Added Value in Trade

Price formation through negotiations in two agent trade

Two Player Transactions

- Buyer-Seller Exchange (Bilateral Monopoly)
 - Electricity generator and coal mine
 - Actors and sequels
 - Firm-specific human capital
- Cost Sharing Arrangements
 - Research joint ventures
 - Back office functions
 - Cleaning services

Price Formation

Buyer-Seller Exchange

Show Tickets

- Adam has four tickets to the musical "Rent." Two of the tickets have no value for him while the others have value, in monetary terms, of \$50 each (i.e., his willingness-to-pay).
- Eve does not have any tickets. She is willingto-pay \$25 each for two tickets while she would pay only \$10 for a third and fourth ticket.
- There are no other sources of tickets.

When should exchange occur?

- There are gains from trade here. By giving up two tickets, Adam loses nothing but gains up to \$50.
- However, by giving up the third and fourth ticket, Adam loses \$100 and can gain at most \$20.
- Therefore, there are gains to trade for two but not four tickets.

Upper and lower price bounds

- What price do these tickets exchange for?
- Suppose Adam can make a take-it-orleave-it offer to Eve. How much will he demand per ticket?
- Suppose Eve can make a take-it-orleave-it offer to Adam. What price will she pay?

Added Value

- If you can make a take-it-or-leave-it offer to the other party, you can claim your entire added value.
- In general, however, neither party has this ability.
- If there are no other buyers or sellers, the price they agree upon depends on their negotiating skill. If they were an equal match, this might be a price of

BATNAS ("Best Alternative to Negotiated Agreement")

- What is the relationship between added value and BATNAs?
 - A BATNA or outside option is a party's best alternative value in the absence of an agreement.
 - Adam's BATNA is \$0 for the two tickets (or \$100 overall)
 - Leve's BATNA is \$0 in value.
 - You should receive at least your BATNA in negotiations
- The BATNA approach and added value are the same when there are two players.

Negotiating skill

- What determines negotiating skill in reality?
 - Relative patience
 - Ability to hold-out
 - Understanding the other person's options
 - Fairness?

Patience

- Ben wants to sell an ice cream to Jerry.
- The ice cream will melt after one round of negotiations so there is only time for Ben to make a single offer to Jerry
- Jerry's WTP for the ice cream is \$1
- What price will result?

More Patience

- Suppose now that the ice cream takes two periods to melt – half each period.
- There is now enough time for Jerry to make a counter offer if no agreement is reached in the first round.
- At what price will Ben offer to sell the ice cream?

Union Negotiations

- Hotel at a summer resort
- Season lasts 101 days
- Hotel makes profit of \$1000 per day
- Union strikes until agreement reached

Ability to Hold Out

		Union's Share		Management's Share	
Days to Go	Offer	Total	Per Day	Total	Per Day
1	фу	\$1000	\$1000	\$0	\$0
2	M	1000	500	1000	500
3	U	2000	667	2000	333
4	M	2000	500	2000	500
5	U	3000	600	2000	400
100	M	50000	500	50000	500
101	U	51000	505	50000	495

Variants

- Workers can earn \$300 in alternative employment
- Management can hire 'scabs' and still realise \$500 in profit
- Workers intensify picketing. Reduce alternative earnings to \$200 but reduce management profit by \$200 per day

Variant 1: Alternative Work

		Union's Share		Management's Share	
Days to Go	Offer	Total	Per Day	Total	Per Day
1	фу	\$1000	\$1000	\$0	\$0
2	M	1300	650	700	350
3	U	2300	767	700	233
4	M	2600	650	1400	350
5	U	3600	720	1400	280
100	M	65000	650	35000	350
101	U	66000	653	35000	347

Understanding Outside Options

- Workers can earn \$300 in alternative employment
 - Wage = (\$1000 + \$300)/2 = \$650
- Management can hire 'scabs' and still realise \$500 in profit
 - Wage = (\$1000 \$500 + \$300)/2 = \$400
- Workers intensify picketing. Reduce alternative earnings to \$200 but reduce management profit by \$200 per day
 - Wage = (\$1000 \$300 + \$200)/2 = \$450

Ultimatum Experiments

- The Game is follows: pairs of subject play a non-repeated two player game.
 - Player 1 is given a sum of money and ask to divide it between themself and player 2.
 - Then player 2 has the option of accepting 1's offer or rejecting it.
 - If accepted, each gets 1's proposed division.
 - If rejected each gets nothing. (E.g., player 1 proposes to divide \$10 but keeping \$7 and giving 2 \$3. If 2 accepts they each get this, but if 2 rejects they each get \$0).
- Note that the game has a unique equilibrium with 1 offering 2 one cent, and 2 accepting this.

Results: Fairness?

	Actua	Predicte
Avg % of Total Demanded by 1	67.1	99+
% of Proposed 50-50 splits	25.5	0
% rejected by 2	21.5	0
Avg % Demanded by 1 in Rejected Proposals	85.3	100
Avg % Demanded by 1 in Accepted Proposals	61.0	99+
% of 1's demands > 90%	11.8	100

'Price' Formation

Cost Sharing Arrangements

Worked Example

Lawnmower Games

Lawnmower Games

- What is total value created from a joint relationship?
 - What would happen if separated?
 - Ned would go it alone while Homer would go without. Lose Homer's value of \$100.
- What is each player's added value?
 - Each is essential to value created from joint relationship.
 - So both Homer and Ned have an added value of \$100.

Equal Bargaining Power

- Total value = \$150
- Ned's BATNA or outside option = \$50
- Homer's BATNA or outside option = \$0
- Each gets outside option plus half of what's left.
 - What's left? \$150 \$50 \$0 = \$100
 - Split this and add to outside option ... so H gets \$50 and N gets \$100

Classifying Cost Sharing Value

Where is the source of value in joint relationship?

- Low Asset Costs: Avoid duplication of costs
- Medium Asset Costs: Realise scale economies
- High Asset Costs: Make venture feasible

Talmudic Logic

- How to allocate a bankrupt estate?
 - Today's law: equal proportion
- But is there another way?
 - Talmudic law and added value

An Example

- Estate has debts of 300 zuz
 - A is owed 100 zuz
 - B is owed 200 zuz
- There is less than 300 zuz in the estate

Talmudic Division

Estate	Creditor	Α	Creditor	В