
NICHE STRATEGIES

The Prisoner’s Dilemma Computer Tournaments Revisited

Robert E. Marks

Graduate School of Business,

Stanford University,

California 94305-5015

(until mid-August 1993)

and

Australian Graduate School of Management,

University of New South Wales,

P.O. Box 1,

Kensington NSW 2033, Australia

Internet: r.marks@unsw.edu.au

An earlier version of this paper was

presented at the 1988 Australasian meetings

of the Econometric Society,

ANU, Canberra, August 1988,

under the title, “Breeding hybrid strategies:

the Prisoner’s Dilemma computer tournaments revisited.”



Page 2

KEYWORDS: Axelrod, genetic-simulation, machine-learning, repeated-Prisoner’s-Dilemma,

strategy-modelling

ABSTRACT: The repeated Prisoner’s Dilemma has proved to be a rich area of study for

examining the tension between competition and coöperation. Computer tournaments—such as

Axelrod’s and Fader and Hauser’s—have sought to obtain “effective” strategies in repeated games

from diverse entrants, as a way of generating robust results from a broad range of competing

strategies. The development of Holland’s Genetic Algorithm has enabled researchers to dispense

with open tournaments to obtain such diversity, and to derive strategies almost certainly closer to

globally optimal, given the environment of rivals.

This paper generalises a process reported by Axelrod in describing how the genetic

algorithm has been used to generate winning strategies of specified complexity in a repeated 2-

person Prisoner’s Dilemma, against two specific “niches” of competing strategies, from Axelrod’s

second computer tournament. It also derives winning strategies in “noisy” PD, in which

competitors are not certain of their opponents’ moves. These strategies exhibit some of the

characteristics seen in Rapoport’s famous Tit for Tat.

In an analysis of strategic complexity and its relationship to strategic success, the paper

examines finite automata in an attempt to simplify the strategies obtained, which are conditioned

on 1-, 2-, and 3-round memory of the moves and outcomes of previous rounds. Winning

strategies are represented as finite automata.

ABBREVIATIONS:

GA Genetic algorithm

PD Prisoner’s Dilemma.
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4.2 Breeding against “Always Coöperate” . . . . . . . . . . . . . . 22

4.3 Breeding against Tit for Tat . . . . . . . . . . . . . . . . . 22

4.4 Breeding against Axelrod’s Five-Rule Niche . . . . . . . . . . . . 24

4.5 Breeding against Axelrod’s Eight-Rule Niche . . . . . . . . . . . . 27

4.6 Breeding Strategies in a Noisy Game . . . . . . . . . . . . . . 29

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . 29

Acknowledgements: . . . . . . . . . . . . . . . . . . . . . . 31

References: . . . . . . . . . . . . . . . . . . . . . . . . 31

- i -



LIST OF FIGURES
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1.  Repeated-Play Strategies

MICRO-ECONOMICS has recently been enriched by studies of strategic behaviour among

small numbers of competitors, such as in oligopolistic markets. The small firm in a

purely competitive market faces a horizontal demand curve which it is powerless to shift up; the

monopolist faces a downwards-sloping demand curve which it too is powerless to shift (although

it can decide its price, somewhere along the curve). But most firms are faced with competitive

environments that do change and respond to their actions, as their rivals adjust their responses.

Studies of this strategic phenomenon have been in terms of the dynamic adjustment of the

competitors’ behaviour, and have been facilitated by the insights from game theory (Ulph 1987).

The strategic behaviour between two competitors has been extensively studied in simple

two-person games, the most insightful of which has been the Prisoner’s Dilemma (PD). In a one-

shot game the PD demonstrates how the logic of competition, in the absence of trust or

enforceable pre-commitment, results in a Nash solution of non-coöperation that is Pareto-inferior

to the coöperative solution.

Player 2

C D
_________________________________

C 4, 4 0, 5
_________________________________

D 5, 0 2, 2

Player 1

_________________________________LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

TABLE 1.  Payoff matrix for the Prisoner’s Dilemma

In Table 1, x,y means that Player 1’s payoff is x units and Player 2’s is y units. C

corresponds to coöperating, D to defecting, The Reward R for mutual coöperation is 4; the

Punishment P for mutual defection is 2; the Temptation T of cheating is 5; and the Sucker’s

payoff S of being cheated is 0 (Axelrod 1984).1

________________
1. As discussed below, these values have been chosen with repeated play in mind: repeated cooperation pays more

than alternating cooperation/defection.
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In a once-off PD game, the dominant strategy is to defect, despite a higher payoff for

coöperation, because of the reward of cheating and the penalty of being cheated. For each player,

defecting (D) dominates coöperating (C), and the outcome is mutual defection (D,D) instead of

mutual coöperation (C,C), which would result in each player receiving the Punishment for mutual

defection, instead of the greater Reward for mutual coöperation. This outcome occurs despite

both players’ clear knowledge of the gains from coöperation.

In a repeated PD game, however, the higher payoff to coöperation may result in strategies

different from the “always defect” of the single game (the Folk Theorem). By breaking the

logical imperative of mutual defection inherent in the static, one-shot PD, the repeated PD—in

which the players repeatedly face each other in the same situation—can model the possibility of

learning on the part of the players, which may result in mutual coöperation or some more

complex strategy on their part, as they learn more about the type of responses (such as punishment

for defection) they can expect from each other.

The process of learning (for which the repeated PD provides a framework for studying) is

one that economics has not had great success in modelling (Simon 1978). Despite the efforts of

some economists (Nelson and Winter 1982) to study the processes of economics activity,

mainstream economics has preferred to assume away the adaptive process of learning than to let

ad hoc theories of learning intrude on the axiomatic consistency of the neoclassical framework.2

An early analysis of successful strategies in the repeated PD (Luce and Raiffa 1957,

pp.97–102) suggested that continued, mutual coöperation (C,C) might be a viable strategy,

despite the rewards from defection, but for twenty years no stronger analytical results were

obtained for the repeated PD.

In the late 1970s, political scientist Robert Axelrod, in an investigation of the emergence of

coöperative behaviour and social norms in Hobbesian societies, hit upon the idea of exhaustively

pitting strategies for the repeated PD by coding them into computer algorithms. In Axelrod (1984)

he reported the results of two tournaments between strategies played on computer. In essence his

call for strategies (coded as algorithms) was an attempt to search the strategy space by asking

________________
2. The theory of “rational expectations,” for instance, assumes that any learning necessary for optimisation has already

occurred—or that it occurs instantaneously and costlessly, as necessary. Such empirical tests as Hofstadter’s Luring
Lottery (1985, p.751) demonstrate that, as a description of the behaviour of even an intelligent and well informed
group of people—readers of his Scientific American column—the theory is inadequate.
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researchers in diverse disciplines to devise strategies.

Since the PD is a non-zero-sum game, to win the repeated game is not a function of always

snatching, as it were, the larger share of the cake—since the struggle to seize the larger slice will

reduce the size of the cake overall, to the ultimate loss of both players. So, although the strategy

of Always Defect will never be beaten—will always take the larger share in each game—it will

not score the highest aggregate across many games—the largest total quantity of cake, as it were.

In a positive-sum game, such as PD, there can be no optimum optimorum: instead, the winner

depends upon the population (of other strategies) against which it is pitted. What Axelrod was

seeking was a robust “winning strategy” in the repeated game; such a strategy had evaded

analytical efforts. The scores for the four possible outcomes in Table 1 were chosen so that

(T +S) < 2 × R (where T  = Temptation, S  = Sucker’s, and R  = Reward), so that the alternating

pattern of (C,D), (D,C), (C,D), (D,C), . . . results in a lower average score than the pattern of

mutual coöperation of (C,C), (C,C), (C,C), . . .

As is now widely known, Axelrod’s tournaments revealed that one very simple strategy is

robust in the repeated PD: Rapoport’s Tit for Tat, which coöperates on the first round of the

repeated game, and then mimics its opponent. Although it never does better than tying in a one-

on-one tournament against any opponent, when pitted against a “nasty” strategy, such as “Always

Defect,” it does almost as well, itself defecting on every round but the first, but at the cost of the

aggregate score. With regard to its score rather than whether it wins or not, Tit for Tat is robust.

When played against itself, both players’ aggregate score is a maximum, since every round will

then be (C,C), a result which resembles collusion, although each player’s decisions are made

independently of the other’s. One motivation for this study is to explore whether, with no limit on

strategic complexity, Tit for Tat can be soundly bettered.

Axelrod’s tournaments and later tournaments modelling a three-person price war (Fader and

Hauser 1988) were an attempt to pit as wide a variety of strategies against each other as possible,

in order to derive more robust results and insights than would follow with a small set of strategies.

Mathematically, the problem of generating winning strategies is equivalent to solving a multi-

dimensional, non-linear optimisation with many local optima. In biological-evolution terms, it is

equivalent to selecting for fitness. Indeed, in a footnote, Cohen and Axelrod (1984, p.40) suggest

that

One possible solution may lie in employing an analogue of the adaptive process used in a pool

of genes to become increasingly more fit in a complex environment. A promising effort to

convert the main characteristics of this process to an heuristic algorithm is given by John
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Holland (1975 [1992]). This algorithm has had some striking preliminary success in the

heuristic exploration of arbitrary high dimensionality nonlinear functions.

Following up his own suggestion, Axelrod has used Holland’s Genetic Algorithm (GA) (see

Section 3 below) to “breed” strategies in the two-person repeated PD game (Axelrod 1987). He

reports that the GA evolved strategy populations whose median member was just as successful as

Tit for Tat, whom they closely resembled. (In 95% of the time, the evolved rules make the same

choice as would Tit for Tat in the same situation.) In some cases the GA was able to evolve

highly specialised adaptations to a specific population of strategies which perform substantially

better than does Tit for Tat in that situation. This paper attempts to replicate Axelrod’s work, and

to examine how the GA could be used in the breeding of strategies to such problems as the two-

person PD with uncertainty (“noise”) (Nalebuff 1987) and the three-person PDs of the price war

(Fader and Hauser 1988).

The advent of GAs (and machine learning) means that a much more exhaustive set of

potentially winning strategies can be generated by a single researcher, without the combined

efforts of many competitors. This is because, within any given degree of “strategic complexity”

(see Section 2.1 below), any potential strategy is grist to the GA’s mill, and will eventually be

tested if it is a contender for best strategy, given the environment of competitors.

2.  Modelling Strategies for Repeated Games

2.1  Finite Automata and Moore Machines3

THE use of finite automata in repeated games derives from Aumann (1985), and has since

been used by several authors (Neyman 1985; Radner 1986; Rubinstein 1986; Ben-Porath

1987; and Miller 1989). Originally, it was formulated in an attempt to make Simon’s (1972)

concept of “bounded rationality” operational, by marrying the theory of finite automata with game

theory, to derive a measure of strategic complexity. An additional reason was to see whether

putting a bound on the complexity of players’ strategies could induce coöperative behaviour in the

finitely repeated Prisoner’s Dilemma. Neyman shows that this is so.

________________
3. See Marks (1992a) for a survey of this topic.
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Rubinstein, in an infinitely repeated world, describes a world in which players select Moore

machines (Moore 1956) instead of explicit strategies. A Moore machine is a device in which the

player’s next move is contingent on the existing state of the machine, which in turn is a function

of the previous state of the machine (at the previous round) and the other player’s previous move,

through a transition (or next-state) function. (The initial state and the set of all feasible internal

states of each machine must be stated at the outset, along with the set of all feasible moves and the

transition function and the “action“—or output—function.) If both players in a two-person game

have chosen Moore machines, then the game can continue between the machines, which will

generate states and moves as the repeated game progresses. Although previous researchers have

used finite automata theory to develop theoretical results about strategies in repeated games with

limits on strategic complexity, Moore machines also provide a way of using techniques of

machine learning to search for robust strategies in repeated games, thus obviating the need for

further computer tournaments among submitted strategies.

We can formalise a Moore machine, and provide some examples. Let Qi be a finite set, the

set of possible internal states of player i’s automaton, and let Si and Sj denote the finite sets of

actions or moves for players i and j, respectively. If in round t the state of player i’s machine is

qi(t) ∈ Qi and player j’s move is sj(t) ∈ Sj , then at round t +1 the state of player i’s machine,

qi(t +1), will be

qi(t+1) = gi[qi(t), sj(t)],

and player i’s move (or action) in round t +1, si(t +1) ∈ Si , will be

si(t +1) = fi[qi(t +1)].

The quadruple 〈Qi,  q
_

i ,  fi ,  gi〉 constitutes player i’s automaton, where q
_

i ∈ Qi is the initial state of

the machine, where fi is the action function, fi  : Qi  → Si , and where gi is a the next-state (or

transition) function, gi  : Qi  × Sj  → Qi . The number of elements in Qi is the size of the

automaton.

Rubinstein presents a series of “transition diagrams” for machines which play familiar

strategies in the repeated Prisoner’s Dilemma. The nodes of these diagrams correspond to what

Rubinstein calls “states,” one of which is the “Start,” but his “states” are not the same as ours

below: as we shall see, they are sets of our states. The letters C or D immediately beneath each

node show the machine’s move associated with that node. The letters C and/or D immediately

above each arc correspond to the others player’s move, after which the machine moves to the new
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node at the arrowed end of the arc.

For instance, a machine which plays C constantly (Always Coöperate) can be described as

Q  = { q * } , q
_

 = q * , f(q *) = C, and g(q * , ⋅) ≡ q * .

Rubinstein depicts it as Figure 1.

Start q*

C

C,D

Figure 1. The “Always Coöperate” Moore Machine

Rapoport’s strategy, Tit for Tat, can be described as

Q  = { q C, q D } , q
_

 = q C , f(q s) = s and g(q,s) = q s for s  = C, D.

Its transition diagram is given by Figure 2.

Start q C
D

q D

C

C

D

D

C

Figure 2. The “Tit for Tat” Moore Machine

The strategy of playing C until the other player plays D and then punishing him for three periods

before returning to coöperation requires at least a four-node machine, as depicted in Figure 3. It

can be described as

Q  = { q, p 1, p 2, p 3 } , q
_

 = q, f (q) = C, f (ph) = D, (h = 1,2,3),

g (q,C) = q,  g (q,D) = p 1,  g (ph , ⋅) ≡ ph +1,   and  g (p 3, ⋅) ≡ q.
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Start q
D

p 1

C,D
p 2

C,D
p 3

C

C

D D D
C,D

Figure 3. A Four-Node Moore Machine

It is possible to represent these machines by strings, together with rules describing the transition

and action functions. Each position (or locus) on the string corresponds uniquely to a state. The

action function is simply a mapping from the position (or locus) on the string to the character or

allele (C or D) at that position. The transition function will result in a new position (or state),

contingent on the previous position and the other player’s previous move.

For instance, in the Always Coöperate machine of Figure 1, there is only one node, which

always results in C. Thus, the string representation of this machine might be the string C, and,

whatever the previous move of the other player, the machine’s response would be an unchanging

C. For Tit for Tat there must be at least two elements in the string, one corresponding to the other

player’s coöperating in the previous round, and the other corresponding to his defecting in the

previous round. The first results in the machine’s response of C, the second in D. Thus, the

string representation of Tit for Tat might be, say, CD, where C corresponds to node 1 and D

corresponds to node 2, as in Figure 2. The algorithm would tell us to look at node 1 for our next

move if the other player’s previous move was C, and to look at node 2 for our next move if the

other player’s previous move was D. The four-node strategy of Figure 3 might be represented by

the string CDDD; this strategy is not as simple as the previous two; the transition function, for

instance, is not simple, although the Rubinstein transition diagram can be followed without too

much difficulty. It appears that a strategy which has no memory (Figure 1) requires one node, that

a 1-round memory (Figure 2) requires two nodes, and that a 3-round memory (Figure 3) requires

four nodes.

The size of an automaton is the number of states it has. The complexity of a strategy is

defined by Ben-Porath (1987) as the minimal size of the automaton that can implement it. From

Rubinstein’s transition diagrams above, it appears that Always Coöperate is of lowest strategic
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complexity, followed by Tit for Tat, and that Figure 3 depicts a strategy of higher complexity.

But we need to define the concept of a state more rigorously than does Rubinstein if the measure

is to have meaning, as we see below. Moreover, as Radner (1986) notes, this measure does not

take account of the complexity of the action function and the transition function—what Gottinger

(1983, p.127) calls the tradeoff between structural complexity and computational complexity.

Nonetheless, Ben-Porath’s measure of strategic complexity raises the question:

Given any level of strategic complexity, what is the most successful strategy in

competing against a given environment of strategies?

Tit for Tat has proved itself to be, at a low level of strategic complexity, extremely robust against

a wide range of opponents. This raises another question:

With no limit on strategic complexity, can Tit for Tat be soundly bettered?

2.2  Strategies Contingent upon Previous Actions

As suggested in the previous section, and following Axelrod (1987), we model the actions of the

players in the repeated game as contingent upon the actions of both players in previous rounds.

That is, the next-state function gi has as its argument the state qi , which is simply defined as the

combination of players’ actions in the previous rounds. We consider three levels of strategic

complexity. The lowest corresponds to looking back at the most recent round only: 1-round

memory; the highest corresponds to looking back at the three most recent rounds: 3-round

memory; we also consider 2-round memory. For each round there are four states—(C,C), (C,D),

(D,C), and (D,D), where by convention (X,Y) describes a round in which the player’s own move

was X and the other player’s move was Y—so there are 4r possible states for r-round memory.

For 1-round memory, there are 4 possible states; for 2-round memory 16; and for 3-round

memory, 64. The number of states is an upper limit of strategic complexity, as Figure 2

demonstrates. For exposition’s sake, we consider 1-round-memory strategies in detail.

A strategy is characterised by its action function, a mapping from the possible states of

recent history to the two possible actions in the next round, C or D. For a 1-round memory, this

mapping can be thought of as a binary string of length 4 bits, where 0 models C and 1 models D.

Each of the 4 positions on the string corresponds to one state q of recent history, and the rule is:

coöperate (C) or defect (D) on the next round depending solely on whether there is a zero or one,

respectively, at the position (or locus) q of the string: the allele at locus q maps state into action.

In general, we calculate the position or state q from the formula:
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q =
i =1
Σ
r

4(r −i) [own(i) + 2 × other(i)], (1)

where r is the number of rounds remembered, own (i) is the action taken by this player i rounds

ago, and other (i) is the action taken by the other player i rounds ago. (Recall that C is 0 and D is

1.) So mutual coöperation for the last three rounds (r = 3) corresponds to q = 0, and mutual

defection for the last three rounds to q = 1+2+4+8+16+32 = 63. For 1-round memory, this

equation collapses to:

q = own(1) + 2 × other(1), (2)

which means that the four states are as shown in Table 2.

________________

C, C → q = 0

D, C → q = 1

C, D → q = 2

D, D → q = 3

________________

TABLE 2. The Mapping from History to State, for One-Round Memory

For 1-round memory, there are 24 = 16 possible mapping strings or strategies in this two-action

repeated game. As seen in Table 3, these can readily be examined exhaustively, without need for

the GA described below, but 3-round memory leads to 264 possible mapping strings, an altogether

different search task. In general, for this two-action game, the number of possible mapping

strings is 24r
.

From Table 3, we can readily recognise some strategies: Strategy 0 is Always Coöperate,

since whatever the last round moves of the players the next move is 0, or C; Strategy 15 is Always

Defect; Strategy 3 is Tit for Tat, since C follows the other player’s C last round (q = 0 and 1), and

D follows the other player’s D last round (q = 2 and 3).

Strategy 5 results in unchanging C or D, depending on the first move, which raises the

question of how to act in the first round (or rounds), when there is no history of previous moves.

Again following Axelrod (1987), we add additional bits to the mapping string to represent

phantom memory, and search among the augmented strings for high-scoring strings that include

the initial moves. With 1-round-memory strategies, there is only one phantom round, which

requires 2 bits for its representation, since there are 4 possibilities for the phantom state. Higher-
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_______________

Number String

_______________

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111
_______________

TABLE 3. All Possible One-Round-Memory Strategies

round memory would require more phantom memory states: 3-round-memory strategies require 6

bits of phantom memory, 2 per round.

A 3-round-memory string chosen at random might resemble that in Table 4.

10010100 10100101 00110101 00101110 10100010 10010101 11010100 10101011

TABLE 4. A Random Three-Round-Memory String

From equation (1) with r = 3, a history of both players coöperating for each of the last three

rounds ({CC,CC,CC}) corresponds to q  = 0. The string in Table 4 will result in a defection in

the next round: the position or state q 0 for this string maps into 1 (= D), since f (q 0) = 1, where

the action function f (qs) is the value of the state qs  ≡ s, which is simply given by the sth position



Page 13

(or locus) on the string, counting rightwards from zero rather than one. Similarly, since

f (q 63) = 1, a history of mutual defection for the past three rounds will result in a further defection

on the part of this individual.

2.3  Strings as Particular Strategies

It is difficult to recognise any but the simplest rules from examination of individual strings.

Clearly, a string of ones would result in “always defect” behaviour, and a string of zeroes would

result in “always coöperate” behaviour, but such behaviour may also result from other strings.

This follows because each string maps from a history that includes its own behaviour, and if it

never coöperates (in the first example) or never defects (in the second) then some feasible states

will never occur, and the corresponding positions on the string will never be used—those

corresponding to its own coöperation in the first example and its own defection in the second.

If a string of ones is sufficient for Always Defect, what is a necessary string for this

behaviour, assuming any behaviour on the part of the other player over the past rounds? From

Table 2, the only relevant states with 1-round memory are q = 1 and 3, since the other states

require own behaviour of C. Consequently, the necessary string for Always Defect with 1-round

memory is #1#1, where the # symbol is used to indicate that the bit at that position is irrelevant to

the desired behaviour. Consider equation (1) with r = 3, for 3-round memory. If own behaviour

is Always Defect, then own (i) = 1,  i  = 1,2,3. Hence, q  ≥ 1+4+16 = 21, counting from zero. This

means that the first 21 alleles are irrelevant. As we shall see when examining the mapping in

Table 8, all but eight states are in fact irrelevant (those associated with the 23 possible actions of

the other player over the past three rounds). The necessary strings for Always Defect are shown

in Table 5.

#1#1

#####1#1 #####1#1

######## ######## #####1#1 #####1#1 ######## ######## #####1#1 #####1#1

TABLE 5. Necessary Strings for “Always Defect”

Similarly and symmetrically, the necessary strings for Always Coöperate are shown in Table 6,

where the zeroes correspond to coöperation in the eight possible states.
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0#0#

0#0##### 0#0#####

0#0##### 0#0##### ######## ######## 0#0##### 0#0##### ######## ########

TABLE 6. Necessary Strings for “Always Coöperate”

These two simple cases suggest that the strategic complexity of Always Defect and Always

Coöperate is 8 in the case of 3-round memory. When we compare the representation of Table 6

with the Moore machine of Figure 1, which has only one node, we can see that Rubinstein’s node

includes eight of our states. The action function of Always Coöperate is f (⋅) = C, whatever the

previous move of the other player, and with the 23 possible moves of the opponent, there must be

eight possible states. For a rigorous approach to the concept of complexity, see Futia (1977) and

Gottinger (1983, pp.3–75; 1987). Suffice it here to note that we shall consider strategies with up

to 64 independent states in Section 4, although the internal logic of a strategy’s own possible

moves will usually reduce this number considerably, as we have seen in Tables 5 and 6.

The necessary strings for Tit for Tat are shown in Table 7, for 1-, 2-, and 3-round memories.

In the latter two strings, positions marked with a # correspond to a history in which own

behaviour in the previous two or three rounds did not obey Tit for Tat and so are irrelevant. For

1-round memory this possibility does not arise.

0011

00####00 11####11

00####00 ######## ######## 00####00 11####11 ######## ######## 11####11

TABLE 7. Necessary Strings for “Tit for Tat”

The complete mapping from the last three rounds to the 64 states or loci is shown in Table 8,

which is the 3-round memory equivalent of Table 2 for 1-round memory. For instance, q  = 6

(counting from zero) is equivalent to the state of history given by: (C,D) followed by (D,C)

followed by (C,C) (or {CD,DC,CC}), in which the player’s own behaviour in the second last and

last rounds was to mimic the other player’s behaviour of the third last and second last rounds,

respectively. For this mimicry to continue, the next move of the own player must mimic the other
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q 0 1 2 3 4 5 6 7 8 9 101112131415

i=3 CCDCCDDDCCDCCDDDCCDCCDDDCCDCCDDD

i=2 CCCCCCCCDCDCDCDCCDCDCDCDDDDDDDDD

i=1 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

q 16171819202122232425262728293031

i=3 CCDCCDDDCCDCCDDDCCDCCDDDCCDCCDDD

i=2 CCCCCCCCDCDCDCDCCDCDCDCDDDDDDDDD

i=1 DCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDC

q 32333435363738394041424344454647

i=3 CCDCCDDDCCDCCDDDCCDCCDDDCCDCCDDD

i=2 CCCCCCCCDCDCDCDCCDCDCDCDDDDDDDDD

i=1 CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD

q 48495051525354555657585960616263

i=3 CCDCCDDDCCDCCDDDCCDCCDDDCCDCCDDD

i=2 CCCCCCCCDCDCDCDCCDCDCDCDDDDDDDDD

i=1 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

TABLE 8. The Mapping from History to State, for Three-Round Memory

player’s move in the most recent round, which was C; so f (q 6) must equal 0, as the string of

Table 7 shows. This behaviour is identical with Tit for Tat.

From Figure 2, we can exhaustively determine all possible 3-round histories associated with

each of Rubinstein’s nodes, in order to see the correspondences between his nodes and our states.

We see that node qC = states {0,1,6,7,24,25,30,31}, and that node qD = states

{32,33,38,39,56,57,62,63}. Since Tit for Tat is symmetric in terms of C and D (except for its

initial state), we should not be surprised that each node corresponds to an equal number of states;

we shall see below that an asymmetric strategy results in uneven numbers of correspondences.

We have modelled the strategies as mappings from the history of the last three rounds to the

own behaviour in the next round. But what is to be done during the first three rounds of the game,
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when there is not yet a complete 3-round history to map from? We could mandate a pattern of

behaviour, such as Always Coöperate, for each strategy during the first three rounds, but

following Axelrod (1987) we let six additional bits on the string provide the phantom memory for

each strategy. (We need six additional bits so that each of the six phantom decisions—three per

player—is coded for.) The result of this is that each 3-round-memory strategy is coded as a

binary string of length 70, but we shall speak of the first 64 bits as the essence of the strategy, as

in the figures above.

Each string can then be evaluated by its success in playing a repeated game, either against

an unchanging environment or niche, or against a changing environment of similar rivals. The

next section describes how the GA can be used to derive ever more successful strings in an

example of machine learning. The score or “fitness” of any individual is calculated from a series

of games of 151 rounds’ length following Axelrod (1984, 1987) against any environment of

strategies, using the pay-off matrix of Table 1. Although this is a finite repeated game, in which

end-game strategies might result in the one-shot Nash “Always Defect,” the memory limit

precludes such behaviour.

As Axelrod (1987) points out, each string serves a dual purpose: it is the complete

description of the individual, and it provides the information which can be transformed into the

next generation if it is “fit” enough, that is, if it performs sufficiently well in the repeated game.

He also notes that to search all possible individual 3-round-memory strings exhaustively, at a rate

of 100 per second, is “out of the question”—fewer than 1% of this number could have been

checked since the beginning of the universe.

3.  Genetic Algorithms

IN THE previous section we have seen how strategies (sets of rules) for playing repeated games

of the Prisoner’s Dilemma can be represented as bit strings of zeroes and ones, each locus or

substring (or gene) along the string mapping uniquely from a contingent state—defined above by

all players’ moves in the previous round or rounds of the repeated game—to a move in the next

round, or a means of determining this next move. This representation allows us to use a recently

developed optimisation technique—the Genetic Algorithm4 (GA)—to develop what is in effect a

machine-learning process to search for strings which are ever more successful at playing the

repeated game. As explained by De Jong (1990), our process can be classified as an example of
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the Pitt approach to machine learning, in which each string is evaluated for evolutionary fitness

(its score in the repeated game), and this score is used to generate a new set of strings. The

particular GA we use is Grefenstette’s GENESIS (1987).

We describe these strings as “chromosomes” because GAs use selection and recombinant

operators—crossover and mutation—derived by analogy from population genetics in order to

generate new sets of strings (a new generation of “offspring”) from the previous set of strings.

Brady (1985) notes that “during the course of evolution, slowly evolving genes would have been

overtaken by genes with better evolutionary strategies,” although there is some dispute about the

extent to which such outcomes are optimal (Dupré 1987). The GA can be thought (Bethke 1981)

as an optimisation method which overcomes the problem of local fitness optima, to obtain optima

which are almost always close to global. Moreover, following biological evolution, it treats many

candidate solutions (individual genotypes) in parallel, searching along many paths of similar

genotypes at once, with a higher density of paths in regions (of the space of all possible solutions)

where fitness is improving: the “best” individual improves in fitness and so does the average

fitness of the set of candidates (the population).

Hereditary models in population genetics define individuals solely in terms of their genetic

information: the genetic structure of an individual—or genotype—is represented as strings of

chromosomes consisting of genes, which interact with each other to determine the ultimately

observable characteristics—or phenotype—of the individual. A population of individuals can be

viewed as a pool of genetic information. If all individuals in the population have equal

probability of mating and producing offspring, and if the selection of mates is random, then the

information in the gene pool will not change from generation to generation. But environmental

factors affect the fitness of phenotypes of individuals, and hence affect the future influence of the

corresponding genotypes in determining the characteristics of the gene pool: the principle of

natural selection, which results in a changing gene pool as fitter genotypes are exploited. Natural

selection can be viewed as a search for coädapted sets of substrings which, in combination, result

in better performance of the corresponding phenotype (the individual’s behaviour) in its

environment.

________________
4. For an introduction to GAs, see Goldberg (1988).
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Schaffer and Grefenstette (1988) argue that the theory of GAs derived by Holland (1992)

predicts that substrings associated with high performance will spread through the new populations

of bit strings. Paraphrasing Holland (1984), a GA can be looked upon as a sampling procedure

that draws samples from a potential set T. With each sample is associated a value, the fitness (or

score) of the corresponding genotype (or fundamental hereditary factors). Then the population of

individuals at any time is a set of samples drawn from T. The GA uses the fitness (scores) of the

individuals in the population at each generation to “breed” and test a new generation of

individuals, which may include the best individuals from the previous generation. The new

generation is “bred” from the old using genetic operators: selection of parents according to their

fitness, cross-over of genetic material from both parents, and random mutation of bits. This

process progressively biases the sampling procedure towards the use of combinations of

substrings associated with above-average fitness in earlier generations (that is, sample individuals

characterised by higher scores because their behaviours are “better”), so the mean score of

successive generations rises owing to selective pressures. A GA is all but immune to some of the

difficulties that commonly attend complex problems: local maxima, discontinuities, and high

dimensionality.

The GA is an answer to the problem of obtaining a robust and efficient use of information

contained in a limited amount of experience: the difficulty is the low level of confidence that can

be placed on inferences from limited samples. The GA, so Schaffer and Grefenstette (1988) argue,

results in a near-optimal trade-off between exploration (gaining more reliability from more

experience) and exploitation (using the information from past experience to generate new trial

structures). The GA can be described in essence as (1) producing the initial population P (0)

(randomly or using some seeding method); (2) evaluating each trial structure of the population

P (t) at any time t; (3) selecting the fittest trial structures, as measured by their scores (in our case

in the repeated games); (4) applying the genetic recombination operators to the selected parent

structures to produce the offspring generation, P (t +1); (5) testing against a stopping rule—if YES,

then stop, if NO, then return to stage (2).

The initial population P (0) is usually chosen at random, but can be constructed to contain

heuristically chosen initial strings. In either case, the initial population should contain a wide

variety of structures. The structures of the population P (t +1) are chosen from the population P (t)

by a randomised “selection procedure” that ensures that the expected number of times a structure

is chosen to be a “parent” is proportional to that structure’s performance, relative to the rest of the

population. That is, if unique structure xj has twice the average performance of all the structures
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in P (t), then xj is expected to appear twice in the mating pool. At the end of the selection

procedure, the mating pool contains exact duplicates of the selected structures in population P (t),

in proportion to their share of the aggregate of fitness scores.

Although realisations of the GA differ in their methods of survival selection, of mate

selection, and of determining which structures will disappear, and differ in their size of population

and their rates of application of the different genetic operators, all exhibit the characteristic known

as implicit parallelism. Any structure or string can be looked at as a collection of substring

components or schemata which together account for the good or bad performance of the

individual structure. Then Holland’s Schema Sampling Theorem (Holland 1992, Schaffer and

Grefenstette 1988) demonstrates that schemata represented in the population will be sampled in

future generations in relation to their observed average fitness, if we can assume that the average

fitness of a schema may be estimated by observing some of its members. (Note that the number

of schemata being sampled is greater than the number of individual structures of the population

being evaluated.) GAs gain their power by searching the space of all schemata and by quickly

identifying and exploiting the combinations which are associated with high performance.

This can be formalised. A population of binary structures of length L bits can be viewed as

points in an L-dimensional space. GAs search for better structures by focusing on partitions

(hyperplanes) of this space associated with good performance or high fitness. A kth order

hyperplane (0 ≤ k ≤ L) is defined as an (L −k)-dimensional subspace, and is specified by assigning

values to only k of the L string positions or loci, the rest being filled with the # symbol. Let H be

a hyperplane in the representation space. Let M (H,t) denote the number of individual structures

in P (t), the population at time t, that are members of the hyperplane H. For example, y 2 below is

a member of the hyperplane #1001###. Holland (1992) has shown that the effect of selection

alone (in the absence of other genetic operators) is that

M (H,t +1) =
µ (P,t)
µ (H,t)______ M (H,t), (3)

where µ (H,t) is the average fitness of the structures or schemata that are in both P (t) and in H,

and where µ (P,t) is the average fitness of all structures in P (t). Thus, the number of samples

allocated to a hyperplane H changes exponentially over time, growing for the above average and

dwindling for the below average. The relationship in equation (3) applies to each hyperplane

represented in the population. In general, in a population of N binary structures of length L bits,

between 2L and N 2L distinct hyperplanes are available for sampling. GAs test and search for
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these high-performance substrings or schemata, which far outnumber the individual structures in

the population at any time, since a single structure is an instance of 2L distinct hyperplanes

(Σ k =0
L  LCk).

The most important recombination operator is crossover. Under the crossover operator, two

structures in the mating pool exchange portions of their binary representation. This can be

implemented by choosing a point on the structure at random—the crossover point—and

exchanging the segments to the right of this point. For example, let two “parent” structures be

x 1 = 100:01010, and

x 2 = 010:10100.

and suppose that the crossover point has been chosen as indicated. The resulting “offspring”

structures would be

y 1 = 100:10100, and

y 2 = 010:01010.

Crossover serves two complementary search functions. First, it provides new strings for further

testing within the structures already present in the population. In the above example, both x 1 and

y 1 are representatives of the structure or schema 100#####, where the # means “don’t care,

because the value at this position is irrelevant.” (If 1001 is a point, then 100# is a line, and 10## is

a plane, and 1### is a hyperplane.) Thus, by evaluating y 1, the GA gathers further information

about this structure. Second, crossover introduces representatives of new structures into the

population. In the above example, y 2 is a representative of the structure #1001###, which is not

represented by either “parent.” If this structure represents a high-performance area of the search

space, the evaluation of y 2 will lead to further exploration in this part of the search space. The

GENESIS package (Grefenstette 1987), which we use, implements two crossover points per

mating.

A second operator is mutation: each bit in the structure has a chance of undergoing

mutation, based on an interarrival interval between mutations. If mutation does occur, a random

value is chosen from {0,1} for that bit. Mutation provides a mechanism for searching regions of

the allele space not generated by selection and crossover, thus reducing the likelihood of local

optima over time, but mutation is capable only of providing a random walk through the space of

possible structures.
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The basic concepts of GAs were developed by Holland (1992) and his students. Theoretical

considerations concerning the allocation of trials to structures (Holland 1992, 1986; De Jong

1980) show that genetic techniques provide a near-optimal heuristic for information gathering in

complex search spaces. A number of experimental studies (De Jong 1980; Bethke 1981;

Grefenstette 1986) have shown that GAs exhibit impressive efficiency in practice. While classical

gradient search techniques are more efficient for problems which satisfy tight constraints (e.g.,

continuity, low-dimensionality, unimodality, etc.), GAs consistently out-perform both gradient

techniques and various forms of random search on more difficult (and more common) problems,

such as optimisations involving discontinuous, noisy, high-dimensional, and multimodal objective

functions (Holland 1984; Brady 1985).

GAs do not require well-behaved, convex objective functions—indeed, they do not require

closed objective functions at all—which provides an opportunity for an exhaustive study of the

solution to repeated games. This is possible because to use GAs to search for better solutions it is

sufficient that each individual solution can be scored for its “evolutionary fitness:” in our case the

aggregate score of a repeated game provides that measure, but in general any value that depends

on the particular pattern of each individual string will do.

4.  Results

THE purpose of bringing the powerful tool of GAs to bear on the problem of “breeding”

strategies for the repeated Prisoner’s Dilemma is twofold: by replicating the environment

of the repeated two-person Prisoner’s Dilemma computer tournaments to attempt to breed

strategies equal to or better than those entered in previous tournaments, and to examine the

structures of “good” strategies to learn whether there exist other “fit” traits embodied in such

strategies as specific alleles. In particular, is there a strategy—encoded by a string such as those

illustrated above—that systematically outperforms the triumphant Tit for Tat? 

At the risk of tedium, we repeat that there is no best winning strategy in the non-zero-sum

game of Prisoner’s Dilemma: we can only speak of a best strategy given any particular

environment or niche. We report on the results from six niches: (a) a niche of Always Defect, (b)

a niche of Always Coöperate, (c) a niche of Tit for Tat, (d) the 5-rule niche described by Axelrod

(1984), (e) the 8-rule niche described by Axelrod (1987), and (f) the 5-rule Axelrod niche but with

“noise” added, to simulate Nalebuff’s (1987) repeated Prisoner’s Dilemma game with imperfect

information—a 5% probability that what each believes the other to have done in the previous
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round is incorrect.

4.1  Breeding against “Always Defect”

When a random population of genetic strategies plays against Always Defect, those strings that

embody—whose behaviour exhibits—“nastiness” will do better than strategies which coöperate

despite the hostile environment. Thus, the scores (average and best) of the population rapidly

converge, so that the best individual strategies match Always Defect, with an average score of 1

per round. Note that these strings will not resemble those of Table 5, since some states will never

occur—those in which the strategy coöperates—and so the corresponding alleles will not be given

a chance to test their fitness against the niche, and so cannot be selected. From Table 2, only

states q = 2 and 3 are relevant, since the other states correspond to C by the other player, and

hence are never seen; the optimal 1-round-memory string is ##11: defect against the other’s

Always Defect. From Table 8, the strings from selection against Always Defect should resemble

those of Table 9.

##11

######## ##11##11

######## ######## ######## ######## ######## ##11##11 ######## ##11##11

TABLE 9. Optimal Strings against “Always Defect”.

4.2  Breeding against “Always Coöperate”

When a random population of genetic strategies faces the strategy of Always Coöperate, those that

embody “nastiness” to take advantage of the “niceness” of the niche will be selected for. These

strings will not resemble those of Table 6, since that was for Always Coöperate on the part of the

string, not the niche. If the niche is Always Coöperate, then only certain alleles will be tested for

their fitness, those at positions on the string corresponding to the opponent’s coöperating. The

strings from selection against Always Coöperate should resemble those of Table 10.

4.3  Breeding against Tit for Tat

When faced with a Tit-for-Tat niche, the population of strings will soon resemble Tit for Tat at

least in their fitness scores, since mutual coöperation is rewarded with higher “fitness” and
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11##

11##11## ########

11##11## ######## 11##11## ######## ######## ######## ######## ########

TABLE 10. Optimal Strings against “Always Coöperate”.

defection is punished with lower “fitness.” The scores of the best individual strings will soon

equal those of Tit for Tat, and the mean of the population will rise towards this level. The best

response against a Tit for Tat strategy is to mimic it, which means coöperating (unless both are

destructively defecting). It is sometimes overlooked that ease of recognition is one of the four

traits advantaging Tit for Tat: the others are niceness (never first to D), swift to anger (Tit for

Tat), and not grudge-bearing (no more than one tit per tat).

Except for 1-round memory, the strings from selection against Tit for Tat will only test a

subset of the alleles, as seen in Table 11, since the niche of Tit for Tat will not provide an event

history corresponding to the # symbol. Indeed, with genetic drift the alleles shown in the

Figure—with the exception of q  = 0, corresponding to continuing mutual coöperation—will

eventually not be selected for against Tit for Tat. The next niche provides a greater range of

behaviour and also a test of the alleles at positions other than q  = 0.

0011

0#0#0#0# #1#1#1#1

0#0##### #0#0#### 0#0##### #0#0#### ####1#1# #####1#1 ####1#1# #####1#1

TABLE 11. Optimal Strings against “Tit for Tat”.

A GA simulation against Tit for Tat with 3-round memory resulted in a family of strategies that

were all coöperating, even though convergence of structure had not occurred; that is, there was

convergence of behaviour for which convergence of structure is sufficient but not obviously

necessary.
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4.4  Breeding against Axelrod’s Five-Rule Niche

In his 1984 report, Axelrod described an environment of five of the rules entered in his second

tournament that could be used as representatives of the complete set of 63 rules (or strategies)

entered in the tournament, in the sense that the scores that a given strategy scores against them

could be used to predict the average score the strategy would obtain over his full set of 63.

Each set of games of Axelrod’s tournament was played for 151 rounds. He reported (1984,

p.199) the formula for the predicted tournament score in his second tournament as

T 5 = 120.0 + (0.202) S 6 + (0.198) S 30 + (0.110) S 35

+ (0.086) S 27 + (0.072) S 46, (4)

where T 5 is the predicted tournament score (or fitness) of a strategy, and Sj is the score which that

strategy obtains against the jth rule. Axelrod reported that the T 5 estimates correlate with the

actual tournament scores at r  = 0.979, and r 2 = 0.96. So 96% of the variance in his tournament

scores is explained by knowing a rule’s performance with only these five representative strategies

or rules.

Rule S 6 (the subscript represents the ranking in his second tournament), known as Tit for

Tat with Check for Random, was entered by Jim Graaskamp and Ken Katzen. Rule S 30, known as

the Revised State Transition, was entered by Jonathan Pinckley. Rule S 35, known as Discoverer,

was entered by Robert Adams. Rule S 27, known as Tranquilizer, was entered by Craig Feathers.

Rule S 46, known as Tester, was entered by David Gladstein. Of course, there is nothing

demonstrably optimal about the particular set of 63 rules entered in Axelrod’s tournament, but, as

he points out, by altering the weightings of the five representative rules, it is possible to construct

hypothetical variants of the tournament. Indeed, Nachbar (1988) argues that the results from

Axelrod’s second tournament are tainted by the entrants’ prior knowledge of the results of the

first, which may have been suboptimal. Nonetheless, against the niche of Axelrod’s 5-rule

environment, as we see below, Tit for Tat is very successful. In the next section we examine

results when breeding against an 8-rule niche (Axelrod 1987).

Before using Axelrod’s 5-rule niche to “breed” genetic strategies, we calibrated three simple

strategies against it, with the mean results shown in Table 12 (for 151 rounds). As expected,

Always Defect results in a very low score, and Tit for Tat does much better than Always

Coöperate.
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_________________________

Strategy Score

_________________________

Always Defect 342.780

Always Coöperate 406.146

Tit for Tat 422.446

_________________________

TABLE 12. Simple Strategies against Axelrod’s Five-Rule Niche.

Before breeding 3-round-memory strategies against the 5-rule niche, we bred a population

of 50 1-round-memory strategies. After about 90 generations, the following structure converged:

010010, where the first four bits are the mapping from state (Table 2) to action, and the last two

are the phantom memory (10 → DC). This is not Tit for Tat (001100), but something nastier, the

first move of which is to defect (because of the specific phantom memory and the 1 corresponding

to state 1). Figure 4 presents a Moore machine corresponding to 010010.

Start q D
D

q C

D

C

C

C, D

Figure 4. The “010010” Moore Machine

Comparison of this Figure with Figures 1 and 2 shows that 010010 is closer to Always Coöperate

than to Tit for Tat, since once the string coöperates once, it does thenceforth, whatever the other

player does, but that it starts off defecting, and continues to do so so long as the other player lets

it, by not retaliating. Against Tit for Tat, the pattern is {DC, DD, CD, CC, CC,  . . .  }, so that

string 010010’s undiscounted score is equal to Tit for Tat’s. Its score averaged 447.273 against

the 5-rule niche, against Tit for Tat’s of 422.446. This string is an example of a “trigger” strategy:

once its opponent first defects, it never itself defects again.
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The population of 50 3-round-memory genetic strategies was bred for 2,000 generations, a

total of 100,000 trials, each trial comprising 151 rounds of the iterated Prisoner’s Dilemma

against the five representative rules or strategies, a grand total of 75,500,000 rounds of the single

Prisoner’s Dilemma. This took 76 minutes on the AGSM’s Pyramid 90X, as sole user.

The results were similar to Axelrod’s (1987). The best individual scored 475.91 which was

greater than the mean of 422.446 for Tit for Tat. (Since strategies S 27 and S 35 are non-

deterministic, the scores of their competitors may vary by up to 20%, as Axelrod reports.) The

uncertainty associated with this environment, although in a sense adding to the work necessary to

evaluate the robustness of strategies, does provide a more varied environment against which to

select for alleles. The current best individual appeared after trial 15,500 in the 309th generation.

The family of highest-scoring strings is shown in Table 13, against the necessary Tit for Tat

string from Table 7, which provides a basis for comparison, at least in the sixteen positions that

characterise Tit for Tat.

0#00#### ###00#0# ##0##11# #1##01## 0###1#1# #####0## #####00# #0###### #11#01

00####00 ######## ######## 00####00 11####11 ######## ######## 11####11 000000

TABLE 13. The Best Family String, Bred against Axelrod’s Five-Rule Niche.

Examination shows that there is very little fit between the best family and Tit for Tat: only in two

positions (q  = 0 and 46) plus one bit of phantom memory do they agree, and they explicitly

disagree in three positions (q  = 33, 40, and 57) and in three bits of phantom memory. Thus there

is virtually no comparison between the best family and Tit for Tat.

Note that the score of the best 3-round-memory strategies of 475.91 is higher than that of

the best 1-round-memory strategy of 447.273, strongly suggesting that the increased level of

strategic complexity allowed by the longer bit-strings of the 3-round-memory strategies is

rewarded by higher scores in the repeated Prisoner’s Dilemma. If true, this provides a research

programme—to answer the first of the two questions at the end of Section 2.1: Given any level of

strategic complexity, what is the most successful strategy in competing against a given niche of

strategies? The second question—With no limit on strategic complexity, can Tit for Tat be

soundly bettered?—seems to have been clearly answered in the positive.



Page 27

4.5  Breeding against Axelrod’s Eight-Rule Niche

In his 1987 paper, Axelrod spoke of an environment of eight of the rules entered in his second

tournament, which he reported as having an r 2 of 0.98. In a personal communication to the

author, Axelrod revealed the formula for his 8-rule niche as

T 8 = 110.55 + (0.1574) S 30 + (0.1506) S 6 + (0.1185) S 35

+ (0.0876) S 27 + (0.0579) S 55 + (0.0492) S 34

+ (0.0487) S 46 + (0.0463) S 16, (5)

where T 8 is the predicted tournament score of a strategy, and Sj is the score which that strategy

obtains against the jth rule. The three additional rules are: rule S 55, Adjuster, entered by Scott

Feld; rule S 34, Slow-Never, entered by Roger Falk and James Langsted; and rule S 16, Fink,

entered by Richard Hufford.

As before, we calibrated three simple strategies against the 8-rule niche, with the mean

results for 151 rounds shown in Table 14.

_________________________

Strategy Score

_________________________

Always Defect 319.831

Always Coöperate 398.513

Tit for Tat 427.198

_________________________

TABLE 14. Simple Strategies against Axelrod’s Eight-Rule Niche.

The results of breeding strategies against the niche indicate a robustness for Tit for Tat not evident

in the earlier results. With 1-round-memory strategies (strings or 4 bits, plus 2 for phantom

memory), from a population of random strings, the string 001100 emerged as the highest scoring

and sole survivor after 2400 trials. But from Table 2 we see that this is Tit for Tat, with the

phantom memory of mutual coöperation.

With 2-round-memory strategies (strings of 16 bits, plus 4 for phantom memory), from a

population of 50 random strings, the family of strings shown in Table 15 emerges. After 17,000
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trials (339 generations) there was virtual convergence: 49 defected with state 2, one coöperated.

The average score of the family was 427.6, slightly above the score for Tit for Tat, again

suggesting that higher levels of strategic complexity can result in more highly scoring strategies,

although this cannot be pushed too far in this case, given the stochastic nature of the niche. (Two

of the rules are stochastic, as in the 5-rule niche.) Table 15 also presents the necessary string for

Tit for Tat from Table 7. We see that the necessary bits agree. What of sufficiency? For Tit-for-

Tat behaviour it would be sufficient that the first eight states mapped to 0 (C) and the second eight

to 1 (D), with a phantom memory of mutual coöperation.

00#00100 11101111 0000

00####00 11####11 0000

TABLE 15. Two-Round-Memory Strategy and Tit for Tat

We see that states 5 and 11 of the family are the opposite of those sufficient for Tit for Tat

behaviour, but these states may never be encountered, given the others. For 1- and 2-round-

memory strategies against Axelrod’s 8-rule niche, Tit for Tat seems good.

For 3-round-memory strategies there is again a family of strings that do converge (but for

two bits of the 70-bit string: 64 bits of strategy, plus 6 bits of phantom memory). The best family

string is shown in Table 16, together with the necessary string for Tit for Tat, from Table 7.

00101100 01100010 01000100 #010000# 11101110 10000101 01110100 10001011 100000

00####00 ######## ######## 00####00 11####11 ######## ######## 11####11 000000

TABLE 16. The Best Family String, Bred against Axelrod’s Eight-Rule Niche.

Inspection shows that there are disagreements between the best string and necessary Tit for Tat in

two states (q  = 39 and 57) and one bit of phantom memory; in two other positions (q  = 24 and

31)—the only two positions where convergence had not occurred after 12,000 trials (generation

239)—the string is ambiguous: 49 of the 50 individuals in the 239th generation had a 0 at position

24, which agrees with the necessary Tit for Tat, and another 49 had a 1 at position 31, which does

not agree. Nonetheless, the best family string is close to Tit for Tat in structure and score (at

426.29, almost identical to Tit for Tat).
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4.6  Breeding Strategies in a Noisy Game

Following Nalebuff’s challenge (1987), we have attempted to breed strategies in an environment

with “noise,” specifically in Axelrod’s 5-rule niche where there is a 5% probability that any player

misreads his opponent’s previous move, and believes it was C when it was D, or vice versa.

Strings will be selected that do not engage in “a mindless and almost slapstick routine of

punishing the other player: player A punished B for defecting and then B punishes A for

punishing him and so on” (Nalebuff 1987, p.187): this is the situation which may occur when

there is noise and Tit-for-Tat-ish competitors. The first results don’t seem to be generalisable, and

the best of the noisy strategies so far is shown in Table 17.

00000001 00011000 11011101 10000111 01001000 10111011 10000101 10110011 010101

00####00 ######## ######## 00####00 11####11 ######## ######## 11####11 000000

TABLE 17. The “Noisy” String and Tit for Tat.

We see that in positions 0, 1, 6, 25, 33, 50, 56, and 57, it behaves as does Tit for Tat, but that at

the eight other Tit-for-Tat-consistent positions (7, 24, 30, 31, 32, 38, 39, and 51) its behaviour is

opposite that of Tit for Tat. Its score was 400.09, which is difficult to judge as good or not, given

the difficulty of calibration with the requirement that both players face noisy reporting of the

other’s moves. It is possible that a strategy which looked at the cumulative score, as well as

previous moves, would do well in this environment, but, before modelling such behaviour in a

genetic-algorithm context, we must squeeze all possibilities from the purely move-regarding

strategies. It may be that 151 rounds of the repeated game do not provide us with a test of

sufficient power to feel confident that the schemata or sub-structures are being adequately selected

for or against. For any given level of noise or uncertainty in the one-shot game, a larger number

of rounds will provide greater confidence in structures so bred.

5.  Conclusions

THERE have been few other attempts to harness the power of the GA to search the enormous

number of possible strategies in the repeated two-person Prisoner’s Dilemma (Holland and

Miller 1991). Axelrod (1987) pioneered 3-round-memory strategies, and Miller (1989) searched

explicitly for finite automata to play the repeated game. Initial results look interesting. With a
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reasonable length of simulation we have been able to “breed” a 3-round-memory strategy which is

almost always better than Tit for Tat in 5-rule niche that approximates Axelrod’s second computer

tournament. Although the results from the 8-rule niche are not so suggestive, it appears that the

answer to the question posed at the end of Section 2.1 is that allowing a greater level of strategic

complexity does result in strategies which can outperform Tit for Tat. If this is so, then there is a

research programme to answer the other question posed at the end of Section 2.1: at any given

level of strategic complexity, what is the most successful strategy in competing against a given

niche of rules?

In a survey of developments in the evolution of coöperation, Axelrod and Dion (1988)

spend some time discussing the ways in which noisy environments can influence such

development, from a theoretical perspective. Miller (1989) has systematically bred finite

automata in noisy environments of various kinds, including that described by Nalebuff (1987).

The two questions posed at the end of Section 2.1 above remain to be answered for such noisy

environments with increasingly complex strategies, as reflected in ever longer memory.

In the framework above, future work will examine the environment more closely, and seed

it with successful strings previously bred. An extreme version of this is “coevolution”: pitting

each individual string in a population not against some unchanging environment, as we have done

above, but against every other member of its generation exhaustively (Miller 1989, Marks

1992b5). For any but the smallest populations such a programme would be extremely CPU-

intensive, but its outcome can be predicted: in-bred strings that coöperate against each other—and

thus do well in their mutually rewarding environment—but that might be easy pickings for any

invading “nasty” strategy. It is difficult to imagine that resistance to nastiness would remain in a

highly in-bred population of strategies except by chance, since such a trait would not be selected

for after the first few score generations of genetic drift.

A market of three sellers facing an elastic demand and selling a homogeneous output can be

modelled as a three-person PD: each seller’s profits would be maximised by a coöperative, high

price (the Pareto price), but competition drives the price down towards the Nash price and hence

each seller’s total profits down, even though with elastic demand the market grows. Following a

________________
5. Marks (1992b) referred to it as “bootstrapping”
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similar tournament at MIT (Fader and Hauser 1988), the author ran a computer tournament at the

AGSM to see whether entrants’ strategies could generalise Tit for Tat to the three-person game. In

a second tournament at MIT, the author’s strategy won. It is difficult to conclude that it would

always win, or indeed that any strategy is the “best,” since performance depends on the population

of competing strategies. Marks (1992b) reports efforts to use the GA to breed winning strategies

in three-person games.

A final comment should draw attention to a criticism of the Axelrod tournaments (and

hence to other such tournaments) by Nachbar (1988), who argued that the robustness of Tit for Tat

in Axelrod’s second strategy was conditioned by the announcement of its success in the first

tournament. The strings bred against a niche environment are not conditioned by prior

knowledge, and so in a sense the work reported here answers Nachbar’s criticisms. But the

specific niche was, of course, derived from Axelrod’s second tournament, which was perhaps

conditioned by the expectations of the entrants after the first tournament’s results were announced.

Only the coevolution or bootstrapping mentioned above will clearly avoid Nachbar’s criticisms.
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