultaneous Cournot Quantity.

How much will each firm produce if they mov e
simult aneously?

Each needs to:

1. make a conjecture or belief about how muc h the other
fir m will produce — will it be high, with a low er
indus try price? Or vice ver sa?

2. then deter mine its own quantity to produce —
balancing the gain from selling more units agains t the
sacr ifice of a lower price.

There will be an industr y-wide equilibr ium when both firms
resol ve this balance.
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Fr om Spr ing’s point of view, what should QS be?

• “If Crys tal produces QC , then I, Spring, should max my
profit πS :

πS = (10 − QC − QS ) ×QS − 3QS

• which is maximised at

Q *
S = 1

2
(10 − 3 − QC ) = 1

2
(7 − QC ) ”

So Q *
S is Spring’s bes t response to Cryst al’s quantity

choice of QC , or Q *
S = RS [QC ].

• If QC equals 7 units, then Spring should produce zero.

Symmetr ically, Cryst al’s bes t response RC [QS ] to a
conjectured production level of QS from Spring should be:

Q *
C = 1

2
(7 − QS )
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0
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3
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7

8

RC [QS ]

RS [QC ]

• N.E.

The Two Best-Reponse Curves: Cournot
Strategic substitutes: higher Q1 ☞ lower Q2
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(Nash) Equilibr ium.

There is a unique pair of quantities at which the two

reaction functions cross: (Q *
S , Q *

C ).

Hence at this point:

RC [Q *
S ] = Q *

C = 2 1
3

and

RS [Q *
C ] = Q *

S = 2 1
3

This is a so-called Cour not N.E., where each player’s
conjecture is consis t ent wit h the other ’s actual production,
and neither has any incentive to alt er production. Their
beliefs are fulfilled.

Pr ice/unit = $5 1
3
, profit of each = $5.44
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3. Simultaneous Price (Bertr and) Competition,
Imper fect Substitut es.

Two pizzer ias — Donna’s Deep Dish and Perce ’s Pizza Pies —
simult aneously compet e in a small town.

When Donna’s price is Pd and Perce ’s price is Pp , then their
sales Qd and Qp (hundreds per week) are:

Qd = 24 − Pd + 1
2

Pp

Qp = 24 − Pp + 1
2

Pd

The two brands of pizza are (imper fect) subs titutes:
if the price of one rises, sales of the other go up:
half the discouraged buyer s switch to the other pizza and
half move to some other kind of food (Big Macs?)

It costs $6 to make each pizza.
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Perce sets his price Pp to maximise his profits:

πp = (Pp − 6) ×Qp = (Pp − 6) × (24 − Pp + 1
2
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Perce sets his price Pp to maximise his profits:

πp = (Pp − 6) ×Qp = (Pp − 6) × (24 − Pp + 1
2

Pd )

Perce’s bes t pr ice Pp for each level of his conjecture about Donna’s
pr ice Pd will give his best response.
Expanding Perce ’s profit function:

πp = − 144 − 3Pd + (30 + 1
2

Pd ) × Pp − P 2
p

Dif f. w. r. to Pp (holding Donna’s price Pd cons tant):

dπp

dPp

= 30 + 1
2

Pd − 2 Pp .

The first-order condition for Pp to max πp :
dπp

dPp
= 0.

∴ Perce’s bes t-response curve Rp [Pd ] is:

Pp = 15 + ¼ Pd

∴ if Donna’s price is $32/unit, then Perce ’s bes t pr ice is $23/unit.

Symmetr ically, Donna’s bes t-response curve Rd [Pp ] is:

Pd = 15 + ¼ Pp
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•N.E.

•Jπ

The Two Best-R esponse Cur ves (R eaction Functions): Bertrand

(Strategic complements:, as Pp rises, so does Pd .)
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The two reaction curves int ersect at the N.E. of the shops’
pr icing game, at Pd = Pp = $20/unit.

Then each shop sells 1400 pizzas a week, at a profit per shop
of $19,600 per week .

The best-response reaction curves slope up: when one shop
raises its price by $1, then its riv al should increase its price
by 25¢: when the first shop raised its price, then some of its
cus t omers switched to its riv al, which could then best profit
from the new cus t omers by raising its price somewhat.

∴ a shop that increases its price is helping increase the
profits of its riv al, but this side-effect is uncaptured (and so
ignored) by each shop independently.
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profits: if they each charged, say, $24/unit, then each would
sell 1200 pizzas, for a profit of $21,600.

But if Pd = $24/unit, then Perce ’s bes t response would be
$21/unit, to which Donna would respond with $20.25/unit,
etc., etc, until they converge to the N.E. prices of $20/unit.

What is best for them jointly?

Let Pd = Pp = P (t hey bot h charge P , because the market
demands are symmetr ic) and π is maximised when P =
$27/unit ; at which price each sells 1050 pizzas, at a profit of
$22,050 per shop.

Shown as Jπ on the figure above.

No te: if the market demands were not symmetr ic, then it
would be wrong to charge the same price P for bot h pizzas.
Need to choose the two prices to max π = πd +πp .
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Whic h form of compe tition: Cour not (quantity) or Bertrand
(price)?

What sort of indus tries compet e using quantity and what sort by
pr ice? Can they choose?

Cour not: Changing prices can be costl y, but so can changing the
flow of production to increase or cut back the quantity of good
flowing to the market.

Cour not applies to markets in which firms must make production
decisions in advance and face high costs for holding invent ories:
pr ice will adjust more quic kly than quantity, and each firm will set
a price that sells all that it produces.

Such a firm will not expect to steal customer s by low ering its
pr ice, since its riv als will immediatel y match any price change, so
that their sales equal their planned production volumes. Hence
there is less competition than Betrand.
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sett ers given the capacities chosen earlier, then the result is
identical to Cour not quantity competition.

Examples?
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When firms choose capacity first, and then compet e as price
sett ers given the capacities chosen earlier, then the result is
identical to Cour not quantity competition.

Examples?

Ber trand: When capacity is sufficientl y fle xible to allow them to
adjus t production to meet all the demand for their product at any
pr ice they announce, then Ber trand pr ice competition results.
With per fect substitut es, fir ms will attempt to steal customer s by
pr ice cutting down to marginal cost.

Examples?
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4. Str ategic Complements and Substitut es

Compare the reaction functions in the Cournot (quantity)
game between the wat er seller s and those in the Bertr and
(pr ice) game between the pizzerias.
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Compare the reaction functions in the Cournot (quantity)
game between the wat er seller s and those in the Bertr and
(pr ice) game between the pizzerias.

In the Cournot model the reaction functions were
downwards sloping,
and in the Bertr and model they were upw ards sloping.

Strategic complements:

in gener al, when reaction functions (best-response curves)
are upwards sloping, then we say that the firms ’ actions
(here, pizza prices) are strategic complements.
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Compare the reaction functions in the Cournot (quantity)
game between the wat er seller s and those in the Bertr and
(pr ice) game between the pizzerias.

In the Cournot model the reaction functions were
downwards sloping,
and in the Bertr and model they were upw ards sloping.

Strategic complements:

in gener al, when reaction functions (best-response curves)
are upwards sloping, then we say that the firms ’ actions
(here, pizza prices) are strategic complements.

Strategic substitut es:

in gener al, when reaction functions are do wnwards sloping,
then we say that the firms ’ actions (here, wat er quantities)
are strategic substitut es.
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Meaning?

When actions are strategic complements, then an increase by
one firm will elicit an increase by the other, & v.v.
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So What?

How will a firm expect its riv als to react to its tactical
manœuvres?

•
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So What?

How will a firm expect its riv als to react to its tactical
manœuvres?

• When actions are str ategic complements, then increased
agg ression will elicit increased aggression in the riv al:
(Ber trand)

e.g. pizza prices: a competit or’s price cut (an aggressive
move) will best be responded to by a price cut (also an
agg ressive mov e), since the reaction functions are
upw ards sloping.

• When actions are str ategic substitut es, then increased
agg ression will result in lessened aggression in the riv al:
(Cour not)

e.g. wat er quantities: a competit or’s quantity increase
(agg ressive) will best be responded to by a quantity cut (a
sof t response), since the reaction functions are
downwards sloping.

Compare the Cournot and Bertr and duopol y profits below.
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5. Benchmarking Oligopoly Behaviour
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5. Benchmarking Oligopoly Behaviour

Two companies produce homogeneous output.

Linear industr y demand curve of P = 10 − Q ,
where Q is the sum of the two companies ’ outputs,
Q = y1 + y2.

Both companies have identical costs, AC = MC = $1/unit.
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Two companies produce homogeneous output.

Linear industr y demand curve of P = 10 − Q ,
where Q is the sum of the two companies ’ outputs,
Q = y1 + y2.

Both companies have identical costs, AC = MC = $1/unit.

Five possibilities for the equilibr ium levels of prices, outputs,
and profits:

1. Competitive Price Taking

2. Monopolis tic Car tel

3. Cour not Oligopolis ts

4. von Stackelberg Quantity Leadership

5. Ber trand Simultaneous Price Setting.

6. Compar ison Tables and Figures.
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1 Competitive Price Taking

Each setting price equal to marginal cost.

So: Price PPC = $1/unit,
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1 Competitive Price Taking

Each setting price equal to marginal cost.

So: Price PPC = $1/unit,
the tot al quantity Q = 9 units between them,
and each produces output y1 = y2 = 4.5 units.

Since PPC = AC , their profits are zero: π1 = π2 = 0.
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2 Monopolis tic Car tel

Collude and act as a monopolistic car tel.

Each produces half of the monopolist’s output and receives
half the monopolist’s profit.
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< >



Lecture 5 UNSW © 2009 Page 26

2 Monopolis tic Car tel

Collude and act as a monopolistic car tel.

Each produces half of the monopolist’s output and receives
half the monopolist’s profit.

Output QM such that MR [QM ] = MC = $1/unit.

The MR cur ve is given by MR = 10 − 2Q , which results in:

QM = 4.5 units,
PM = $5.5/unit, and
πM = (5.5 − 1)×4.5 = $20.25.
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2 Monopolis tic Car tel

Collude and act as a monopolistic car tel.

Each produces half of the monopolist’s output and receives
half the monopolist’s profit.

Output QM such that MR [QM ] = MC = $1/unit.

The MR cur ve is given by MR = 10 − 2Q , which results in:

QM = 4.5 units,
PM = $5.5/unit, and
πM = (5.5 − 1)×4.5 = $20.25.

Each produces output y1 = y2 = 2.25 units, and
ear ns π1 = π2 = $10.1 25 profit.
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3 Cour not Oligopolis ts

Each chooses its output to maximise its profit, assuming that the
ot her is doing likewise: not colluding, but competing. They choose
simult aneously.
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expect ations of each are fulfilled.
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simult aneously.

Cour not N.E. occurs where their reaction curves int ersect and the
expect ations of each are fulfilled.

Firm 1 det ermines Fir m 2’s reaction function: “If I were Fir m 2, I’d

choose my output y *
2 to maximise my Fir m 2 profit conditional on

the expect ation that Fir m 1 produced output of y e
1 .”

y2

max π2 = (10 − y2 − y e
1 ) × y2 − y2
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(9 − y e
1 ), which is Fir m 2’s reaction function, given its

conjecture y e
1 of Fir m 1’s behaviour.
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2 to maximise my Fir m 2 profit conditional on

the expect ation that Fir m 1 produced output of y e
1 .”

y2

max π2 = (10 − y2 − y e
1 ) × y2 − y2

Thus y2 = 1
2

(9 − y e
1 ), which is Fir m 2’s reaction function, given its

conjecture y e
1 of Fir m 1’s behaviour.

Since the two firms are identical, Cournot equilibr ium occur s

where the two reaction curves int ersect, at y *
1 = y e

1 = y *
2 = y e

2 = 3
units.

< >



Lecture 5 UNSW © 2009 Page 27

3 Cour not Oligopolis ts

Each chooses its output to maximise its profit, assuming that the
ot her is doing likewise: not colluding, but competing. They choose
simult aneously.

Cour not N.E. occurs where their reaction curves int ersect and the
expect ations of each are fulfilled.

Firm 1 det ermines Fir m 2’s reaction function: “If I were Fir m 2, I’d

choose my output y *
2 to maximise my Fir m 2 profit conditional on

the expect ation that Fir m 1 produced output of y e
1 .”

y2

max π2 = (10 − y2 − y e
1 ) × y2 − y2

Thus y2 = 1
2

(9 − y e
1 ), which is Fir m 2’s reaction function, given its

conjecture y e
1 of Fir m 1’s behaviour.

Since the two firms are identical, Cournot equilibr ium occur s

where the two reaction curves int ersect, at y *
1 = y e

1 = y *
2 = y e

2 = 3
units.

So QCo = 6 units, price PCo is then $4/unit, and the profit of each
fir m is $9.
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4 von Stackelberg Quantity Leadership

What if Fir m 1 gets to choose its output level y1 fir st?
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What if Fir m 1 gets to choose its output level y1 fir st?

It realises that Fir m 2 will know Fir m 1’s output level when
Firm 2 chooses its level: see Fir m 2’s reaction function from
3. above, but with the actual, not the expect ed, level of Fir m
1’s output, y1.
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1’s output, y1.
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where Fir m 2’s output y2 is given by Fir m 2’s reaction
function: y2 = 1

2
(9 − y1).

Subs tituting this into Fir m 1’s maximisation problem:

y *
1 = 4.5 units, and so y *

2 = 2.25 units, so that QSt = 6.75
units and PSt = $3.25/unit.
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What if Fir m 1 gets to choose its output level y1 fir st?

It realises that Fir m 2 will know Fir m 1’s output level when
Firm 2 chooses its level: see Fir m 2’s reaction function from
3. above, but with the actual, not the expect ed, level of Fir m
1’s output, y1.

So Fir m 1 chooses y *
1 to maximise its profit :

y1

max π1 = (10 − y2 − y1) × y1 − y1,

where Fir m 2’s output y2 is given by Fir m 2’s reaction
function: y2 = 1

2
(9 − y1).

Subs tituting this into Fir m 1’s maximisation problem:

y *
1 = 4.5 units, and so y *

2 = 2.25 units, so that QSt = 6.75
units and PSt = $3.25/unit.

Profits are π1 = $10.1 25 (the same as in the cartel case 2.
above) and π2 = $5.063 (half the cartel profit).
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5 Ber trand Simultaneous Price Setting.

Remember : Equilibr ium means there is no incentive for either
fir m to undercut the other.
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5 Ber trand Simultaneous Price Setting.

Remember : Equilibr ium means there is no incentive for either
fir m to undercut the other.

The only equilibr ium when they compet e using price is
where each is selling at P1 = P2 = MC1 = MC2 = $1/unit.

Identical to the price-t aking case above.

No te: Were MC1 great er than MC2, then Fir m 2 would
capture the whole market at a price just below MC1, and
would make a positive profit ; and y1 = 0.
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6 Compar ing the Five Market Types

Output Profit Output Profit Price Quantity

Market y1 π1 y2 π2 P Q = y1 + y2

1 Price-t aking 4.5 0 4.5 0 1 9

2 Car tel 2.25 10.1 25 2.25 10.125 5.5 4.5

3 Cour not 3 9 3  9 4 6

4 von Stackelberg 4.5 10.1 25 2.25 5.063 3.25 6.75

5 Ber trand 4.5 0 4.5 0 1 9

Summar y of Outcomes.
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•von Stackelberg (6.75, $3.25)
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y1 = y2

•Price-taking & Bertrand

•Cartel

•Cournot
•von Stackelberg
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Profit π1

P
ro

fi
t
π

2

0 2 4 6 8 10 12
0

2

4

6

8

10

12
π1 = π2

•Price-taking & Bertrand

•Monopoly Cartel
•Cournot

•von Stackelberg
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